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The important applications of monocular vision navigation in aerospace are spacecraft ground calibration tests and spacecraft
relative navigation. Regardless of the attitude calibration for ground turntable or the relative navigation between two spacecraft, it
usually requires four noncollinear feature points to achieve attitude estimation. In this paper, a vision navigation systembased on the
least feature points is designed to deal with fault or unidentifiable feature points. An iterative algorithm based on the feature point
reconstruction is proposed for the system. Simulation results show that the attitude calculation of the designed vision navigation
system could converge quickly, which improves the robustness of the vision navigation of spacecraft.

1. Introduction

Monocular vision navigation can be applied for spacecraft
ground physical simulation platforms and spacecraft relative
navigation [1–3]. Three-degree-of-freedom air bearing table
is the key equipment of spacecraft ground test [4–6], which
can simulate attitude motion in three directions. Air bearing
table can be used in demonstration and validation of key
technologies for space missions, such as spacecraft attitude
determination, control actuator ground verification, control
software development, autonomous spacecraft rendezvous
and docking, space target detection and identification, target
proximity and tracking control, demonstration and vali-
dation for precise pointing control of laser communica-
tion device, relative attitude cooperative control, microsatel-
lite formation flying initialization, cooperative control, and
autonomous operation.Three-degree-of-freedom air bearing
table is higher in terms of relative accuracy, but lacking
of initial reference. Therefore, the first condition to use
the three-degree-of-freedom air bearing table is the attitude
determination. The work in [7] proposed a turntable atti-
tude determination algorithm based on monocular vision
navigation, which requires four or more noncollinear feature
points to achieve the attitude calculation. If the feature points

are unidentifiable, there will be resolution error in the sys-
tem.

For the spacecraft relative navigation, the principle of
monocular vision navigation system is the same as the
calibration for air bearing table in ground simulation. It
also requires more than four noncollinear feature points
to achieve the attitude determination. However, unlike the
ground laboratory testing, the observation of objective space-
craft is uncontrollable. Destroyed feature points could barely
be repaired.The software failurewhich appears in recognition
algorithm will lead to unrecognition of the feature points.
These all would affect the completion of the spacecraft rela-
tive navigation tasks. The work in [8–10] studied the vision
navigation for the spacecraft and analyzed its failure. How-
ever, they did not take into account how the system continued
to maintain the task with minimum feature points. The work
in [11] studied the condition of unique solution with three
feature points, where the conditions and algorithms of the
unique solution are given under different modes. Nonethe-
less, its pattern constraint is very hard to apply into attitude
determination, and the system may converge into other
incorrect solutions.

To improve the robustness and practicality of monocular
vision navigation system, this paper studies the monocular
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vision navigation system which only recognizes three feature
points. We propose an algorithm in which feature point
reconstruction could be achieved without pattern constraint.
The algorithm effectively determines the attitude using only
three feature points.

This paper is divided into five sections. Section 1 intro-
duces the research background and significance. Section 2
is a description of the problem, including the definition
of coordinate systems, the camera model, and the Haralick
iterative algorithm. Section 3 presents the monocular vision
navigation algorithmwith no pattern constraints where min-
imum feature points are used under normal circumstances.
After analyzing how to identify the loss of feature points,
a feature point reconstruction algorithm is proposed and
analyzed in terms of the uniqueness of the solution. A
simulation is shown to validate the algorithm. Finally, the last
section concludes the paper.

2. Problem Description

2.1. Coordinate Frames. This paper mainly introduces three
coordinate frames: the camera coordinate frame, the image
coordinate frame, and the target coordinate frame, as shown
in Figure 1.

The image plane coordinate system is as follows: The
image plane is perpendicular to the optical axis. It has two
types: image pixel coordinates and pixel physical coordinates.
The origin of the image pixel coordinate 𝑂

𝑜
is located in the

upper left corner of pixel image plane. 𝑈-axis and 𝑉-axis
correspond to the rows and columns of the image plane. The
origin of the pixel physical coordinates 𝑂

𝐼
is located at the

intersection of image plane and optical axis. 𝑋
𝐼
-axis, 𝑌

𝐼
-axis

are parallel to 𝑈 and 𝑉 within the image plane.
The camera coordinate frame is as follows: Origin 𝑂

𝐶

is located in the optical center of the camera. 𝑍
𝐶
-axis is

perpendicular to the image plane and pointing to the target.
𝑋
𝐶
-axis, 𝑌

𝐶
-axis are parallel to 𝑈 and 𝑉 in the image plane.

