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A possible mechanism for the spontaneous breaking of SUSY, based on the presence of vacuum condensates, is reviewed. Such a
mechanism could occur inmany physical examples, at both the fundamental and emergent levels, and would be formally analogous
to spontaneous SUSY breaking at finite temperature in the TFD formalism, in which case it can be applied as well. A possible
experimental setup for detecting such a breaking through measurement of the Anandan-Aharonov invariants associated with
vacuum condensates in an optical lattice model is proposed.

1. Introduction

Supersymmetry (SUSY) [1, 2] has had a huge impact on
contemporary physics, not only from the purely theoretical
and mathematical points of view, but also from the phe-
nomenological and experimental ones. This is despite the
absence, up to now, of any clear experimental signature of its
existence at the fundamental level. The main reason for this
is that to date SUSY provides the best available explanation
of the gauge hierarchy problem of the Standard Model [3], as
well as providing candidates for dark matter and improving
the situation of the dark energy issue (which however is still
far from settled). In a few years, the situation may radically
change due to the results coming from the LHC, but it is
a fact that if SUSY exists at a fundamental level, it must be
broken, either spontaneously or explicitly, since otherwise the
superpartners of the known particles would be degenerate
with the latter and thus would have been observed long
ago. For this reason over the years there has been a lot of
activity concerning SUSY breaking, and in particular the
spontaneous breaking case (see, e.g., [4, 5] and references
therein).

Besides fundamental SUSY, an interesting possibility,
both on its own right and as a way to experimentally test ideas
on SUSY and its breaking in the near future, is emergent SUSY.

Namely, it is possible that a condensed matter system may
display SUSY at low energies, whichmay ormay not be spon-
taneously broken. In particular, relativistic supersymmetric
theories could be simulated with cold atom systems in optical
lattices [6]. In what follows, we will describe a mechanism for
SUSY breaking, based on vacuum condensates, which may
be valid both at a fundamental level and at an emergent level
[7, 8]. The latter possibility also suggests ways to investigate
this mechanism in table top experiments.

The idea is to exploit the formal analogy between thermal
field theory in its Thermofield Dynamics (TFD) formula-
tion [9] and different physical phenomena characterized
by vacuum condensates similar to those appearing in the
thermal context [10–15]. As in the thermal case, SUSY
is spontaneously broken (see below); we expect that this
happens in the same way also in these other phenomena.
A possible experiment involving the measurement of the
Anandan-Aharonov invariant associated with the vacuum
condensate is also described.

Before explicitly stating our conjecture, let us briefly recall
how SUSY is spontaneously broken in TFD.

It is well known that SUSY is spontaneously broken
at any finite temperature [16, 17], with the fundamental
reason being the different statistical behavior of bosons and
fermions. Finite temperature physics can be formulated in

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2015, Article ID 929362, 6 pages
http://dx.doi.org/10.1155/2015/929362

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/195023093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in High Energy Physics

a way which is equivalent to the standard ensemble based
picture but which emphasizes the appearance of vacuum
condensates. This formalism goes under the name of Ther-
mofieldDynamics [9]. In this formalismvacuumcondensates
in the thermal ground state are conveniently described by
means of Bogoliubov transformations, and thermal effects
are encoded in the appearance of a new vacuum which is
unitarily inequivalent to the zero temperature one. Thermal
averages are then just vacuum expectation values with respect
to this new vacuum. In the standard picture [16, 17], SUSY
breaking is due to the fact that it is not possible to write
down thermal averages in a way consistent with SUSY, while
in the TFD picture it is due to the fact that the new vacuum
acquires a nonvanishing energy density. This picture thus
links thermal breaking of SUSY to the standard description
of SUSY breaking, whose order parameter is precisely the
vacuum energy density [4, 5]. This last fact is as well known
a straightforward consequence of the SUSY algebra: if the
vacuum is not invariant under SUSY transformations, that is,
𝑄
𝛼
|0⟩ ̸= 0, then (here 𝑄 is the supercharge that generates

SUSY transformations, 𝐻 is the Hamiltonian of the theory,
and 𝐶 is the charge conjugation matrix)

