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We consider the fair martingale prize of insurance contracts with benefit received either at the insurer’s demise or at maturity. We
show how to modify the dynamics of the underlying so as to incorporate the possibility that the traded stock has a strong support
at some level.The resulting dynamics is integrated and the fair prize of several natural endowment-insurance contracts is obtained.

1. Introduction

In this paper we consider some explicit formulas regarding
the valuation of a certain class of equity-linked contracts with
a general premium, the endowment-insurance policies. As it
is well known an equity-linked contract is a life insurance
product where the benefit depends upon the value of some
reference equity fund or portfolio which is traded in some
associated market. In addition, most unit-linked contracts
guarantee a minimum amount if the stock price falls below a
fixed level. The pricing of equity-linked policies is a classical
problem in the actuarial literature first discussed by Brennan
and Schwartz [1] and Boyle and Schwartz [2]. See also
Bacinello and Ortu [3], Aase and Persson [4], Brennan and
Schwartz [5], Ekern and Persson [6], Boyle and Hardy [7],
Grosen and Jorgensen [8], Moeller [9], Bernard et al. [10],
Bacinello [11], and Shen and Xu [12].

The fair value of these kinds of products involves con-
sidering two separate sources of randomness: one stemming
from the stochastic nature of the dynamics of the stock
markets and a different one due to the uncertainty in
mortality. Here we consider a simple model of financial
market consisting of two securities: a savings account 𝐵

𝑡

which evolves via 𝑑𝐵
𝑡
= 𝑟

𝑡
𝐵
𝑡
𝑑𝑡, where 𝑟

𝑡
is the instantaneous

interest rate of themarket. For convenience it is assumed to be
deterministic, but not necessarily constant as befits a contract
held for a long time. The second instrument in the market,
to which the policy is linked, is a given stock whose 𝑡-price,

𝑋
𝑡
, varies according to definite stochastic dynamics. The

prototype model for stocks-price evolution [13, 14] assumes
that 𝑋

𝑡
is a geometric Brownian motion (GBM) model; that

is,𝑋
𝑡
satisfies the stochastic differential equation (SDE)

𝑑𝑋
𝑡
= 𝜇𝑋

𝑡
𝑑𝑡 + 𝜎𝑋

𝑡
𝑑𝑊

𝑡
. (1)

Here 𝜇 is the mean return rate and 𝜎 is the volatility, while
𝑊

𝑡
is a Brownian motion under the empirical or real world

probability. Despite the fact that this simple model describes
well the basic dynamical properties, there are nonetheless
several stylized facts that the model fails to capture.

In this paper wemodify the dynamics so as to incorporate
the possibility that the traded stock has a strong support at
some level, say 𝑐. Such a feature may stem from a market
consensus under which heavy buy orders are triggered when
the stock price hits this level. Investing in such stock may
well be an appealing feature to the insurance company as it
partially hedges the exposure to a possible plummeting of
the price. In Section 4 we propose a dynamical model which
incorporates such a feature by modifying appropriately the
“infinitesimal volatility” term; by using Feller’s theory, we
discuss the nature of the barrier. We next show that under
some election of parameters the SDE that drives the dynamics
can be solved in an exact way (see (39) to (42)). We suppose
that the benefit is received either at the insurer’s demise or at
maturity, whichever comes first.

The structure of the paper is the following. In Section 2
we give the basic setup and determine explicit formulas for
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the fair premium required by the insurance firm to hedge the
exposure to the evolution of the risky asset for an endowment
insurance contract under quite general conditions. The fair
value is given in terms of expectations with respect to the
risk-free measure under which the discounted price of any
security happens to be a martingale. In Section 3, assum-
ing a simple GBM dynamics, concrete valuation formulas
for several contracts of actuarial interest are obtained (see
formulae (9)-(10), (17)–(20), and (26)-(28)). Recall that the
classical work of Brennan and Schwartz [1] and Boyle and
Schwartz [2] corresponds to a pure endowment contract with
payoff at maturity Ψ

𝑇
≡ max{𝑋

𝑇
, 𝑘}. Remarkably, when

the guaranteed amount is taken as the interest accrued with
rate 𝛿 for a principal 𝑋

𝑡
, then the premium contingent on

death can also be obtained in closed form, as we show below.
The second case we study corresponds to a floating strike
lookback put (FLOP) which entitles the owner to sell the
stock at the highest realized price, that is, to a path dependent
payoffΨ1)

𝑇
= X𝑡

𝑇
−𝑋

𝑇
, whereX𝑡

𝑇
≡ max

𝑡≤𝑠≤𝑇
𝑋

𝑠
is the running

maxima of the process. Lookback options guarantee a nonloss
outcome and as such are interesting in dynamic investment
fund protection.

In Section 4 we obtain and solve a natural stochastic
equation that models evolution in a situation when strong
resistances are present (see (39) to (42)), whereupon we
obtain the fair insurer’s liability for several endowment-
insurance contracts. The presence of barriers is found to
complicate the prizing problem.

Section 5 is devoted to study the partial differential
equation (PDE) that the premium satisfies. We derive under
appropriate conditions a modified Kolmogorov Backwards
equation (68) and sketch a brief comparison between repli-
cating portfolios techniques and direct martingale approach-
es.

2. Contract Characteristics and Valuation

As we have already pointed out, unit-linked contracts involve
two sources of randomness, one stemming from the associ-
ated financialmarket and another corresponding tomortality
expectations. We now pass to discuss some features of the
latter. Consider a given individual aged 𝑑 at time 0 and let
𝜏 : Ω → R be the time at which decease occurs. Here, 𝜏
is a random variable defined on a complete probability space
(Ω,G,P). Under natural assumptions the survival function
�̂�
𝑝
𝑡+𝑑

is given by

�̂�
𝑝
𝑡+𝑑

≡ P (𝜏 > 𝑇 | 𝜏 > 𝑡) = 𝑒
−∫
𝑇

𝑡
𝜇(𝑑+𝑠;𝑠)𝑑𝑠

≡ ∫

∞

𝑇

ℎ (𝑠) 𝑑𝑠,

(2)

where 𝑡 → ℎ(𝑇) the conditional density of 𝜏 and �̂� ≡ 𝑇 −

𝑡. Further the mortality intensity is taken in the Gompertz-
Makeham form 𝜇(𝑡 + 𝑑, 𝑡) = 𝛼 + 𝛽𝜆

(𝑡+𝑑) (see [15, 16]). We
finally introduce the filtrationF

𝑡
≡ 𝜎(1

{𝜏>𝑠}
, 0 ≤ 𝑠 ≤ 𝑡).

In a unit-linked contract the premium V
𝑡
paid at time 𝑡 by

policyholders is invested in a equity fund. Let𝑋
𝑡
be the value

at time 𝑡 of a unit of the fund and (Ω,F
∞
,P) be a probability

space big enough to contain the filtrationF
𝑠
generated by the

stock:F
𝑡
≡ 𝜎(𝑋

𝑠
, 0 ≤ 𝑠 ≤ 𝑡). LetΨ1)

𝑇
be the reward payable at

maturity 𝑇 if the policyholder is alive. Further, if the insurer’s
demise happens at a time 𝜏 beforematurity, the policy entitles
the beneficiaries to a payment Ψ2)

𝜏
at the decease time. In

other words, we consider an endowment insurance, mixing
a pure endowment and a term insurance contract. HereΨ1,2)

are supposed to be right continuous processes adapted to
the filtration F

𝑠
. These conditions guarantee that Ψ1,2) are

progressivelymeasurable and thatΨ2)

𝜏
isF

𝜏
measurable.Note

that in our basic setup surrender is not permitted; however,
it could be easily incorporated by treating the surrender
decision like a premature decease, as several authors do.