The distance from the plane to the image plane is the focal of
the camera.

The target coordinate frame is as follows: The target
coordinate system is fixed to the target. Origin 𝑂

𝑇
is located

in the center of the target. 𝑍
𝑇
-axis is perpendicular to the

flotation platform and pointing to the ground. 𝑋
𝑇
𝑌
𝑇
𝑍
𝑇

satisfies the right-hand rule.

2.2. Camera Model. The transformation from the target in
three-dimensional spatial coordinates to the image in two-
dimensional is called a forward transform. Conversely, cal-
culating the target motion information in three-dimensional
space by the two-dimensional image is called an inverse
transform. The vision navigation solving the relative pose
information by images is an inverse transform.

A pinhole camera model is selected as the imaging
model. Coordinates of the target feature point in the target
coordinate frame are {𝑃

𝑇,𝑖
: (𝑥
𝑇,𝑖
, 𝑦
𝑇,𝑖
, 𝑧
𝑇,𝑖
)}. Coordinates

in the camera coordinate frame are {𝑃
𝐶,𝑖

: (𝑥
𝐶,𝑖
, 𝑦
𝐶,𝑖
, 𝑧
𝐶,𝑖
)}.

Coordinates of image point in the image coordinate frame
are {𝑃

𝐼,𝑖
: (𝑥
𝐼,𝑖
, 𝑦
𝐼,𝑖
)}. Assuming that 𝑅 and 𝑇 are the

matrix of attitude rotation and the translation vector from
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Figure 1: Schematic of coordinate frames.
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Figure 2: The camera model.

target coordinate frame to the camera coordinate, a general
equation of rigid motion could be denoted by

𝑃
𝐶,𝑖
= 𝑅𝑃
𝑇,𝑖
+ 𝑇. (1)

The conversion between the target and the camera coor-
dinate frame can be shown by the pinhole imaging model as

𝑃
𝐼,𝑖
: (𝑥
𝐼,𝑖
, 𝑦
𝐼,𝑖
) = 𝑓[

𝑥
𝐶,𝑖

𝑧
𝐶,𝑖

,
𝑦
𝐶,𝑖

𝑧
𝐶,𝑖

] , (2)

where 𝑓 is the focal length. Assuming that the camera has
been calibrated, the key issue of vision navigation is solving
the relative pose parameters 𝑅 and 𝑇 with coordinates of
feature points in the camera coordinate frame and the target
coordinate frame (Figure 2).

2.3. Haralick Iterative Algorithm. Every target feature point
corresponds to a ray departure from the camera projection
center, which passes through the image point and points
to the target. Considering the fact that direction of ray is
converse with projection line of the target feature point, the
ray is called inverse projection line. The unit vector can be
denoted by

V
𝑖
=

1

√𝑥
2

𝐼,𝑖
+ 𝑦
2

𝐼,𝑖
+ 𝑓2

[𝑥
𝐼,𝑖
, 𝑦
𝐼,𝑖
, 𝑓]
𝑇

. (3)

Ideally, {𝑃
𝐶,𝑖

: (𝑥
𝐶,𝑖
, 𝑦
𝐶,𝑖
, 𝑧
𝐶,𝑖
)} should be on the inverse

projection line of {𝑃
𝐼,𝑖
: (𝑥
𝐼,𝑖
, 𝑦
𝐼,𝑖
)} and satisfies the condition

of

𝑑
𝑖
V
𝑖
= 𝑃
𝐶,𝑖
, (4)

where 𝑑
𝑖
is the distance from the target feature to the camera’s

optical center, also known as the depth of field. So there is the
following:

𝑅𝑃
𝑇,𝑖
+ 𝑇 − 𝑑

𝑖
V
𝑖
= 0. (5)



Mathematical Problems in Engineering 3

Depth initialization

Updating depth

Convergence
judgment

Parameters 
output

Eigenvalue decomposition
calculation

parameters R, T

Figure 3: A flow chart for the Haralick iterative algorithm.