⟨0 |𝐻| 0⟩ = 1
8
⟨0 󵄨󵄨󵄨󵄨󵄨Tr (𝐶𝛾

0
[𝑄, 𝑄]

+
)
󵄨󵄨󵄨󵄨󵄨
0⟩ ̸= 0, (1)

while of course if the vacuum is invariant, then ⟨0|𝐻|0⟩ = 0.
Physically, this is due to the fact that the zero point energies
of fermions and bosons cancel out; schematically,

𝐻 = 𝐻
𝜓
+𝐻
𝐵

∼ ∑

k,𝑖
{𝜔
𝜓

k,𝑖 (𝑁
𝜓

k,𝑖 −
1
2
)+ 𝜔
𝐵

k,𝑖 (𝑁
𝐵

k,𝑖 +
1
2
)} ,

(2)

and in a supersymmetric theory 𝜔
𝜓

k,𝑖 = 𝜔
𝐵

k,𝑖 ≡ 𝜔k,𝑖. In the
case of TFD, the condensates which are present in the thermal
vacuum lift the vacuum energy. Such a lift is not canceled in
a supersymmetric theory, thereby triggering the spontaneous
breaking of SUSY.

The point is that the formalism of Bogoliubov trans-
formations [18], on which this vacuum condensate based
description of thermal physics is founded, is quite universal
and describes vacuum condensates in a host of different
quantum field theoretical (QFT) phenomena at various
length scales, from fundamental to emergent models [19].
Examples of such phenomena include quantum fields in
external fields, such as Schwinger [10] and Unruh [11] effects
and examples from condensed matter physics such as the
BCS theory of superconductivity [12] and graphene [13],
mixing in particle physics [14, 15]. (In the case of mixing
the situation is slightly different, in that the Bogoliubov
transformation is nested in a unitary transformation of the
fields; however, this does not qualitatively change what we
will say.) This leads to the conjecture that, in all these cases,
when a supersymmetric extension is possible at the classical
level, vacuum condensates lift the vacuum energy, thereby
spontaneously breaking SUSY [7, 8]. We give some evidence
for this conjecture by considering the free Wess-Zumino
model [20]. Despite its simplicity, this simple picture should

give a good qualitative understanding of the vacuum of more
complicated systems.

Considering the range of the phenomena described by
this picture, this mechanism may occur at a fundamental
level, for example, triggered by particle mixing, as proposed
in [21, 22], or at an emergent level. The first possibility is
very interesting from a phenomenological point of view and
may be used for model building, while the latter possibility
suggests, as said, the possibility of conceiving experimental
measurements of the vacuum energy due to the condensates,
therefore corroborating our conjecture [7]. This will be also
the object of the present paper, in which the possibility
of probing thermal spontaneous SUSY breaking through
geometric invariants [23] will be explored. To be specific,
the relevant quantity is the Anandan-Aharonov invariant
[24], which has been shown to be a feature of phenomena
characterized by vacuum condensates [25].

A few comments are in order. First of all, since vacuum
condensates are a genuine field theoretical and nonpertur-
bative phenomenon, this kind of SUSY breaking can occur
only in QFT, and it is nonperturbative in nature (consistently
with the fact that if SUSY is unbroken at tree level, it can only
be broken at the nonperturbative level [4]). Second, while in
what followswewill give evidence for our conjecture in a sim-
ple case, we do not address the issue of the dynamical origin
of that breaking or, which is the same, of the origin of the
vacuum condensates, which depends on the specific details
of the phenomena under study and which in some cases
such as mixing is to date unknown. The effective description
of condensates in terms of Bogoliubov transformations is
instead universal (besides being technically straightforward),
since the form of this transformation is always the same,
with the details of the specific case being encoded in the
coefficients.Thismeans that our discussionwill be necessarily
qualitative, while a more quantitative approach will need
dealing with the complexities of the dynamics on various
cases. In particular, the computation of quantities such as
the scale of the breaking and mass differences between
superpartners lies beyond the scope of the present paper.
Also, we do not address the issue of the Goldstone fermion
associated with the breaking. This issue, as well as the
detailed study of some specific case, is left for some future
publication.