We assume that the insurance company is risk-neutral
with respect to mortality. This assumption means that it does
not request any compensation for assuming mortality risk.
The exposure could be hedged to some extent whenever a
large number of contracts are written yearly.

We will also assume that our market is efficient; that is,
the existence of the Harrison and Pliska [17] risk-neutral
probability on (Ω,F

∞
) under which discounted prices of

self-financing strategies V
𝑡
≡ V

𝑡
/𝐵

𝑡
are martingales with

respect to the history of the process up to time 𝑡.
The pricing of equity-linked life insurance policies is a

classical problem in the actuarial literature and, particularly
for pure endowment contracts, explicit formulas are known.
However, far less is known as regards explicit analytical
formulas for endowment insurance contracts even for the
simplest GBM dynamics. Here we determine the insurer’s
liability required by the insurance firm to hedge the payoff for
given Ψ1), Ψ2), and a general mortality intensity 𝜇(𝑑 + 𝑡, 𝑡).

Let V
𝑡
be the price of such a contract written at time 𝑡 at

which𝑋
𝑡
≡ 𝑥 is known andmaturing at time𝑇. LetE ≡ EP×P

denote the expectation with respect to the product measure
P×P. Let 𝜕 be the demise time or maturity, whichever comes
first, 𝜕 = 𝑇 ∧ 𝜏. Then, we have

V
𝑡
= E (V

𝜕
| F

𝑡
∨F

𝑡
) = E (V

𝑇
1
{𝜏≥𝑇}

+ V
𝑡
1
{𝑡≤𝜏<𝑇}

| F
𝑡
∨F

𝑡
)

= E (Θ | F
𝑡
∨F

𝑡
) .

(3)

Here V
𝑡
≡ V

𝑡
/𝐵

𝑡
are the deflated prices and we used the

martingale property and the optional stopping theorem (note
that the optional stopping theorem can be applied sinceP(𝜕 <
∞) = 1, EP

(sup
0≤𝑠≤𝑇

Ψ
𝑖)

𝑠
) < ∞). Further,

Θ ≡
Ψ

1)

𝑇

𝐵
𝑇

1
{𝜏≥𝑇}

+
Ψ

2)

𝜏

𝐵
𝜏

1
{𝑡≤𝜏<𝑇}

(4)

is a function naturally defined on the product probability
space (Ω × Ω,F

∞
∨F

∞
,P × P), adapted to the augmented

filtration:F
𝑡
∨F

𝑡
≡ 𝜎(F

𝑡
∪F

𝑡
). Equation (2) involves

E (Ψ
1)

𝑇
1
{𝜏≥𝑇}

| F
𝑡
∨F

𝑡
) = E

P
(1

{𝜏≥𝑇}
| F

𝑡
)E

P
(Ψ

1)

𝑇
| F

𝑡
)

=
�̂�
𝑝
𝑑+𝑡

1
{𝑡≤𝜏}

EP
(Ψ

1)

𝑇
| F

𝑡
) ,

(5)
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where we assume thatF
𝑡
, F

𝑡
are independent filtrations, as

it is reasonable to assume that the risk stemming from the
market has no influence on the mortality risk.

Similarly we have in terms of the conditional density ℎ of
𝜏 (see (2))

E(
1
{𝑡≤𝜏<𝑇}

Ψ
2)

𝜏

𝐵
𝜏

| F
𝑡
∨F

𝑡
)

= E[E(
1
{𝑡≤𝜏<𝑇}

Ψ
2)

𝜏

𝐵
𝜏

| F
𝑡
∨F

𝑡
, 𝜏) | F

𝑡
∨F

𝑡
]

= 1
{𝑡≤𝜏}

E(∫
𝑇

𝑡

𝑑𝑠
ℎ (𝑠)

𝐵
𝑠

Ψ
2)

𝑠
| F

𝑡
∨F

𝑡
)

= 1
{𝑡≤𝜏}

E
P
(∫

𝑇

𝑡

𝑑𝑠
ℎ (𝑠)

𝐵
𝑠

Ψ
2)

𝑠
| F

𝑡
) .

(6)

Thus the insurer’s liability at time 𝑡 is made up of two terms,
in correspondence with the benefits at maturity or at decease:

V
𝑡
=

�̂�
𝑝
𝑑+𝑡

V1)
𝑡
+ V2)

𝑡
, (7)

where

V1)
𝑡
= 1

{𝑡≤𝜏}

𝐵
𝑡

𝐵
𝑇

E
P
(Ψ

1)

𝑇
| F

𝑡
) ,

V2)
𝑡
≡ 1

{𝑡≤𝜏}
E
P
(∫

𝑇

𝑡

𝑑𝑠ℎ (𝑠)
𝐵
𝑡

𝐵
𝑠

Ψ
2)

𝑠
| F

𝑡
) .

(8)

For obvious reasons, the term 1
{𝑡≤𝜏}

will be dropped in the
sequel. For guaranteed unit-linked contracts (GULC) the
benefit at maturity depends on the value of the associated
portfolio but there is a minimum guaranteed amount if the
stock price falls below a fixed level; this can be taken to
correspond to the capital accrued at a fixed interest rate 𝛿,
the “technical rate.” A fairly common example (see, [12]) is
given by the choice Ψ1,2)

𝜕
= 𝑋

𝜕
+ 𝑋

𝑡
(𝑒

𝛿(𝜕−𝑡)
− 1), where

contingent on an insurance event happening (maturity 𝜕 = 𝑇
or death 𝜕 = 𝜏) the insured receives the stock plus the interest
accrued with rate 𝛿. It is remarkable that in such situation it
is possible to derive a closed expression for the fair value with
all generality, independently of the dynamics of the stock.
Indeed, using that 𝑋

𝑡
/𝐵

𝑡
is a martingale we find that the

maturity and mortality premiums for such a GULC are given
by

V1)
𝑡
= 𝑋

𝑡
(1 +

𝐵
𝑡

𝐵
𝑇

(𝑒
𝛿�̂�
− 1)) ,

V2)
𝑡
= 𝑋

𝑡
(1 −

�̂�
𝑝
𝑑+𝑡

+ ∫

𝑇

𝑡

𝑑𝑠ℎ (𝑠)
𝐵
𝑡

𝐵
𝑠

(𝑒
𝛿(𝑠−𝑡)

− 1)) .

(9)

When the interest and mortality rates 𝑟 and 𝜇 are constants
and 𝑋

𝑡
is assumed to have standard Black and Scholes

dynamics one recovers the result of Shen andXu [12] obtained
by PDE techniques.

In a generic case, explicit evaluation of V1)
𝑡
and V2)

𝑡
can be

a difficult matter. Those cases when Ψ
2)

𝑡
is either a Markov

process with a time homogeneous transition function or
when it can be represented as Ψ2)

𝜏
= Ψ

2
(𝜏, 𝑋

𝜏
) in terms of

a given measurable function Ψ
2
: R2

→ R are of particular
interest; in this case V2)

𝑡
can be simplified as follows. Let 𝜃

𝑠

be the standard time-shift map on the path space acting on
sample paths 𝜔 ∈ Ω via (𝜃

𝑠
∘ 𝜔)(𝑡) = 𝜔(𝑡 + 𝑠). Then, Markov’s

property yields

V2)
𝑡
≡ E

P
(𝐵

𝑡
∫

𝑇

𝑡

𝑑𝑠
ℎ (𝑠)

𝐵
𝑠

Ψ
2)

𝑠
| F

𝑡
)

= E
P
(𝐵

𝑡
∫

�̂�

0

ℎ (𝑙 + 𝑡)

𝐵
𝑙+𝑡

Ψ
2)

𝑙+𝑡
𝑑𝑙 | F

𝑡
)

= E
P
(𝐵

𝑡
∫

�̂�

0

ℎ (𝑙 + 𝑡)

𝐵
𝑙+𝑡

(𝜃
𝑡
∘ Ψ

2)

𝑙
) | F

𝑡
)

= [∫

�̂�

0

ℎ (𝑙 + 𝑡)

𝐵
𝑙

E
P
𝑥
Ψ

2)

𝑙
𝑑𝑙]

𝑥=𝑋𝑡

.