The depth of the field 𝑑
𝑖
is unknown. So we need to

determine the depth scale factor 𝑠 and then apply the absolute
attitude determination method to calculate it. Generally an
iterative estimated method is used here. It firstly estimates
the depth 𝑑

𝑖
and then solves the estimation matrix of attitude

parameters by the substituting of the estimated value into the
cameramodel.Then the estimationmatrix is used to calculate
the new depth 𝑑

𝑖
. Haralick proposed an iterative algorithm

which can calculate the position and the depth of the field of
a target at the same time. It calculates the relative position by
using eigenvalue decomposition algorithm. The calculation
of the depth of the field is denoted by

𝑑
𝑘+1

𝑖
=
(𝑅
𝑘
𝑃
𝑇,𝑖
+ 𝑇
𝑘
)
𝑇 V
𝑖

V𝑇
𝑖
V
𝑖

. (6)

Determination conditions for the convergence of iterations
are as follows:

𝜀
2

𝑘
=

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘
𝑃
𝑇,𝑖
+ 𝑇
𝑘
− 𝑑
𝑘

𝑖
V
𝑖

󵄩󵄩󵄩󵄩󵄩

2

. (7)

Repeat iteration until 𝑅 and 𝑇 get the minimum error 𝜀2
𝑘

(Figure 3).

3. Monocular Vision Navigation Algorithm
with Minimum Feature Points

For a vision navigation system, its solution entirely depends
on feature points captured by the camera. The P𝑁P refers
to Perspective-𝑁-Point. 𝑁 is the number of feature points
captured. Normally if there are fewer than four feature points,
the relative position could not be determined. P3P is a form
which has the least feature points in the P𝑁P problem. How
to solve the relative position with only three feature points is
worthy of consideration.

In the case of terrestrial physics simulation platform
spacecraft applications, through designing the relative posi-
tion of the camera and platform to meet the P3P problem
mode constraints, the relative position and attitude can be

PT,1

PT,2 PT,3

PT,4

OT

YT
ZT

XT

Figure 4: The design of feature points.

calculated. However, in actual application, redesign position
is always complex and mode constraint has its limitations.
Studying the monocular vision navigation algorithm with
minimum feature points under normal circumstances is
needed.

3.1. Reconstruction of Missing Feature Points. As shown in
Figure 4, four noncollinear features are designed in the same
plane within the target coordinates frame. Any three points
form a different triangle.

All of the feature points on the image plane could be
identified under normal circumstances, but the feature points
would be lost if feature points are damaged or the recognition
algorithm is broken. If only three feature points could be
identified, such as 𝑃

𝑇,1
𝑃
𝑇,2
𝑃
𝑇,3
, corresponding to the image

point 𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼3
in Figure 5, it could not be solved under the

no-meet mode constraint conditions. If we could reconstruct
the missing feature points 𝑃

𝑇,4
and the corresponding image

point 𝑃
𝐼4
, then the problem could be properly solved. (The

missing feature point could be any one.)
In the case of ground turntable applications, it is easy

to determine the loss of feature points. In general, the
concentrical feature points may be used for identification.
This could also be done by matching the image plane before
losing the feature points and the one after it. Furthermore,
spacecraft gyro outputs and navigation filter outputs can be
used to determine the identified feature points and missing
feature points. Figure 5 shows the missing feature points and
their reconstruction.

In the target coordinate system, 𝑆
1
represents the area

of the triangle composed of feature points 𝑃
𝑇1
𝑃
𝑇2
𝑃
𝑇4
; 𝑆
2

represents the area of the triangle composed of feature points
𝑃
𝑇2
𝑃
𝑇1
𝑃
𝑇3
; 𝑆
3
represents the area of the triangle composed of

feature points𝑃
𝑇3
𝑃
𝑇2
𝑃
𝑇4
; 𝑆
4
represents the area of the triangle

composed of feature points 𝑃
𝑇4
𝑃
𝑇1
𝑃
𝑇3
. In the image plane, 𝑆󸀠

1

represents the area of the triangle composed of feature points
𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼4
, 𝑆󸀠
2
represents the area of the triangle composed of

feature points 𝑃
𝐼2
𝑃
𝐼1
𝑃
𝐼3
, 𝑆󸀠
3
represents the area of the triangle

composed of feature points 𝑃
𝐼3
𝑃
𝐼2
𝑃
𝐼4
, and 𝑆󸀠

4
represents the
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Figure 5: Feature points loss and reconstruction.

