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We deal with a class of parabolic reaction-diffusion systems. We use an iterative process
based on results obtained for a linearized problem, then we derive some a priori estimates
to establish the existence, uniqueness, and continuous dependence of the weak solution
for a class of quasilinear systems.
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1. Introduction

Reaction-diffusion systems of PDEs furnish valuable mathematical models for a great
number of phenomena in engineering and biology. For instance, the following system
describes the dynamics of a simple isothermal chemical reaction system [25]:

∂u

∂t
− ∂2u

∂x2
= uv,

∂v

∂t
− ∂2v

∂x2
= uv−hv,

(1.1)

where h is a positive parameter. Moreover, the next system is a model for the description
of the patchy distributions of microscopic aquatic organisms known as plankton (see,
[17]):

∂u

∂t
− ∂2u

∂x2
= f1(u,v),

∂v

∂t
− ∂2v

∂x2
= f2(u,v),

(1.2)
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2 Solvability of a class of reaction-diffusion systems

where

f1(u,v)= a(a1 + b1u+u2)u−uv, f2(u,v)= uv− (a2v+ b2v
2), (1.3)

and (a,a1,a2,b1,b2) are positive parameters. Likewise, if u(x, t) represents the population
density, v(x, t) the concentration of the attractant, F(u) and H(u,v) describe the local
kinetics of the population and the attractant respectively, t is the time, and x is the one-
dimensional spatial variable, then the system

∂u

∂t
−d1

∂2u

∂x2
= F(u)−T(u,v)

∂u

∂x
,

∂v

∂t
−d2

∂2v

∂x2
=H(u,v)

(1.4)

represents a model for a population with attractant and has growth-diffusion-chemotaxis
type. Some versions of this model were investigated in [18, 19, 23]. For other models, we
refer the reader, for instance, to [1, 5, 7–9, 13, 20, 24].

The purpose of this paper is to study the following quasilinear reaction-diffusion par-
abolic system:

∂u

∂t
−d1Δu= f1(x, t,u,v,∇u,∇v) +F(x) in QT , (1.5)

∂v

∂t
−d2Δv = f2(x, t,u,v,∇u,∇v) +G(x) in QT , (1.6)

u(x,0)= u0, v(x,0)= v0 in Ω,

u= v = 0 on ΣT ,
(1.7)

where d1, d2 are positive constants, Ω is an open bounded subset of RN , with smooth
boundary ∂Ω, QT =Ω× I , T > 0, and ΣT = ∂Ω× I , T > 0; f1, f2 : Ω× I ×R2×R2N→R are
measurable functions.

For the semilinear case of (1.5)–(1.7) (when the functions f1 and f2 do not depend
on the gradient), the existence of positive solutions has been established in [10–12, 16],
under the following assumptions.

Assumption 1.1. The total mass of the components u, v is controlled with time, which is
ensured by

(
f1 + f2

)
(x, t,u,v, p,q)≤ L1(u+ v+ 1),

∀(u,v, p,q)∈R2
+×R2N a.e. (x, t)∈QT , L1 ≥ 0.

(1.8)

Assumption 1.2. The function f1 verifies

f1(x, t,u,v,s,r)≤ L2(u+ v+ 1),

∀(u,v, p,q)∈R2
+×R2N a.e. (x, t)∈QT , L2 ≥ 0.

(1.9)
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Note that if Assumption 1.1 or 1.2 does not hold, the authors in [21] have been proved
blowup in finite time of the solutions to some semilinear reaction-diffusion systems.

As for the quasilinear case, it is showed in [4] the existence of positive weak solutions
when the initial data are in L1 under Assumptions 1.1 and 1.2.

Assumption 1.3. The positivity of the solution is preserved with time, which is ensured
by

f1(x, t,0,v, p,q), f2(x, t,u,0, p,q)≥ 0,

∀(u,v, p,q)∈R2
+×R2N a.e. (x, t)∈QT.

(1.10)

Assumption 1.4. The nonlinear term with respect to the gradient is subquadratic, namely,

∣
∣ f1(x, t,u,v,∇u,∇v)

∣
∣+

∣
∣ f2(x, t,u,v,∇u,∇v)

∣
∣

≤ C
(|u|,|v|)(‖∇u‖m +‖∇z1‖m + 1

)
,

(1.11)

where 1≤m< 2, C : [0,∞)2 → [0,∞) is nondecreasing.
A more general result has been obtained later when the initial data are in L2 (see [2]).