(10)

3. Valuation of GUL in a Black and
Scholes Framework

3.1. Endowment Insurance Contracts. In the sequel we study
the valuation of two different types of GULC of actuarial
interest. The first case generalizes the result of Brennan
and Schwartz [1] and Boyle and Schwartz [2] from a pure
endowment case to an endowment insurance contract, where
the payoff contingent on death occurring before maturity is
given byΨ2)

𝜏
= max{𝑋

𝜏
, 𝑋

𝑡
𝑒
𝛿(𝜏−𝑡)

}. This means that the initial
capital, accrued at a fixed interest rate 𝛿, is guaranteed. We
also study the nonarbitrage price for a floating strike look-
back put (FLOP) which entitles the owner to sell the stock at
the highest realized price beforematurity, that is, to a terminal
payoff Ψ

1)

𝑇
= X𝑡

𝑇
, where X𝑡

𝑇
≡ max

𝑡≤𝑠≤𝑇
𝑋

𝑠
is the running

maxima of the process. Lookback options guarantee a nonloss
outcome and as such are interesting in dynamic investment
fund protection.

In this section we assume classical stochastic dynamics
so that under the martingale probability 𝑋

𝑡
evolves via a

geometric Brownian motion. Let 𝑇 → 𝑋
𝑡,𝑥

𝑇
be the solution

that starts from 𝑥 at time 𝑡, 𝑡 < 𝑇:

𝑋
𝑡,𝑥

𝑇
= 𝑋

𝑡
exp{𝜎 (𝑊

𝑇
−𝑊

𝑡
) + ∫

𝑇

𝑡

𝑟
𝑠
𝑑𝑠 −

𝜎
2
(𝑇 − 𝑡)

2
} ,

(11)

where we allow for a time varying short term interest rate 𝑟
𝑡
,

since a life insurance policy could typically be expected to
be held for a long time. However, to obtain closed formulas
for the premium contingent on death V2)

𝑡
we assume in this

section that 𝑟 is constant.
The premium for a contract with payoff Ψ

2)

𝑇
=

max{𝑋
𝑇
, 𝑋

𝑡
𝑒
𝛿(𝑇−𝑡)

} is written at time 𝑡 such that 𝑋
𝑡
= 𝑥
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follows a minor modification of the classical Black-Scholes-
Merton formula: the equality in law 𝑋

𝑡,𝑥

𝑇
= 𝑋

0,𝑥

�̂�
, where �̂� =

𝑇 − 𝑡 yields that V1)
𝑡
≡ V1)(𝑇 | 𝑡, 𝑥) = V1)(𝑇 − 𝑡 | 0, 𝑥), where

V1) (𝑇 | 0, 𝑥) = 𝑥 (Φ (𝑚
+
√𝑇) + 𝑒

−𝑟𝑇
Φ(−𝑚

−
√𝑇)) , (12)

Φ is the normal distribution function, and

𝑚
±
≡
𝑟

𝜎
±
𝜎

2
, 𝑟 ≡ 𝑟 − 𝛿. (13)

The limit behavior for long values of 𝑇 is interesting; depend-
ing on whether 𝑟 > 0, 𝑟 = 0, or 𝑟 < 0, three different
possibilities are found for the premium: V1)(𝑇 | 𝑡, 𝑥) tends,
respectively, to either 𝑥 ≡ V1)(𝑡 | 𝑡, 𝑥), to 2𝑥, or to ∞. The
result is easy to understand. The higher the guaranteed rate
the more interesting the contract becomes. Further, when 𝛿
is higher than the market rate 𝑟, the discounted benefit tends
to∞ asymptotically in time and so does the premium.

As commented, it turns out that an analytical formula can
be derived for the demise component premium when 𝑟 and
𝜇 are independent of time. HereΨ2)

𝜏
= max{𝑋

𝜏
, 𝑋

𝑡
𝑒
𝛿(𝜏−𝑡)

}. In
this case, using (10) we find that V2)(𝑇 | 𝑡, 𝑥) = V2)(𝑇−𝑡 | 0, 𝑥),
where

V2) (𝑇 − 𝑡 | 0, 𝑥)

= 𝑥𝜇∫

𝑇

0

(𝑒
−𝜇𝑠
Φ(𝑚

+
√𝑠) + 𝑒

−(𝜇+𝑟)𝑠
Φ(−𝑚

−
√𝑠)) 𝑑𝑠

(14)

and hence it involves the integral

𝐼 ≡ ∫

𝑇

0

𝑑𝑠𝑒
−𝛼𝑠
Φ(𝑚√𝑠)

≡ ∫

𝑇

0

𝑑𝑠𝑒
−𝛼𝑠

∫

𝑚√𝑠

−∞

𝑒
−𝑧
2
/2 𝑑𝑧

√2𝜋

.

(15)

By interchanging integrals we find 𝐼 to be given by

𝐼 =
1

2𝛼
[1 −

|𝑚|

√𝑚2 + 2𝛼

+
2 |𝑚|

√𝑚2 + 2𝛼

Φ(
|𝑚|

𝑚
√(𝑚2 + 2𝛼) 𝑇)

− 2𝑒
−𝛼𝑇

Φ(𝑚√𝑇)] .

(16)

It follows that the demise contribution to the premium is
given by

V2)
𝑡
=
𝑥

2
(1 −

𝑚
+

√𝜂
+
2𝑚

+

√𝜂
Φ(√𝜂𝑇) − 2𝑒

−𝜇𝑇
Φ(𝑚

+
√𝑇))

+
𝑥𝜇

2 (𝜇 + 𝑟)
[1 −

𝑚−



√𝜂
+
2
𝑚−



√𝜂
Φ(−√𝜂𝑇 sign𝑚

−
)

− 2𝑒
−(𝜇+𝑟)𝑇

Φ(−𝑚
−
√𝑇)] ,

(17)

where 𝜂 ≡ 𝑚2

+
+ 2𝜇 and𝑚

±
are defined above (cf. (13)).

Mortality premium in terms of time to maturity z 

0

2

4

6

50 100 150 200 250
z

Figure 1: Mortality premium as a function of time tomaturity given
in years corresponding to a constant annual interest rate 𝑟 = 4.5%.
Other parameters are 𝑥 = 5, 𝜎 = 25%, 𝜇 = 0.015 (thick solid line)
and 𝑥 = 5, 𝜎 = 15%, 𝜇 = 0.025 (thin line).

Thus, the full premium for a contract paying Ψ
𝜕

=

max{𝑋
𝜕
, 𝑋

𝑡
𝑒
𝛿(𝜕−𝑡)

} at the policyholder’s demise (𝜕 = 𝜏) or else
at expiry of the policy (𝜕 = 𝑇) is given by

V
𝑡
≡

�̂�
𝑝
𝑑+𝑡

V1)
𝑡
+ V2)

𝑡

=
𝑥

2
(1 −

𝑚
+

√𝜂
+
2𝑚

+

√𝜂
Φ(√𝜂𝑇))

+
𝑥𝜇

2 (𝜇 + 𝑟)
[1 −

𝑚−



√𝜂
+
2
𝑚−



√𝜂
Φ(−√𝜂𝑇 sign𝑚

−
)

+ 2𝑟𝑒
−(𝜇+𝑟)𝑇

Φ(−𝑚
−

√�̂�)] .