2. Vacuum Condensate and SUSY Breaking

As a model of the supersymmetric extension of any of the
above systems, we consider a situation in which SUSY is
preserved at the Lagrangian level and study the vacuum
condensation effects. These are described by a Bogoliubov
transformation acting simultaneously, and with the same
parameters, on the bosonic and on the fermionic degrees
of freedom. This is required in order not to break SUSY
explicitly. We conjecture that, in such a situation, SUSY is
spontaneously broken by the appearance of vacuum conden-
sates. In the present section, we collect some basic facts about
Bogoliubov transformations in QFT (see, e.g., [19]), and then
we prove in a simple case that vacuum condensates do shift
the vacuum energy.
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The modes of any boson (fermion) field are described
by a set of ladder operators 𝑎k, whose canonical (anti)com-
mutation relations (CCRs) are [𝑎k, 𝑎

†

p]± = 𝛿
3
(k−p), with− for

bosons and + for fermions and all other (anti)commutators
vanishing. The vacuum |0⟩ is defined by 𝑎k|0⟩, and a Fock
space is built out of it by acting with the creation operators
𝑎
†

k .
A generic Bogoliubov transformation has the following

form:

𝑎k (𝜉) = 𝑈k𝑎k −𝑉k𝑎
†

k , (3)

with the condition |𝑈k|
2
± |𝑉k|

2
= 1, with − for bosons and +

for fermions, ensuring the canonicity of the transformation.
The transformation (3) is conveniently rewritten as 𝑎k(𝜉) =

𝐽
−1
(𝜉)𝑎k𝐽(𝜉), where 𝐽(𝜉) is the generator which has the

property 𝐽
−1
(𝜉) = 𝐽(−𝜉). The transformed operators 𝑎k(𝜉)

define a state |0̃(𝜉)⟩ through 𝑎k(𝜉)|0̃(𝜉)⟩ = 0, which is related
to the vacuum |0⟩ by |0̃(𝜉)⟩ = 𝐽

−1
(𝜉)|0⟩. Such a state is a new

vacuum of the system, for the following reason: the above
transformation is a unitary operation if k assumes a discrete
range of values, that is, if there is a finite or denumerably
infinite number of CCRs. Then, the Fock spaces built on the
two vacua |0⟩ and |0̃(𝜉)⟩ are equivalent. If on the other hand
we assume that k has continuous infinity of values, which
is the situation we are really interested in, we find that the
transformation |0̃(𝜉)⟩ = 𝐽

−1
(𝜉)|0⟩ is not unitary any more.

This means that the two vacua and thus the two Fock spaces
built over them are unitarily inequivalent. We thus have a
family of states |0̃(𝜉)⟩, each of which represents in principle
a physical vacuum state for the theory. Of course, for these
states to be true vacua of the system, the issue of stability
should be addressed, but this depends on the specific system
and is beyond the scope of this simple, free model.

Now, as announced, we will perform a Bogoliubov trans-
formation on the free Wess-Zumino model and study its
effects. The Lagrangian is given by (we adopt the notational
conventions of [20])

L =
𝑖

2
𝜓𝛾
𝜇
𝜕
𝜇

𝜓+
1
2
𝜕
𝜇
𝑆𝜕
𝜇

𝑆 +
1
2
𝜕
𝜇
𝑃𝜕
𝜇

𝑃−
𝑚

2
𝜓𝜓

−
𝑚

2

2
(𝑆

2
+𝑃

2
) ,

(4)

where 𝜓 is a Majorana spinor field, 𝑆 is a scalar field, and 𝑃

is a pseudoscalar field.This Lagrangian is invariant under the
SUSY transformations:

𝛿𝑆 = 𝑖𝜅𝜓,

𝛿𝑃 = 𝑖𝜅𝛾5𝜓,

𝛿𝜓 = 𝜕
𝜇
(𝑆 − 𝛾5𝑃) 𝛾

𝜇

𝜅 −𝑚 (𝑆 + 𝛾5𝑃) 𝜅,

(5)

where 𝜅 is a Grassmann valued spinorial parameter.
We denote by 𝛼

𝑟

k, 𝑏k, and 𝑐k the annihilators for the
fields 𝜓, 𝑆, and 𝑃, respectively, which annihilate the vacuum
|0⟩ = |0⟩𝜓 ⊗ |0⟩𝑆 ⊗ |0⟩𝑃 and we perform simultaneous