The authors in [2] have investigated problems (1.5)–(1.7) under Assumptions 1.1, 1.3
together with the following assumptions.

Assumption 1.5. The functions f1 and f2 have critical growth with respect to |∇u|, (m=2).

Assumption 1.6. The function f1 satisfies the “sign condition”

u f2(x, t,u,v,∇u,∇v)≤ 0 ∀u,v ≥ 0, a.e. (x, t)∈QT. (1.12)

Note that for a single equation (d1 = d2 and f1 = f2), existence results have been ob-
tained by many authors; see for instance [1, 3, 6, 15]. Finally, we mention that in order to
establish the existence, many authors have used some regularizations in time and some
truncation based on the so-called natural truncation Tk defined by

Tk(s)=max
(− k, min(k,s)

)
, (1.13)

where k is a positive real number.
The present paper can be considered as a continuation of works cited above, especially

[2, 4]. Our main goal is to extend those results, in a certain sense. Namely, we will establish
the existence, uniqueness, and continuous dependence of a weak solution of problems
(1.5)–(1.7) without supposing Assumptions 1.1–1.6. We will consider only the following.

Assumption 1.7. The functions fi (i= 1,2) are bounded in L2 and satisfy

∣
∣ fi
(·,·, p1,q1

)− fi
(·,·, p2,q2

)∣∣≤ L
(∣∣p1− p2

∣
∣+

∥
∥q1− q2

∥
∥), (1.14)

where L is a positive constant.
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The paper is organized as follows. In Section 2 we transform problems (1.5)–(1.7) to
an equivalent one which is easier to analyze, and we make precise in which sense we
solve the reduced problem. Then, in Section 3, we formulate an approximate problem.
In Section 4, we derive some useful a priori estimates. Section 5 is devoted to establish
the existence of a weak solution, while the uniqueness and continuous dependence of the
solution are given in Section 6.

2. An equivalent problem

In this section, we will consider the linearization of (1.5)–(1.7) obtained by assuming that
f1 = − f2; d1 = d2 = d. The sum of the two components u and v satisfies the following
linear parabolic equation:

∂w

∂t
−dΔw = 0 in QT ,

w(x,0)= u0(x) + v0(x) in Ω,

w = 0 on ΣT .

(2.1)

Consequently, the function u of problems (1.5)–(1.7) fulfills

∂u

∂t
−dΔu= f1(x, t,u,w−u,∇u,∇w−∇u) in QT ,

u(x,0)= u0(x) in Ω,

u= 0 on ΣT .

(2.2)

It is well known that (2.1) has a unique solution in L2(I ;H1
0 (Ω))∩C(I ;L2(Ω)) that satis-

fies ∂w/∂t ∈ L2(I ;L2(Ω)). Then, if we show that u, solution of problem (2.2), exists and
sets

v :=w−u, (2.3)

then problems (1.5)–(1.7) will be solved.
Consider now the following auxiliary problem:

∂σ

∂t
−dΔσ = 0 in QT ,

σ(x,0)= u0(x) in Ω,

σ = 0 on ΣT .

(2.4)

Let z = u− σ , where u is the solution of problem (2.2). Therefore z verifies

∂z

∂t
−dΔz = f (x, t,z,∇z) in QT ,

z(x,0)= 0 in Ω,

z = 0 on ΣT ,

(2.5)
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where

f (x, t,z,∇z)= f1(x, t,z+ σ ,w− z− σ ,∇z+∇σ ,∇w−∇z−∇σ). (2.6)

Since problem (2.4) possesses a unique solution, our objective is to solve problem (2.5).
Let us now define the notion of the solution we are looking for.

Definition 2.1. Say that z(x, t) is a weak solution of problem (2.5) if the following prop-
erties are verified:

(i) z ∈ L2(I ;H1
0 (Ω))∩C(I ;L2(Ω));

(ii) ∂z/∂t ∈ L2(I ;L2(Ω));
(iii) z satisfies the initial condition z(·,0)= 0 in L2(Ω);
(iv) the integral identity

(
∂z(·, t)
∂t

,θ(·, t)
)

+d
(∇z(·, t),∇θ(·, t))= ( f (·, t),θ(·, t)) (2.7)

holds for all θ ∈H1
0 (Ω), and all t ∈ I.

As functions fi (i= 1,2), the function f verifies the following.