(18)

The premium (17) simplifies when the insurance company is
committed to pay a technical interest rate 𝛿 equal to the short
rate 𝑟. In this case, 𝑚

+
= −𝑚

−
= 𝜎/2, 𝜂 = (𝜎

2
/4) + 2𝜇, and

(17) yields

V2)
𝑡
= 𝑥[1 −

𝜎

2√𝜂
+

𝜎

√𝜂
Φ(√𝜂�̂�) − 2𝑒

−𝜇�̂�
Φ(

𝜎

2

√�̂�)] .

(19)

In Figure 1 we plot V2)(𝑇 | 𝑡, 𝑥) as a function of 𝑇 − 𝑡.
As expected, the premium vanishes if 𝜇 = 0. Otherwise it
increases towards 𝑥(1 + 𝜎/2√𝜂) as the graph shows.

Further, the corresponding full premium (18) can be
written in a quite neat way as

V
𝑡
≡ V1)

𝑡
+ V2)

𝑡
= 𝑥[1 +

𝜎

√𝜂
(Φ(√𝜂�̂�) −

1

2
)] . (20)

3.2. Floating Strike Lookback Options

3.2.1. Maturity Component (Ψ1)

𝑇
=max

0≤𝑠≤𝑇
𝑋

𝑠
). European

floating strike lookback options are a different interesting
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kind of GULC. For a put option (flop) they entitle the owner
to sell the stock at the highest realized price; thus, they imply a
terminal payoffΨ

𝜕
= X𝑡

𝜕
−𝑋

𝜕
, where X𝑡

𝑇
≡ max

𝑡≤𝑠≤𝑇
𝑋

𝑠
is the

running maxima of the process. Lookback options guarantee
a nonloss outcome and as such are interesting in dynamic
investment fund protection.

Let 𝑊V
𝑡
be BM with drift V and let 𝑀

�̂�
≡ max

𝑡≤𝑠≤𝑇
𝑊

V
𝑠

be the running maxima. The distribution of the latter can be
obtained in terms of the joint density of BMwithout drift and
its running maximum as follows.

For standard BM, 𝑊
𝑡
is obviously W𝑡

𝑇
≡ max

𝑡≤𝑠≤𝑇
𝑊

𝑠
=

W0

𝑇−𝑡
≡ W

𝑇−𝑡
. If (𝑊V

𝑇
,WV

𝑇
) are BM with drift rate V and

its running maxima, their joint density may be retrieved by
the known [18] joint density of 𝑊

𝑡
(BM without drift) and

W
𝑇
, the Radon-Nikodym transformation 𝑑P = exp(V𝑊V

�̂�
−

(V2/2)�̂�)𝑑Q along with the Cameron-Martin-Girsanov theo-
rem. One finds, upon evaluation of some integrals, that

E
P
(1WV

𝑇
<𝑦
) = E

Q
(𝑒

V𝑊V
�̂�
−(V2/2)�̂�1

𝑀
�̂�
<𝑦
) = ∫

𝑦

0

𝑞 (�̂�, 𝑦) 𝑑𝑦,

(21)

where

𝑞 (�̂�, 𝑦)

=
1

√2𝜋�̂�

𝑒
−(𝑦−V�̂�)2/2�̂�

+ exp [2V𝑦]( 1

√2𝜋�̂�

𝑒
−(𝑦+V�̂�)2/2�̂�

− 2VΦ(
−𝑦 − V�̂�
√�̂�

)) ,

𝑦 ≥ 0.

(22)

Thedistribution of the runningmaxima ofGBM follows from
that of the running maxima of BM with drift 𝑀

�̂�
by noting

that if 𝑋𝑡,𝑥

𝑠
, 𝑡 < 𝑠 is the solution to (1) with drift 𝑟 passing

through 𝑥 at time 𝑡 then

𝑋
𝑠
≡ 𝑋

0,𝑥0

𝑠
= 𝑋

𝑡,𝑋
0,𝑥0

𝑡

𝑠
= 𝑋

𝑡,𝑥

𝑠

= 𝑋
𝑡
exp𝜎 (𝑊

𝑠
−𝑊

𝑡
+ V𝑠)

Law
=  (𝑊

V
𝑠
) ,

(23)

where 𝑠 ≡ 𝑠−𝑡, (𝑧) = 𝑥𝑒𝜎𝑧 is increasing and𝑊V is a BMwith
drift V ≡ 𝑟/𝜎 − 𝜎/2. It follows that

max
𝑡≤𝑠≤𝑇

𝑋
𝑠

Law
= max

𝑡≤𝑠≤𝑇

 (𝑊
V
𝑠
) =  (max

𝑡≤𝑠≤𝑇

𝑊
V
𝑠
) . (24)

Therefore,

E
P
(max
𝑡≤𝑠≤𝑇

𝑋
𝑠
| 𝑋

𝑡
= 𝑥) = E

P
(𝑥𝑒

𝜎𝑀
�̂�) = ∫

∞

0

𝑥𝑒
𝜎𝑦
𝑞 (�̂�, 𝑦) 𝑑𝑦.

(25)
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1

1.1
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1.3

1.4

1.5

1.6

1.7

z

Premium versus maturity z = T − t

Figure 2: Maturity component premium as a function of time to
maturity in years corresponding to benefits Ψ1)

𝑇
= max{𝑋

𝑇
, 𝑥} and

Ψ
1)

𝑇
= max

0≤𝑠≤𝑇
𝑋

𝑠
. The thick dark line is the max-premium (26),

whereas (12) is the thin, lower line. Parameters are taken as 𝑥 = 1,
𝑟 = 0.045, and 𝜎 = 20%.

By using (22) and upon tedious integration we obtain that the
the premium for a flop contract written at 𝑡 = 0 and maturity
at 𝑇 is given by

V1)
𝑡
=

�̂�
𝑝
𝑑+𝑡
𝑥((1 +

𝜎
2

2𝑟
)Φ (𝑚

+
√𝑇)

+ (1 −
𝜎
2

2𝑟
) 𝑒

−𝑟𝑇
Φ(𝑚

−
√𝑇)) ,

(26)

where we define now 𝑚
±

≡ 𝑟/𝜎 ± 𝜎/2 (note that they
coincide with (13) when 𝛿 = 0). In Figure 2 we compare this
premium with that of the Brennan-Schwartz-Boyle formula
(12) corresponding to the case 𝛿 = 0. Notice how (26) is
significantly larger than the premium (12).The humped form
is in this case characteristic of the latter but not necessarily of
the max-premium.

3.2.2. Floating Strike Options: Demise Component (Ψ2)

𝜏
=

max
0≤𝑡≤𝜏

𝑋
𝑠
). We now evaluate the demise component to the

premium for a Flop contract written at 𝑡 = 0when the hazard
function 𝜇 is time independent. Here Ψ2)

𝜏
= max

0≤𝑡≤𝜏
𝑋

𝑠
and

it follows from (10) that

V2)
𝑡
≡ ∫

𝑇

0

ℎ (𝑠)

𝐵
𝑠

E
P
𝑥
Ψ

2)

𝑠
𝑑𝑠

= 𝜇𝑥∫

𝑇

0

𝑑𝑠𝑒
−𝜇𝑠

(1 +
𝜎
2

2𝑟
)Φ (𝑚

+
√𝑠)

+ (1 −
𝜎
2

2𝑟
) 𝑒

−(𝜇+𝑟)𝑠
Φ(𝑚

−
√𝑠) ,

(27)



6 The Scientific World Journal

wherewe recall that𝑚
±
≡ 𝑟/𝜎 ± 𝜎/2, 𝜂 = 𝑚2

+
+2𝜇. By recalling

(16) we obtain the fair premium as

V2)
𝑡

=
𝜎𝑚

+
𝑥

2𝑟
(1 −

𝑚
+

√𝜂
+
2𝑚

+

√𝜂
Φ(√𝜂�̂�) − 2𝑒

−𝜇�̂�
Φ(𝑚

+

√�̂�))

+
𝜎𝑚

−
𝑥𝜇

2𝑟 (𝜇 + 𝑟)
[1 −

𝑚−



√𝜂
+
2
𝑚−



√𝜂
Φ(√𝜂�̂� sign𝑚

−
)

− 2𝑒
−(𝜇+𝑟)�̂�

Φ(𝑚
−

√�̂�)] .