Bogoliubov transformations on the fermion and on the
bosons:

𝛼̃
𝑟

k (𝜉, 𝑡) = 𝑈
𝜓

k (𝜉, 𝑡) 𝛼
𝑟

k (𝑡) +𝑉
𝜓

−k (𝜉, 𝑡) 𝛼
𝑟†

−k (𝑡) ,

𝑏̃k (𝜂, 𝑡) = 𝑈
𝑆

k (𝜂, 𝑡) 𝑏k (𝑡) −𝑉
𝑆

−k (𝜂, 𝑡) 𝑏
†

−k (𝑡) ,

𝑐k (𝜂, 𝑡) = 𝑈
𝑃

k (𝜂, 𝑡) 𝑐k (𝑡) −𝑉
𝑃

−k (𝜂, 𝑡) 𝑐
†

−k (𝑡) .

(6)

The Bogoliubov coefficients of scalar and pseudoscalar
bosons are equal to each other: 𝑈𝑆k = 𝑈

𝑃

k and 𝑉
𝑆

k = 𝑉
𝑃

k .
We thus denote such quantities as 𝑈𝐵k and 𝑉

𝐵

k , respectively.
For fermions and for bosons, the Bogoliubov coefficients have
the general form: 𝑈𝜓k = 𝑒

𝑖𝜙1k cos 𝜉k(𝜁), 𝑉
𝜓

k = 𝑒
𝑖𝜙2k sin 𝜉k(𝜁),

𝑈
𝐵

k = 𝑒
𝑖𝛾1k cosh 𝜂k(𝜁), and 𝑉

𝐵

k = 𝑒
𝑖𝛾2k sinh 𝜂k(𝜁), respectively,

where 𝜁 represents the relevant parameter which controls
the physics underlying the Bogoliubov transformation. For
example, 𝜁 is related to the temperature 𝑇 in Thermofield
Dynamics and to the acceleration of the observer in Unruh
effect case. Since the phases 𝜙

𝑖k and 𝛾
𝑖k, with 𝑖 = 1, 2, are

irrelevant, we neglect them.
The transformations (6) can be written at any time 𝑡 in

terms of a generator 𝐽(𝜉, 𝜂, 𝑡); for example, for fermions we
have

𝛼̃
𝑟

k (𝜉, 𝑡) = 𝐽
−1
(𝜉, 𝜂, 𝑡) 𝛼

𝑟

k (𝑡) 𝐽 (𝜉, 𝜂, 𝑡) , (7)

with similar relations holding for the bosonic annihilation
and creation operators; in all of them, the generator is
𝐽(𝜉, 𝜂, 𝑡) = 𝐽

𝜓
(𝜉, 𝑡)𝐽

𝑆
(𝜂, 𝑡)𝐽

𝑃
(𝜂, 𝑡), where 𝐽

𝜓
, 𝐽
𝑆
, and 𝐽

𝑃
are

the generator of the Bogoliubov transformations for fermion,
scalar, and pseudoscalar fields [7].

The new vacuum is |0̃(𝑡)⟩ = |0̃(𝑡)⟩
𝜓
⊗ |0̃(𝑡)⟩

𝑆
⊗ |0̃(𝑡)⟩

𝑃
,

where the states |0̃(𝑡)⟩
𝛼
, with 𝛼 = 𝜓, 𝑆, 𝑃, are related to the

original ones |0⟩
𝛼
by the relations |0̃(𝑡)⟩

𝜓
= 𝐽
−1
𝜓
(𝜉, 𝑡)|0⟩

𝜓
,

|0̃(𝑡)⟩
𝑆
= 𝐽
−1
𝑆
(𝜂, 𝑡)|0⟩

𝑆
, and |0̃(𝑡)⟩

𝑃
= 𝐽
−1
𝑃
(𝜂, 𝑡)|0⟩

𝑃
, respec-

tively; therefore, the full vacua are related by
󵄨󵄨󵄨󵄨󵄨
0̃ (𝑡)⟩ = 𝐽

−1
(𝜉, 𝜂, 𝑡) |0⟩ . (8)