Assumption 2.2. The function f is bounded in L2 and satisfies the Lipschitz condition:
∃L > 0 such

∣
∣ f
(·,·, p1,q1

)− f
(·,·, p2,q2

)∣∣≤ L
(∣∣p1− p2

∣
∣+

∥
∥q1− q2

∥
∥). (2.8)

3. Formulation of an approximate problem

Let {zn}n be a sequence constructed as follows.
For n = 0, we set z0(x, t) = 0 for all (x, t) ∈ QT , the other terms of the sequence are

obtained iteratively as solutions of the linear parabolic equation

∂zn
∂t
−dΔzn = fn(x, t) in QT ,

zn(x,0)= 0 in Ω,

zn = 0 on ΣT ,

(3.1)

where

fn(x, t)= f
(
x, t,zn−1,∇zn−1

)
. (3.2)

It is well known that for any fixed “n,” problem (3.1) has a unique solution zn in L2(I ;
H1

0 (Ω))∩C(I ;L2(Ω)), verifying ∂zn/∂t ∈ L2(I ;L2(Ω)).
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Set

yn(x, t)= zn+1(x, t)− zn(x, t), (3.3)

one can easily check that yn verifies

∂yn
∂t
−dΔyn = Fn(x, t) in QT ,

yn(x,0)= 0 in Ω,

yn = 0 on ΣT ,

(3.4)

where

Fn(x, t)= fn+1(x, t)− fn(x, t). (3.5)

4. A priori estimates

In this section, we will establish useful estimates on yn in some suitable spaces in order
to prove the convergence of the sequence {zn}n to the solution of problem (3.1). To this
end, we consider the weak formulation of problem (3.4),

(
∂yn(·, t)

∂t
,θ(·, t)

)
+d
(∇yn(·, t),∇θ(·, t))= (Fn(·, t),θ(·, t)), (4.1)

in which we set θ = yn and integrate over (0,τ) to obtain

∥
∥yn(·,τ)

∥
∥2

+ 2d
∫ τ

0

∥
∥∇yn(·, t)∥∥2

dt = 2
∫ τ

0

(
Fn(·, t), yn(·, t))dt. (4.2)

According to the Cauchy inequality, it follows

2d
∫ τ

0

∥
∥∇yn(·, t)∥∥2

dt+
∥
∥yn(·,τ)

∥
∥2 =

∫ τ

0

∥
∥Fn(·, t)∥∥2

dt+
∫ τ

0

∥
∥yn(·, t)∥∥2

dt. (4.3)

The application of a lemma of Gronwall’s type leads to

2d
∫ τ

0

∥
∥∇yn(·, t)∥∥2

dt+
∥
∥yn(·,τ)

∥
∥2 ≤ eT

∫ T

0

∥
∥Fn(·, t)∥∥2

H1
0 (Ω)dt. (4.4)

Therefore, by omitting the second term on the left-hand side of (4.4) and applying
Assumption 2.2 to the right-hand side, we get

d
∫ τ

0

∥
∥∇yn(·, t)∥∥2

dt ≤ 2eTL2
∫ T

0

∥
∥yn−1(·, t)∥∥2

H1
0 (Ω)dt. (4.5)

In light of the Friedrichs inequality [22], we have

∫ τ

0

∥
∥yn(·, t)∥∥2

H1
0 (Ω)dt ≤

2eTL2CΩ

d

∫ T

0

∥
∥yn−1(·, t)∥∥2

H1
0 (Ω)dt. (4.6)
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It follows that
∥
∥yn

∥
∥
L2(I ,H1

0 (Ω)) ≤ Lc1
∥
∥yn−1

∥
∥
L2(I ,H1

0 (Ω)), (4.7)

where

c1 = 21/2eT/2C1/2
Ω

d1/2
. (4.8)

On the other hand, by virtue of (4.1) in which we set θ = ∂yn/∂t, it yields

2
∫ τ

0

∥
∥
∥
∥
∂yn(·, t)

∂t

∥
∥
∥
∥

2

dt+d
∥
∥∇yn(·, t)∥∥2

dt = 2
∫ τ

0

(
Fn(·, t),

∂yn(·, t)
∂t

)
dt. (4.9)

In light of the Cauchy inequality and Assumption 2.2, the right-hand side of (4.9) is then
dominated by

∫ τ

0

∥
∥
∥
∥
∂yn(·, t)