(28)

4. Price Dynamics When Supports Are Present

Here we describe a model of price dynamics that incorporate
the possibility of the existence of a strong lower support
at some constant level 𝑐, where 0 < 𝑐 < 𝑥

0
≡ 𝑋

0
. To

meet this requirement one must modify appropriately the
stock dynamics. We assume the existence of a risk neutral
probability P∗ and a process𝑊∗

𝑡
which is a BM with respect

to the latter such that the risk neutral evolution of𝑋
𝑡
satisfies

the SDE:

𝑑𝑋
𝑡
= 𝑟

𝑡
𝑋

𝑡
𝑑𝑡 + 𝑏 (𝑡, 𝑋

𝑡
) 𝑑𝑊

∗

𝑡
, 𝑋

0
= 𝑥

0
> 𝑐, (29)

where the infinitesimal variance coefficient 𝑏(𝑡, 𝑥) is to be
defined appropriately.

Remark 1. Valuation under exotic dynamics where the stock
is driven by a SDE whose variance coefficient 𝑏(𝑡, 𝑥) is
not a linear function of 𝑥 has often been the subject of
financial literature, even as early as 1976. A familiar case is
the CEV model of Cox [19], where 𝑏(𝑥) = 𝜎𝑥

𝜌 and 𝜎 and
𝜌 < 1 are constants. A more complete account of prizing
under these dynamics is given in Delbaen and Shirakawa
[20]. The extension of CEV models to 𝑏(𝑥) having also
jump singularities is discussed by Decamps et al. [21]. Our
stochastic evolution equation (see (29)) is reminiscent, to
some extent, of models describing stochastic interest rate
dynamics, such as the classical CIR model [22] where the
underlying is related to a Bessel process. For other models
in this regard see Schroder [23], Geman and Yor [24], and
Goovaerts and de Schepper [25]. Pricing of equity linked
products with the stock following some exotic dynamics
driven by Levy processes appears in Jaimungal and Young
[26].

We find it reasonable to assume that there exists positive
probability to attain the boundary; we suppose that this event
“triggers” bid orders and hence that𝑋

𝑡
ricochets upon hitting

the boundary. This requirement yields that the point 𝑥 =

𝑐 must be what, in the terminology of Feller’s boundaries
classification, is termed a regular boundary. We also require
that for large 𝑥, 𝑏(𝑡, 𝑥) displays a linear dependence on 𝑥, as
happens with theGBM (1).The obvious choice 𝑏(𝑡, 𝑥) = 𝜎(𝑥−
𝑐) is not acceptable since under such dynamics 𝑐 is a natural,

nonattainable barrier.The simplest choice thatmeets all these
requirements is given by taking 𝑏(𝑡, 𝑥) = 𝜎(𝑡)√𝑥2 − 𝑐2, where
𝜎(𝑡) is an arbitrary function; that is,

𝑑𝑋
𝑡
= 𝑟

𝑡
𝑋

𝑡
𝑑𝑡 + 𝜎 (𝑡)√𝑋

2

𝑡
− 𝑐2𝑑𝑊

∗

𝑡
, 𝑋

0
= 𝑥

0
> 𝑐.

(30)

Note first that under the risk neutral probability P∗ the
deflated process 𝑋

𝑡
𝑒
−∫
𝑡

0
𝑟𝑠𝑑𝑠 is a martingale. For ease of

notation in the sequel we drop the symbol ∗. Note also that
the square root branch point 𝑥 = 𝑐 prevents 𝑋

𝑡
to reach the

region [0, 𝑐) but nevertheless there exists positive probability
to attain the barrier 𝑥 = 𝑐.

When 𝑟 and 𝜎 are constants these ideas are substantiated
by appealing to Feller’s theory. Let 𝜏

𝑐
be the first hitting time

of the barrier. The behaviour of the Feller functions depends
on the parameter  ≡ 𝑟/𝜎

2. The classical scale and speed
functions 𝑠(𝑥),𝑚(𝑥) are given by

𝑠 (𝑥) = ∫

𝑥

(𝑦
2
− 𝑐

2
)
−

𝑑𝑦,

𝜎
2

2
𝑚 (𝑥) = ∫

𝑥

(𝑦
2
− 𝑐

2
)
−1

𝑑𝑦.

(31)

We also consider the Feller functions

Σ (𝑐, 𝑥) ≡ ∫

𝑥

𝑐

𝑑𝑚 (𝑦) (𝑠 (𝑦) − 𝑠 (𝑐)) ,

Ω (𝑐, 𝑥) ≡ ∫

𝑥

𝑐

𝑑𝑚 (𝑦) (𝑠 (𝑥) − 𝑠 (𝑦)) .

(32)

We see that𝑚(𝑐) andΩ(𝑐, 𝑥) are always finite; by contrast 𝑠(𝑐)
is finite⇔ Σ(𝑐, 𝑐) is finite⇔  < 1. Thus if  < 1 the point 𝑐
is a regular boundary. By Feller’s test

P
𝑥0
(𝜏

𝑐
∧ 𝜏

∞
< ∞) > 0 ⇐⇒  < 1. (33)

Actually, exploiting further Feller’s test we see that

P
𝑥0
(𝜏

𝑐
∧ 𝜏

∞
< ∞) = 1 ⇐⇒ Ω(𝑐, 𝑐) < ∞,

𝑠 (∞) = ∞ ⇐⇒  ≤
1

2
.

(34)

We get a sharper result by noting that if  ≤ 1/2 then 𝑠(∞) =

∞ which implies 𝜏
∞

= ∞; thus, Feller’s test yields 𝜏
𝑐
< ∞

almost surely P
𝑥0
whenever  ≤ 1/2.

To determine whether 𝜏
𝑐
< 𝜏

∞
occurs note that for any

𝑦 > 𝑥
0
P
𝑥0
(𝜏

𝑐
< 𝜏

𝑦
) = (𝑠(𝑦)−𝑠(𝑥

0
))/(𝑠(𝑦)−𝑠(𝑐)).Thus letting

𝑦 ↑ ∞ we have

P
𝑥0
(𝜏

𝑐
< 𝜏

∞
) ≡ P

𝑥0
(𝑋

𝑡
ever reaches 𝑐) =

𝑠 (∞) − 𝑠 (𝑥
0
)

𝑠 (∞) − 𝑠 (𝑐)

(35)

and we conclude that if 0 <  < 1 there is positive probability
that the support is eventually reached.

We have just seen that if  ≤ 1/2 then 𝜏
𝑐
< ∞ almost

surely P
𝑥0
. However even in this case the mean time may be
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infinite. We can gain some additional information by noting
that if 𝑠(∞) = ∞ then

E
𝑥0
(𝜏

∞
) < ∞ ⇐⇒ 𝑚(∞) < ∞. (36)

We can use this to conclude that E
𝑥0
(𝜏

∞
) = ∞ if  ≥ 1/2 and

𝜎
2

2
E
𝑥0
(𝜏

∞
)

= ∫

𝑥0

𝑐

(𝑦
2
− 𝑐

2
)
−1

𝑑𝑦∫

∞

𝑦

(𝑧
2
− 𝑐

2
)
−1

𝑑𝑧 if  < 1

2
.