We notice that |0̃(𝑡)⟩ has the structure of a condensate of
particles, and indeed we have

⟨0̃ (𝑡) 󵄨󵄨󵄨󵄨󵄨𝛼
𝑟†

k 𝛼
𝑟

k
󵄨󵄨󵄨󵄨󵄨
0̃ (𝑡)⟩ =

󵄨󵄨󵄨󵄨󵄨
𝑉
𝜓

k (𝜉, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
;

⟨0̃ (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑏
†

k𝑏k
󵄨󵄨󵄨󵄨󵄨
0̃ (𝑡)⟩ = ⟨0̃ (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑐

†

k 𝑐k
󵄨󵄨󵄨󵄨󵄨
0̃ (𝑡)⟩ =

󵄨󵄨󵄨󵄨󵄨
𝑉
𝐵

k (𝜂, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
.

(9)

Such a structure leads to an energy density different from
zero for |0̃(𝑡)⟩. To see this explicitly, we must compute the
expectation value of the Hamiltonian𝐻 corresponding to the
Lagrangian in (4), which has the form𝐻 = 𝐻

𝜓
+ 𝐻
𝐵
(where

𝐻
𝐵
= 𝐻
𝑆
+𝐻
𝑃
), on |0̃(𝑡)⟩. The results for the two pieces of𝐻

are given by

⟨0̃ (𝑡) 󵄨󵄨󵄨󵄨󵄨𝐻𝜓
󵄨󵄨󵄨󵄨󵄨
0̃ (𝑡)⟩ = −∫𝑑

3k𝜔k (1− 2 󵄨󵄨󵄨󵄨󵄨𝑉
𝜓

k (𝜉, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
) , (10)

⟨0̃ (𝑡) 󵄨󵄨󵄨󵄨𝐻𝐵
󵄨󵄨󵄨󵄨 0̃ (𝑡)⟩ = ∫𝑑

3k𝜔k (1+ 2 󵄨󵄨󵄨󵄨󵄨𝑉
𝐵

k (𝜂, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
) , (11)
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respectively. We thus obtain the final result

⟨0̃ (𝑡) |𝐻| 0̃ (𝑡)⟩

= 2∫𝑑
3k𝜔k (

󵄨󵄨󵄨󵄨󵄨
𝑉
𝜓

k (𝜉, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨
𝑉
𝐵

k (𝜂, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2
)

(12)

which is different from zero and positive unless we are in the
trivial case |𝑉𝜓k |

2
= |𝑉
𝐵

k |
2
= 0.

The above computation clearly shows that the nonzero
vacuum condensate energy, and thus the breaking of SUSY, is
due to the fact that both the fermion and boson contributions
to the condensate lift the vacuum energy by a positive
amount, in contrast with the zero point energies which cancel
each other.

3. SUSY Breaking and
the Anandan-Aharonov Invariant

It has been shown that the presence of the Anandan-
Aharonov invariant (AAI) [24], describing the time-energy
uncertainty, characterizes the time evolution of the systems
in which the vacuum condensate is physically relevant [25].
Then, AAIs could be used as a tool to reveal the SUSY break-
down [23].The AAI appears in the evolution of any quantum
state |𝜒k(𝑡)⟩ which is not stationary; that is, its energy
uncertainty Δ𝐸

2
k(𝑡) = ⟨𝜒k(𝑡)|𝐻

2
|𝜒k(𝑡)⟩ − (⟨𝜒k(𝑡)|𝐻|𝜒k(𝑡)⟩)

2

must be nonzero.This is the case in the above listed instances
[11–15]. When this condition is met, the AAI is defined as (we
temporarily restore ℏ) 𝑆k = (2/ℏ) ∫𝑡0 Δ𝐸k(𝑡

󸀠

)𝑑𝑡
󸀠

.

This invariant is analogous to the geometric phase (but
it is defined for noncyclic and nonadiabatic evolution) and
represents a time-energy uncertainty principle. It can be
measured by studying interference of particles or by the
analysis of the uncertainty on the outcome of measurements.