area of the triangle composed of feature points 𝑃
𝐼4
𝑃
𝐼1
𝑃
𝐼3
, as

the following formula:

𝑆
󸀠

1
= Δ𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼4
, 𝑆

1
= Δ𝑃
𝑇1
𝑃
𝑇2
𝑃
𝑇4
,

𝑆
󸀠

2
= Δ𝑃
𝐼2
𝑃
𝐼1
𝑃
𝐼3
, 𝑆

2
= Δ𝑃
𝑇2
𝑃
𝑇1
𝑃
𝑇3
,

𝑆
󸀠

3
= Δ𝑃
𝐼3
𝑃
𝐼2
𝑃
𝐼4
, 𝑆

3
= Δ𝑃
𝑇3
𝑃
𝑇2
𝑃
𝑇4
,

𝑆
󸀠

4
= Δ𝑃
𝐼4
𝑃
𝐼1
𝑃
𝐼3
, 𝑆

4
= Δ𝑃
𝑇4
𝑃
𝑇1
𝑃
𝑇3
.

(8)

According to affine transformation properties, two-triangle
area ratio is affine invariant; then

𝑆
󸀠

1
/𝑆
󸀠

2
/𝑆
󸀠

3
/𝑆
󸀠

4
= 𝑆
1
/𝑆
2
/𝑆
3
/𝑆
4
. (9)

Since𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼3
can be identified, 𝑆󸀠

2
can be directly calculated;

based on the area ratio formula, the estimated value of 𝑆󸀠
1
, 𝑆󸀠
3
,

𝑆
󸀠

4
can be calculated and expressed as 𝑆󸀠

1
, 𝑆󸀠
2
, 𝑆󸀠
3
, 𝑆󸀠
4
:

𝑆
󸀠

1
=
𝑆
1

𝑆
2

𝑆
󸀠

2
, 𝑆

󸀠

2
= 𝑆
󸀠

2
, 𝑆

󸀠

3
=
𝑆
3

𝑆
2

𝑆
󸀠

2
, 𝑆

󸀠

4
=
𝑆
4

𝑆
2

𝑆
󸀠

2
.

(10)

According to the triangle area formula, three areas related 𝑃
𝐼4

are as follows:

𝑆
󸀠

1
= Δ𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼4
=
1

2
[𝑥
𝐼,1
𝑦
𝐼,2
− 𝑥
𝐼,2
𝑦
𝐼,1
+ 𝑥
𝐼,2
𝑦
𝐼,4
− 𝑥
𝐼,4
𝑦
𝐼,2

+𝑥
𝐼,4
𝑦
𝐼,1
− 𝑥
𝐼,1
𝑦
𝐼,4
] ,

𝑆
󸀠

3
= Δ𝑃
𝐼3
𝑃
𝐼2
𝑃
𝐼4
=
1

2
[𝑥
𝐼,4
𝑦
𝐼,2
− 𝑥
𝐼,2
𝑦
𝐼,4
+ 𝑥
𝐼,2
𝑦
𝐼,3
− 𝑥
𝐼,3
𝑦
𝐼,2

+𝑥
𝐼,3
𝑦
𝐼,4
− 𝑥
𝐼,4
𝑦
𝐼,3
] ,

𝑆
󸀠

4
= Δ𝑃
𝐼4
𝑃
𝐼1
𝑃
𝐼3
=
1

2
[𝑥
𝐼,1
𝑦
𝐼,4
− 𝑥
𝐼,4
𝑦
𝐼,1
+ 𝑥
𝐼,4
𝑦
𝐼,3
− 𝑥
𝐼,3
𝑦
𝐼,4

+𝑥
𝐼,3
𝑦
𝐼,1
− 𝑥
𝐼,1
𝑦
𝐼,3
] .