(37)

The case 𝜎2 = 2𝑟 is of particular interest since then all Feller
functions can be evaluated explicitly as

𝑠 (𝑥) =
𝜎
2

2
𝑚 (𝑥) = log(𝑥 +

√𝑥2 − 𝑐2

𝑐
) ,

Σ (𝑐, 𝑥) = Ω (𝑐, 𝑥) =
𝑠
2
(𝑥)

𝜎2
.

(38)

Here 𝑠 and 𝑚 are the scale and speed functions. Thus,
inasmuch as 𝑐 > 0 we have Σ(𝑐, 𝑥) = Ω(𝑐, 𝑥) < ∞

corresponding to a regular boundary.
We now consider the solution of the SDE (29). For general

election of the functions 𝑟(𝑡) and 𝜎(𝑡) the solution remains
unknown. However, in the particular case when the time
dependent volatility and interest rate satisfy 𝜎2(𝑡) = 2𝑟(𝑡),
then it turns out that the equation admits an analytical
solution; we restrict to this situation in the sequel. Indeed, by
using Itô’s rule, one can prove that a strong solution to (29)
satisfying𝑋

0
= 𝑥

0
is given explicitly by

𝑋
𝑡
= 𝑐 cosh(∫

𝑡

0

√2𝑟
𝑠
𝑑𝑊

𝑠
+ ]) , (39)

where we set

] ≡ cosh−1 (
𝑥
0

𝑐
) , 𝜑 (𝑡) ≡ 2 log𝐵

𝑡
= 2∫

𝑡

0

𝑟
𝑙
𝑑𝑙,

𝜑 (𝑡, 𝑇) ≡ 𝜑 (𝑇) − 𝜑 (𝑡) = 2∫

𝑇

𝑡

𝑟
𝑙
𝑑𝑙.

(40)

Further in terms of a new Brownian motion �̃�
𝑡
we have that

a weak solution is given by

𝑋
𝑡
= 𝑐 cosh𝑌

𝑡
where 𝑌

𝑡
= ] + �̃�

𝜑(𝑡)
. (41)

This follows by noting that ∫𝑡
0
√2𝑟

𝑠
𝑑𝑊

𝑠
is a local martingale

and Levy’s representation theorem.
In particular these expressions clarify the behavior of the

process upon hitting the boundary: 𝑋
𝑡
attains the barrier

𝑐 whenever the process 𝑌
𝑡
reaches 0 upon which 𝑋

𝑡
is

reflected. In Figure 3 a realization of the stock evolution (39)
corresponding to a constant interest rate has been plotted.
Notice how the stock eventually hits the support level 𝑐 = 4

several times.
Explicit valuation formulae under dynamics (see (39)–

(42)) could prove quite awkward to obtain. Here we deter-
mine the fair premium under these dynamics for several pure
endowment contracts, with general deterministic interest rate
𝑟
𝑡
.

0 1 2 3 4 5
4

4.5

5

5.5

6

6.5

Figure 3: A simulated path of the price process. We plot 𝑋
𝑡
as

a function of time during a time span of five years (𝑡 = 5). The
parameters have been chosen as: 𝑟 = 4.5%yr−1, 𝜎 = 30%, 𝑐 = 4

and 𝑥
0
= 5.

4.1. GULC of Type (i) (Ψ1)

𝑇
=max{𝑋

𝑇
,𝑋

𝑡
𝑒
𝛿�̂�
}). Let 𝑋𝑡,𝑥

𝑇
, 𝑡 < 𝑇

be the solution to (29) at time 𝑇 that starts from 𝑥 at time 𝑡.
We have

𝑋
0,𝑥0

𝑇
= 𝑋

𝑡,𝑋
0,𝑥0

𝑡

𝑇
= 𝑐 cosh (�̃�

𝜑(𝑡,𝑇)
+ 𝜍) , (42)

where we recall that

𝜍 ≡ cosh−1 (𝑥
𝑐
) , 𝜑 (𝑡, 𝑠) ≡ 2∫

𝑠

𝑡

𝑟
𝑙
𝑑𝑙. (43)

Notice that in the sequel we simply write 𝜑(𝑡, 𝑇) ≡ 𝜑. It then
follows from (9) that whenever the benefit can be written as
Ψ

1)

𝑇
= Ψ

1
(𝑋

𝑇
) for some Ψ

1
: R → R, the fair price is given

by

V1)
𝑡
=

�̂�
𝑝
𝑑+𝑡

𝐵
𝑡

𝐵
𝑇

E (Ψ
1
(𝑋

𝑡,𝑥

𝑇
))

=
�̂�
𝑝
𝑑+𝑡

𝐵
𝑡

𝐵
𝑇

∫𝑑𝑌
Ψ
1
(𝑐 cosh (𝑌 + 𝜍))

√2𝜋𝜑
𝑒
−𝑌
2
/2𝜑
.

(44)

In our case Ψ
1
(𝑋

𝑇
) = max{𝑋

𝑇
, 𝑋

𝑡
𝑒
𝛿�̂�
} and evaluating the

integral (45) we obtain that the fair price for a Brennan-
Schwartz-Boyle contract under dynamics (29) is given by

V1)
𝑡

�̂�
𝑝
𝑑+𝑡

= 𝑥 (Φ (𝑁
+
) + Φ (𝑀

−
)) + (𝑥 − 𝑥) (Φ (𝑁

−
) + Φ (𝑀

+
))

+ 𝑥𝑒
(𝛿−𝑟)�̂�−

(1 − Φ (𝑁) − Φ (𝑀)) ,

(45)
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6

7

8

9

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
x

Premium dependence on starting value x

Figure 4: Premium as a function of the initial stock value. Equation
(45) is the thick line while (12) is the thin, dotted one. Parameters
are chosen as 𝑟 = 4.5%yr−1, 𝜎 = 30%, �̂� = 6, and 𝛿 = 3.5%yr−1.

where we introduce

𝑘 ≡ 𝑥𝑒
𝛿�̂�
, 𝑥 ≡

(𝑥 + √𝑥2 − 𝑐2)

2
,

�̃� ≡

(𝑘 + √𝑘2 − 𝑐2)

2
,

𝑁 =
1

√𝜑
log 𝑥

�̃�

, 𝑀 = −
1

√𝜑
log 𝑥�̃�

𝑐2
,

𝑁
±
≡ 𝑁 ± √𝜑, 𝑀

±
≡ 𝑀 ± √𝜑.

(46)

This expression generalizes the Brennan-Schwartz-Boyle for-
mula (12) to the case when barriers are present. There are
interesting differences. Note first that, unlike what happens
with (12), V1)

𝑡
≡ V1)(𝑇 | 𝑡, 𝑥) does not grow linearly with 𝑥.

Further, for long values of �̂�, V1) tends either to
�̂�
𝑝
𝑑+𝑡
𝑥 ≡

V1)(𝑡 | 𝑡, 𝑥), to 2
�̂�
𝑝
𝑑+𝑡
𝑥, or to∞ depending on whether 𝑟 > 0,

𝑟 = 0, or 𝑟 < 0. However convergence takes place with a
slower rate than what happens when no resistance is present.