We consider the single particle states:

󵄨󵄨󵄨󵄨𝜓̃k (𝜉, 𝑡)⟩ = 𝛼̃
𝑟†

k (𝜉, 𝑡)
󵄨󵄨󵄨󵄨󵄨
0̃ (𝜉, 𝑡)⟩

𝜓

= 𝐽
−1
𝜓

(𝜉, 𝑡)
󵄨󵄨󵄨󵄨𝜓k ⟩ ,

󵄨󵄨󵄨󵄨󵄨
𝑆k (𝜂, 𝑡)⟩ = 𝑏̃

†

k (𝜉, 𝑡)
󵄨󵄨󵄨󵄨󵄨
0̃ (𝜉, 𝑡)⟩

𝑆

= 𝐽
−1
𝑆

(𝜂, 𝑡)
󵄨󵄨󵄨󵄨𝑆k⟩ ,

󵄨󵄨󵄨󵄨󵄨
𝑃̃k (𝜂, 𝑡)⟩ = 𝑐

†

k (𝜂, 𝑡)
󵄨󵄨󵄨󵄨󵄨
0̃ (𝜂, 𝑡)⟩

𝑃

= 𝐽
−1
𝑃

(𝜂, 𝑡)
󵄨󵄨󵄨󵄨𝑃k ⟩ .

(13)

The energy variances of these states are Δ𝐸
𝐵

k (𝑡) =

√2𝜔k|𝑈
𝐵

k (𝜂, 𝑡)||𝑉
𝐵

k (𝜂, 𝑡)| and Δ𝐸
𝜓

k (𝑡) = 𝜔k|𝑈
𝜓

k (𝜂, 𝑡)||𝑉
𝜓

k (𝜂, 𝑡)|,
respectively. Then, the corresponding AAIs are given by

𝑆
𝑆

k (𝑡) = 𝑆
𝑃

k (𝑡) = 2√2∫
𝑡

0
𝜔k

󵄨󵄨󵄨󵄨󵄨
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󸀠

)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑉
𝐵

k (𝜂, 𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡
󸀠 (14)

for scalar and pseudoscalar bosons and
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𝜓

k (𝑡) = 2∫
𝑡

0
𝜔k

󵄨󵄨󵄨󵄨󵄨
𝑈
𝜓

k (𝜉, 𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑉
𝜓

k (𝜉, 𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡
󸀠

, (15)

for the Majorana fermion field. Such invariants signal the
presence of the condensate, since their values are con-
trolled by the Bogoliubov coefficients and they vanish as the
condensates disappear, that is, when 𝑈k and 𝑉k are zero.

(We notice that the particle mixing phenomenon is peculiar
for the following reason. Although also in this case SUSY is
spontaneously broken by condensate [21, 22], in this case the
AAI arises mainly as an effect of the mixing of fields with
only a small contribution due to the condensate structure
[26, 27]. Therefore, in this case the presence of the AAI is not
directly linked with the presence of the condensate. In all the
other cases instead the AAI is entirely due to the condensate
contribution.)

Now we study the specific case of thermal states and
propose a possible experiment to detect thermal SUSY
violation by measuring nonvanishing AAIs. As is clear from
all we said, in the TFD formalism [9], the thermal vacuum is
a condensate generated through Bogoliubov transformations
whose parameter is related to temperature. The Bogoliubov
coefficients 𝑈 and 𝑉 have the general form [9] 𝑈k =

√𝑒𝛽𝜔k/(𝑒𝛽𝜔k ± 1) and 𝑉k = √1/(𝑒𝛽𝜔k ± 1), with − for bosons
and + for fermions, and 𝛽 = 1/𝑘

𝐵
𝑇.

The energy variances of a temperature dependent single
particle state are given by

Δ𝐸
𝑆

k = Δ𝐸
𝑃

k = √2𝜔k𝑈
𝐵

k𝑉
𝐵

k = √2𝜔k
𝑒
𝛽𝜔k/2

(𝑒𝛽ℏ𝜔k − 1)
, (16)

for the bosonic states, and

Δ𝐸
𝜓

k = 𝜔
𝜓

k𝑈
𝜓

k 𝑉
𝜓

k = ℏ𝜔
𝜓

k
𝑒
𝛽𝜔
𝜓

k /2

(𝑒𝛽𝜔
𝜓

k + 1)
, (17)

for the fermionic state. The corresponding AAIs are

𝑆
𝑆

k = 𝑆
𝑃

k = 2√2𝜔k𝑡
𝑒
𝛽ℏ𝜔k/2

𝑒𝛽ℏ𝜔k − 1
,

𝑆
𝜓

k = 2𝜔k𝑡
𝑒
𝛽ℏ𝜔k/2

𝑒𝛽ℏ𝜔k + 1
.