(11)

Ideally, 𝑆󸀠
𝑖
= 𝑆
󸀠

𝑖
; then,

2
𝑆
1

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,1
𝑦
𝐼,2
+ 𝑥
𝐼,2
𝑦
𝐼,1

= (𝑦
𝐼,1
− 𝑦
𝐼,2
) 𝑥
𝐼,4
+ (𝑥
𝐼,2
− 𝑥
𝐼,1
) 𝑦
𝐼,4
,

2
𝑆
3

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,2
𝑦
𝐼,3
+ 𝑥
𝐼,3
𝑦
𝐼,2

= (𝑦
𝐼,2
− 𝑦
𝐼,3
) 𝑥
𝐼,4
+ (𝑥
𝐼,3
− 𝑥
𝐼,2
) 𝑦
𝐼,4
,

2
𝑆
4

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,3
𝑦
𝐼,1
+ 𝑥
𝐼,1
𝑦
𝐼,3

= (𝑦
𝐼,3
− 𝑦
𝐼,1
) 𝑥
𝐼,4
+ (𝑥
𝐼,1
− 𝑥
𝐼,3
) 𝑦
𝐼,4
.

(12)

Convert into matrix form

[
[
[
[
[
[
[
[
[
[

[

2
𝑆
1

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,1
𝑦
𝐼,2
+ 𝑥
𝐼,2
𝑦
𝐼,1

2
𝑆
3

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,2
𝑦
𝐼,3
+ 𝑥
𝐼,3
𝑦
𝐼,2

2
𝑆
4

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,3
𝑦
𝐼,1
+ 𝑥
𝐼,1
𝑦
𝐼,3

]
]
]
]
]
]
]
]
]
]

]

=
[
[
[

[

(𝑦
𝐼,1
− 𝑦
𝐼,2
) (𝑥
𝐼,2
− 𝑥
𝐼,1
)

(𝑦
𝐼,2
− 𝑦
𝐼,3
) (𝑥
𝐼,3
− 𝑥
𝐼,2
)

(𝑦
𝐼,3
− 𝑦
𝐼,1
) (𝑥
𝐼,1
− 𝑥
𝐼,3
)

]
]
]

]

⋅ [
𝑥
𝐼,4

𝑦
𝐼,4

] .

(13)

That is, 𝑆 = 𝐺 ⋅ 𝑃
𝐼4
and

𝐺 =

[
[
[
[
[
[
[
[
[
[

[

2
𝑆
1

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,1
𝑦
𝐼,2
+ 𝑥
𝐼,2
𝑦
𝐼,1

2
𝑆
3

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,2
𝑦
𝐼,3
+ 𝑥
𝐼,3
𝑦
𝐼,2

2
𝑆
4

𝑆
2

𝑆
󸀠

2
− 𝑥
𝐼,3
𝑦
𝐼,1
+ 𝑥
𝐼,1
𝑦
𝐼,3

]
]
]
]
]
]
]
]
]
]

]

,

𝑆 =
[
[
[

[

(𝑦
𝐼,1
− 𝑦
𝐼,2
) (𝑥
𝐼,2
− 𝑥
𝐼,1
)

(𝑦
𝐼,2
− 𝑦
𝐼,3
) (𝑥
𝐼,3
− 𝑥
𝐼,2
)

(𝑦
𝐼,3
− 𝑦
𝐼,1
) (𝑥
𝐼,1
− 𝑥
𝐼,3
)

]
]
]

]

, 𝑃
𝐼,4
= [

𝑥
𝐼,4

𝑦
𝐼,4

] .

(14)
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Figure 6: Reconstruction uniqueness analysis schematic.

Measurement errors, imaging errors, calculation errors, and
other factors that lead to the equation are not absolutely
accurate. In actuality 𝑆󸀠

𝑖
≈ 𝑆
󸀠

𝑖
; then

𝑆 ≈ 𝐺 ⋅ 𝑃
𝐼4
. (15)

It can be considered that coordinates with 𝜉minimum are the
reconstructed image point 𝑃

𝐼,4
:

𝜉 (𝑥
𝐼,4
, 𝑦
𝐼,4
) = (𝑆 − 𝐺 ⋅ 𝑃

𝐼4
)
2

. (16)

3.2. Reconstruction Uniqueness Analysis. Shown as the area
𝑆
󸀠

1
= Δ𝑃
𝐼1
𝑃
𝐼2
𝑃
𝐼4
, 𝑆󸀠
1
is the calculated area value; then accord-

ing to the triangle formula we have the following.