In Figure 4 we plot the maturity premium V1)
𝑡
in terms

of the initial stock price 𝑥 if the barrier is located at 𝑐 =

4 and compare with the result obtained when no barrier
is present. Notice how (12) (dotted line) always overprices
the premium compared with (45) given by the thick solid
line. This reflects the fact under the actual dynamics that
the exposure of the company to a possible plummeting of
the stock is partially hedged by the existence of the barrier.
For long 𝑥 the difference between both expressions grows
dimmer.This is easy to understand, since the protection from
the barrier diminishes with the distance to the starting point.

The dependence in time of (45) is displayed in Figure 5.
Notice how differences between (12) and (45) can be quite
marked for moderate maturity times.

Setting 𝑐 = 0 amounts to having no barrier. In this case
one has 𝑥 = 𝑥, �̃� = 𝑥𝑒

𝛿�̂�, and𝑀 = −∞; most of the terms in
(45) drop out and, as expected, we recover (12).

Premium dependence on time to maturity

5

6

7

8

9

0 20 40 60 80
z

Figure 5

4.2. GULC of Type (ii) (Ψ1)

𝑇
=max

𝑡≤𝑠≤𝑇
𝑋

𝑠
). We next consider

a contract linked to the evolution of the maximum value of
the stock, that is, wherein Ψ

1)

𝑇
= max

𝑡≤𝑠≤𝑇
𝑋

𝑠
. Accordingly,

the fair price of such contract involves the distribution
of max

𝑡≤𝑠≤𝑇
cosh(𝜍 + ∫

𝑠

𝑡
√2𝑟

𝑙
𝑑𝑊

𝑙
). This entails important

difficulties to derive the fair prize accountable to the fact
that under dynamics (29), (24) does not hold since (𝑧) ≡
𝑐 cosh(𝑧 + 𝜍) is not increasing. The max distribution can
be given in terms of the survival probability for Brownian
motion as we now show. Let 𝑀

𝑡
and 𝑚

𝑡
denote respectively

runningmaximum andminimumof BM; then, from (41) one
can prove the following equality in law:

max
𝑡≤𝑠≤𝑇

cosh (�̃�
𝜑(𝑡,𝑠)

+ 𝜍)

Law
= cosh (𝑀

𝜑(𝑡,𝑇)
+ 𝜍) 1

{𝑀𝜑(𝑡,𝑇)+𝑚𝜑(𝑡,𝑇)≥−2𝜍}

+ cosh (𝑚
𝜑(𝑡,𝑇)

+ 𝜍) 1
{𝑀𝜑(𝑡,𝑇)+𝑚𝜑(𝑡,𝑇)<−2𝜍}

.

(47)

Therefore we have in terms of the joint density 𝑓(𝑧, 𝑦; 𝑡) of
(𝑚

𝑡
,𝑀

𝑡
) that (see (41)–(43))

E
P
(max
𝑡≤𝑠≤𝑇

𝑋
𝑠
| 𝑋

𝑡
= 𝑥) = 𝑐 (𝐼

1
+ 𝐼

2
) , (48)

where

𝐼
1
≡ ∫

∞

0

cosh (𝑦 + 𝜍) 𝑑𝑦∫
0

−2𝜍−𝑦

𝑓 (𝑧, 𝑦; 𝜑) 𝑑𝑧,

𝐼
2
≡ ∫

∞

0

𝑑𝑦∫

−2𝜍−𝑦

−∞

𝑑𝑧𝑓 (𝑧, 𝑦; 𝜑) cosh (𝑧 + 𝜍) .

(49)
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Recall that the survival function𝐺(𝑧, 𝑦; 𝑡), or probability that
the BM𝑊

𝑡
has remained within the interval [𝑧, 𝑦] up to time

𝑡, is given by (see [27] or [28]):

𝐺 (𝑧, 𝑦; 𝑡) ≡ P (𝑧 ≤ 𝑚
𝑡
≤ 𝑀

𝑡
≤ 𝑦)

=

∞

∑

𝑛=−∞

Φ(
𝑎
𝑛1

√𝑡
) − Φ(

𝑎
𝑛2

√𝑡
)

− Φ(
𝑎
𝑛3

√𝑡
) + Φ(

𝑎
𝑛4

√𝑡
) ,

(50)

where

𝑎
𝑛1
≡ (2𝑛 + 1) 𝑦 − 2𝑛𝑧,

𝑎
𝑛2
≡ (2𝑛 + 1) 𝑦 − 2 (𝑛 + 1) 𝑧,

𝑎
𝑛3
≡ 2𝑛𝑦 − (2𝑛 − 1) 𝑧,

𝑎
𝑛4
≡ 2𝑛𝑦 − (2𝑛 + 1) 𝑧.

(51)

By differentiation the joint density𝑓 of (𝑚
𝑡
,𝑀

𝑡
) follows. One

could proceed by substituting this 𝑓 into (49). However this
yields a quite messy expression. Amore convenient approach
is to write (49) in terms of 𝐺 as

𝐼
1
= ∫

∞

0

cosh (𝑦 + 𝜍) (𝜕
𝑦
𝐺
𝑧=−2𝜍−𝑦,𝑦

− 𝜕
𝑦
𝐺
0,𝑦

) 𝑑𝑦,

𝐼
2
= ∫

∞

0

𝑑𝑦∫

−2𝜍−𝑦

−∞

𝑑𝑧𝑓 (𝑧, 𝑦; 𝜑) cosh (𝑧 + 𝜍)

= ∫

−2𝜍

−∞

𝑑𝑧 cosh (𝑧 + 𝜍) ∫
−2𝜍−𝑧

0

𝑑𝑦𝑓 (𝑧, 𝑦; 𝜑)

= ∫

−2𝜍

−∞

cosh (𝑧 + 𝜍) (𝜕
𝑧
𝐺
𝑧,0

− 𝜕
𝑧
𝐺
𝑧,−2𝜍−𝑧

) 𝑑𝑧.

(52)

Note that (50) implies that 𝜕
𝑦
𝐺|

0,𝑦
= 𝜕

𝑧
𝐺|

𝑧,0
= 0. Hence upon

appropriate manipulations we find that both terms 𝐼
1
and 𝐼

2

satisfy

𝐼
1
= 𝐼

2
= ∫

∞

𝜍

𝑑𝑦 cosh𝑦𝜕
𝑦
𝐺 (−𝜍 − 𝑦, 𝑦 − 𝜍; 𝜑) . (53)

This observation allows us to simplify the conditional expec-
tation to

E
P
(max
𝑡≤𝑠≤𝑇

𝑋
𝑠
| 𝑋

𝑡
= 𝑥)

= 2𝑐

∞

∑

𝑛=−∞

∫

∞

𝜍

𝑑𝑦 cosh𝑦 ((2𝑛 + 1) 𝑝
𝜑
(𝑦

+

𝑛
) + 2𝑛𝑝

𝜑
(𝑦

−

𝑛
)

− (2𝑛 − 1) 𝑝
𝜑
(𝑦

+

𝑛
) − 2𝑛𝑝

𝜑
(𝑦

−

𝑛
)) ,

(54)

where 𝑝
𝑡
(⋅) is BM density and we introduce

𝛼
𝑛
≡ 4𝑛 + 1, �̃�

𝑛
≡ 4𝑛 − 1,

𝑦
±

𝑛
≡ 𝛼

𝑛
𝑦 ± 𝜍, 𝑦

±

𝑛
≡ �̃�

𝑛
𝑦 ± 𝜍.

(55)

A further simplification is obtained noting that 𝑦+

𝑛
= −𝑦

−

−𝑛

whereupon we have

E
P
(max
𝑡≤𝑠≤𝑇

𝑋
𝑠
| 𝑋

𝑡
= 𝑥)

= 2𝑐

∞

∑

𝑛=−∞

𝛼
𝑛
∫

∞

𝜍

𝑑𝑦 cosh𝑦 (𝑝
𝜑
(𝑦

+

𝑛
) + 𝑝

𝜑
(𝑦

−

𝑛
)) .