(18)

In a supersymmetric model, at 𝑇 ̸= 0, the above invariants
are different from zero.

4. Experimental Realization

The presence of the AAIs and then the SUSY violation
could be tested by employing a mixture of cold fermion
atoms and diatomic molecules trapped in two dimensional
optical lattices [6], in which the Wess-Zumino model in
2 + 1 dimensions can emerge at low energies. Such a system
displays Dirac points in the Brillouin zone; therefore, the
excitations will have relativistic dispersion relations and
SUSY will be described by the super-Poincaré algebra, in
contrast with other setups proposed in the literature, which
display a nonrelativistic version of SUSY.The superpartner of
the fermionic atom is a bosonic diatomicmolecule.The setup
allows simulating both the massless and the massive models,
with the latter being attained by putting a Bose-Einstein
condensate of dimolecules nearby, allowing exchange of pairs
of molecules with the mixture through Josephson tunneling
[6].
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Figure 1: Plots of AAI for bosons, 𝑆𝑆,𝑃k as a function of temperature
𝑇, for a time interval 𝑡 = 1/𝜔 and for sample values of 𝜔 ∈ [2 ×

104 s−1, 105 s−1], 𝜔 = 2 × 104 s−1 (gray solid line), 𝜔 = 4 × 104 s−1
(black dotted line), 𝜔 = 6 × 104 s−1 (red dot dashed line), 𝜔 = 8 ×

104 s−1 (blue dashed line), and 𝜔 = 105 s−1 (brown solid line).
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Figure 2: Plots of AAI for fermions, 𝑆𝜓k as a function of temperature
𝑇, for the same time interval and sample values of 𝜔 as in Figure 1.

SUSY breaking is expected when the system is put at
nonzero temperature. A proof of this breaking can come
from the detection of a thermal Goldstone fermion, the
phonino, which is predicted to appear in this case [28–
30]. This would present experimental difficulties; however,
an alternative signal can come from the detection of the
vacuum condensate. Building on [6], we propose measuring
the difference between the geometric invariants in the evo-
lution of two mixtures of cold atoms and molecules trapped
in two coplanar, two-dimensional optical lattices, one at
temperature 𝑇 ̸= 0 and the other one at 𝑇 = 0 [23].
Excitations of the lattice at 𝑇 ̸= 0 will be associated with the
nonvanishing AAIs (18), while those in the 𝑇 = 0 lattice,
on the other hand, have vanishing AAI. The presence of
the condensate introduces a nontrivial modification on the
uncertainty, therefore resulting in an inevitabe increase of
the uncertainty on the outcome of measurements. Then, a
study of the AAIs can be done also by analyzing the energy
uncertainty in the lattice at 𝑇 ̸= 0.

Nontrivial values of the AAIs as functions of temper-
ature are obtained (see Figures 1 and 2), by considering

temperatures of the order of (20–200) nK, atomic excitation
frequencies characteristic of Bose-Einstein condensates, that
is, 𝜔 of order of 2 × 104 s−1–105 s−1 and time intervals of
order of 𝑡 = 1/𝜔 [23]. The values of the AAI we found are
in principle detectable.

At temperatures above≈200 nK, the condensate (and thus
the AAIs) is expected to disappear. As a final comment,
we notice that as happens for any system which presents a
condensate structure [25], also in the present context, AAIs
are unaffected by the presence of noise.

In conclusion, we have shown that, in the free Wess-
Zumino model, all the phenomena characterized by the
presence of the vacuum condensate generate spontaneous
SUSY breaking due to the nonzero vacuum energy. Indeed,
bosons and fermion condensates both lift the vacuum energy
by a positive amount. Such a breaking could be detected
by measuring the AAIs generated by the condensates in
a thermal bath in an optical lattice simulating the Wess-
Zumino model.
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