(a) Reconstruction image point 𝑃󸀠
𝐼4

must lie in line 𝑙
3

which is paralleled to the straight line 𝑃
𝐼,1
𝑃
𝐼,2

with the
distance of ℎ

3
= 2𝑆
󸀠

1
/𝐿(𝑃
𝐼,1
𝑃
𝐼,2
). 𝐿(𝑃
𝐼,1
𝑃
𝐼,2
) represents

the segment length. There will be two parallel lines
satisfied with this condition on the image plane. But
according to the polygon affine transformation does
not change the convexity principle and reconstruc-
tion of the image point is located only on the half-
plane in Figure 6. So there is only one straight line to
meet the requirements.

Similarly we have the following.

(b) Reconstruction image point 𝑃󸀠
𝐼4

must lie in line 𝑙
1

which is paralleled to the straight line 𝑃
𝐼,1
𝑃
𝐼,3

with the
distance of ℎ

1
= 2𝑆
󸀠

2
/𝐿(𝑃
𝐼,1
𝑃
𝐼,3
). 𝐿(𝑃
𝐼,1
𝑃
𝐼,3
) represents

the segment length.
(c) Reconstruction image point 𝑃󸀠

𝐼4
must lie in line 𝑙

2

which is paralleled to the straight line 𝑃
𝐼,2
𝑃
𝐼,3

with the
distance of ℎ

1
= 2𝑆
󸀠

3
/𝐿(𝑃
𝐼,2
𝑃
𝐼,3
). 𝐿(𝑃
𝐼,2
𝑃
𝐼,3
) represents

the segment length.

As shown in Figure 6, the intersection of the straight
lines is the image point which is needed to be reconstructed
and more than one solution does not exist. In the ideal
case without error, there exists a unique solution. However,
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Figure 7: Relative attitude curves.

three straight lines may not intersect at one point due to
imaging errors, calculation errors, measurement errors, and
other reasons. The least-squares algorithm is linear optimal
solution and can be used to decide the point.

3.3. Simulation Results Analysis. A laptop with 32-bit Win-
dows 7, Intel Core i5 processor, and 4GB memory has been
used to carry out the simulation.

The coordinates of feature points relative to the target
coordinates frame are 𝑃

𝑇,1
= [0, 200, 0]

𝑇mm, 𝑃
𝑇,2

=

[−130, −50, 0]
𝑇mm, 𝑃

𝑇,3
= [140, −60, 0]

𝑇mm, and 𝑃
𝑇,4

=

[−40, 100, 0]
𝑇mm. The camera focal length is 𝑓 = 10mm,

𝑇 = [0, 300, 500]
𝑇mm, and 𝜀2max = 5 ∗ 10

−3mm2.
Figure 7 shows the relative attitude curves. Assuming the

image points 𝑃
𝐼4

lost. Figure 8 is the attitude error curve
after feature point reconstruction. Attitude errors decreased
clearly after the reconstruction of feature points, and the sys-
tem can control attitude accuracy within 0.4 degrees. Figure
9 represents the computation time, nomore than 0.1 seconds.

4. Conclusions

A vision navigation algorithm based on the least feature
points is proposed to improve the reliability of themonocular
vision navigation system for aerospace. In this paper, a vision
navigation system based on three feature points is designed to
deal with fault or unidentifiable feature points. An iterative
vision navigation algorithm is proposed based on feature
points’ reconstruction.

The simulation results show that the attitude calculation
of vision navigation system designed in this paper can
converge fast. Using the reconstruction algorithm for vision
navigation, the accuracy will be better than 0.4 degrees. It
improves the robustness of the vision navigation of spacecraft
and reduces the number of target feature points.
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Figure 8: Attitude error curve after feature point reconstruction.
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