(56)

The latter integral can be evaluated in terms of the error
functionΦ; then, upon substitution into (9), we obtain that if
𝜎
2
= 2𝑟

𝑡
and the short rate 𝑟

𝑡
depends on time in an arbitrary

way, then the value of the fair premium is given by

V1)
𝑡
=

�̂�
𝑝
𝑑+𝑡
𝑐

∞

∑

𝑛=−∞

𝑒
𝜑(1−𝛼

2

𝑛
)/2𝛼
2

𝑛

× ∑

𝜖=−1,1

∑

𝜅=−1,1

𝑠
𝑛
𝑒
−(𝜖𝜅𝜍/𝛼𝑛)Φ(𝑠

𝑛
𝜆
𝜖,𝜅

𝑛
) ,

(57)

where

𝑠
𝑛
≡ sign𝛼

𝑛
, 𝜆

𝜖,𝜅

𝑛
≡
𝜖√𝜑

𝛼
𝑛

−
(𝛼

𝑛
+ 𝜅)

√𝜑
𝜍. (58)

The dependence of the premium on time and initial value
enters through the variables (49). For a time tomaturity rang-
ing frommoderate to large only those terms corresponding to
𝑛 = 0 will contribute significantly. It is then natural to write

V1)
𝑡

=
�̂�
𝑝
𝑑+𝑡
𝑐 ∑

𝜖=−1,1

[𝑒
𝜖𝜍
Φ(𝜖√𝜑) + 𝑒

−𝜖𝜍
Φ(𝜖√𝜑 −

2𝜍

√𝜑
)

+ ∑

𝑛 ̸= 0

𝑒
𝜑(1−𝛼

2

𝑛
)/2𝛼
2

𝑛 ∑

𝜅=−1,1

𝑠
𝑛
𝑒
−(𝜖𝜅𝜍/𝛼𝑛)Φ(𝑠

𝑛
𝜆
𝜖,𝜅

𝑛
)] .

(59)

This representation makes it possible to recover (26) when
𝑐 → 0 and 𝑟 is constant. Note that in this case 𝜑 = 2𝑟�̂�;
further, if 𝑛 ̸= 0 then 𝑠

𝑛
𝜆
𝑛

→ −∞ and Φ(𝑠
𝑛
𝜆
𝜖,𝜅

𝑛
) → 0.

Likewise we have

𝑒
−𝜍
=
𝑥

𝑐
− √ (

𝑥

𝑐
)

2

− 1 → 0,

𝑒
𝜍
Φ(√𝜑 −

2𝜍

√𝜑
) ≤ 𝑒

−(𝜍2/2𝜑)
→ 0, 𝑐𝑒

𝜍
→ 2𝑥

(60)

as 𝑐 → 0. Thus, the only nonvanishing term corresponds to
𝜖 = −𝜅 = 1, 𝑛 = 0, and

V1)
𝑡
→
𝑐→0

2𝑥
�̂�
𝑝
𝑑+𝑡
Φ(√2𝑟�̂�) (61)

which is (26) in the case 𝜎 = √2𝑟.
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5. Kolmogorov Backwards Equation
for the Premium

In this section we will suppose that the insurer’s benefit can
be represented as

Ψ
𝑖)

𝜕
= Ψ

𝑖
(𝜕, 𝑋

𝜕
) where 𝜕 = {𝑇 if 𝑖 = 1,

𝜏 if 𝑖 = 2.
(62)

Further, we assume that Ψ
𝑖
: R2

→ R is a piecewise contin-
uous function that does not have a parametric dependence
on the “initial value” 𝑥 ≡ 𝑋

𝑡
. Under these assumptions and

conditional on {𝜏 > 𝑡} having happened, we next derive a
PDE that the premium V

𝑡
≡ V (𝑇 | 𝑡, 𝑥) satisfies. Notice that,

from (9),

𝜕
𝑡
(
𝐵
𝑇
V1)
𝑡

𝐵
𝑡

) =
�̂�
𝑝
𝑑+𝑡

[𝜇 (𝑡 + 𝑑, 𝑡) 𝜓 (𝑡, 𝑥) + 𝜕
𝑡
𝜓 (𝑡, 𝑥)] ,

(63)

where 𝜓(𝑡, 𝑥) ≡ EP
(Ψ

1
(𝑇,𝑋

𝑇
) | 𝑋

𝑡
= 𝑥). Recall that if

𝑋
𝑡
is a diffusion with drift coefficient 𝑎(𝑡, 𝑥) ≡ 𝑟

𝑡
𝑥 and

variance coefficient 𝑏(𝑡, 𝑥) then the conditional expectation
solves Kolmogorov equation:

A𝜓 (𝑡, 𝑥) ≡ ( 𝜕

𝜕𝑡
+ 𝑎

𝜕

𝜕𝑥
+
𝑏
2

2

𝜕
2

𝜕𝑥2
)𝜓 (𝑡, 𝑥) = 0. (64)

Operatingwith the infinitesimal generatorA on (9) and using
(63) we find

(A − 𝑟
𝑡
− 𝜇 (𝑡 + 𝑑, 𝑡)) V1)

𝑡
= 0. (65)

Likewise we find that
𝜕
𝑡
V2)
𝑡
= (𝑟 + 𝜇 (𝑡 + 𝑑, 𝑡)) V2)

𝑡
− 𝜇 (𝑡 + 𝑑, 𝑡) Ψ

2
(𝑡, 𝑥)

+ ∫

𝑇

𝑡

𝑑𝑠ℎ (𝑠) 𝜕
𝑡
E
P
(Ψ

2
(𝑠, 𝑋

𝑠
) | 𝑋

𝑡
= 𝑥) .

(66)

Operating again with operator A we get

(A − 𝑟
𝑡
− 𝜇 (𝑡 + 𝑑, 𝑡)) V2)

𝑡
= −𝜇 (𝑡 + 𝑑, 𝑡) Ψ

2
(𝑡, 𝑥) . (67)

It follows that V ≡ V1) + V2) satisfies the backward PDE with
final condition

(
𝜕

𝜕𝑡
+ 𝑎

𝜕

𝜕𝑥
+
𝑏
2

2

𝜕
2

𝜕𝑥2
− 𝑟

𝑡
− 𝜇 (𝑡 + 𝑑, 𝑡)) V (𝑇 | 𝑡, 𝑥)

= −𝜇 (𝑡 + 𝑑, 𝑡) Ψ
2
(𝑡, 𝑥) ,

V (𝑇 | 𝑇, 𝑥) = Ψ
1
(𝑇, 𝑥) ,

(68)

where 𝑎(𝑡, 𝑥) ≡ 𝑟
𝑡
𝑥 and 𝑏(𝑡, 𝑥) = 𝜎(𝑡)√𝑥2 − 𝑐2.

Remark 2. (1) If 𝑟 and 𝜇 are constants, there is no resistance:
𝑐 = 0 and, in addition, Ψ

2
(𝑡, 𝑥) = 𝑥, then (68) reduces to the

equation considered by Shen and Xu [12].
(2) If representation (62) holds butΨ𝑖) depends paramet-

rically on the “initial values and times”: Ψ𝑖)
= Ψ

𝑖
(𝑇,𝑋

𝑇
; 𝑡, 𝑥),

then it does not exist such a clear-cut equationas (68).
Notice that this is precisely what happens for the type i
GULC considered in this paper. Similarly, the case of path-
dependent payoff functions (type ii GULC) may not be
covered either with the PDE approach.
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