∂t

∥
∥
∥
∥

2

dt+ 2L2
∫ τ

0

∥
∥yn−1(·, t)∥∥2

H1
0 (Ω)dt, (4.10)

where the integral over ∂yn/∂t will be absorbed in the left-hand side of (4.9). Thanks to
the Friedrichs’ inequality the second term on the left-hand side of (4.9) is controlled from
below by

dC−1
Ω

∥
∥yn(·,τ)

∥
∥2
H1

0 (Ω). (4.11)

Therefore, we have

∫ τ

0

∥
∥
∥
∥
∂yn(·, t)

∂t

∥
∥
∥
∥

2

dt+dC−1
Ω

∥
∥yn(·,τ)

∥
∥2
H1

0 (Ω)

≤ 2L2
∫ T

0

∥
∥yn−1(·, t)‖2

H1
0 (Ω)dt

≤ 2TL2
∥
∥yn−1

∥
∥2
C(I ;H1

0 (Ω))

≤ 2TL2

(
∥
∥yn−1

∥
∥2
C(I ;H1

0 (Ω)) +
∥
∥
∥
∥
∂yn−1

∂t

∥
∥
∥
∥

2

L2(I ;L2(Ω))

)

.

(4.12)

The right-hand side here is independent of τ, hence replacing the left-hand side by its
upper bound with respect to τ from 0 to T , thus we obtain

∥
∥
∥
∥
∂yn
∂t

∥
∥
∥
∥

2

L2(I ;L2(Ω))
+
∥
∥yn

∥
∥2
C(I ;H1

0 (Ω))

≤ 2L2T

min
(
1,dC−1

Ω

)

(∥
∥
∥
∥
∂yn−1

∂t

∥
∥
∥
∥

2

L2(I ;L2(Ω))
+
∥
∥yn−1

∥
∥2
C(I ;H1

0 (Ω))

)

,

(4.13)

implying finally
∥
∥yn

∥
∥
B ≤ Lc2

∥
∥yn−1

∥
∥
B, (4.14)
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where

c2 =
√

2T
min(1,dC−1

Ω )
. (4.15)

Hence we can present the following theorem.

Theorem 4.1. Suppose that Assumption 2.2 is fulfilled. Then the following estimates hold,
for n= 1,2, . . . :

∥
∥yn

∥
∥
L2(I ,H1

0 (Ω)) ≤ Lc1
∥
∥yn−1

∥
∥
L2
(
I ,H1

0 (Ω)
),

∥
∥yn

∥
∥
B ≤ Lc2

∥
∥yn−1

∥
∥
B, (4.16)

where B is the Banach space endowed with the finite norm

‖y‖B =
(∥
∥
∥
∥
∂y

∂t

∥
∥
∥
∥

2

L2(I ;L2(Ω))
+‖y‖2

C(I ;H1
0 (Ω))

)1/2

, (4.17)

c1 and c2 are positive constants defined by (4.8) and (4.15).

5. Convergence and existence result

Theorem 5.1. Take the assumption of Theorem 4.1. If

Lc3 < 1, (5.1)

then there exists a pair

(
z,
∂z

∂t

)
∈ L2(I ,H1

0 (Ω)
)∩C

(
I ;L2(Ω)

)×L2(I ;L2(Ω)
)
, (5.2)

verifying

(
zn,

∂zn
∂t

)
−−−−→
n→∞

(
z,
∂z

∂t

)
, (5.3)

where c3 =max(c1,c2).

Proof. In inequality (4.7), if Lc1 < 1, then the series
∑∞

n=0 yn converges in L2(I ,H1
0 (Ω)).

Observe that

zn = Sn =
n−1∑

k=0

(
zk+1− zk

)
, (5.4)

hence by passing to the limit, we have

zn −→ z̃ in L2(I ,H1
0 (Ω)

)
. (5.5)

Since H1
0 (Ω)↩L2(Ω), we have also

zn −→ z̃ in L2(I ,L2(Ω)
)
. (5.6)
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On the other hand, in estimate (4.14), if Lc2 < 1, we deduce that the series
∑∞

n=0 yn and
thus the sequence {zn}n converge in the space B. According to the definition of space B
(see Theorem 4.1), we deduce that

∂zn
∂t
−−−−→
n→∞ ϕ in L2(I ;L2(Ω)

)
. (5.7)

We have to prove that ϕ equals ∂z̃/∂t in L2(I ;L2(Ω)). To this end, we consider the identity

zn(·, t)=
∫ t

0

∂zn
∂τ

dτ ∀t ∈ I. (5.8)

Then, by passing to the limit in (5.8), when n tends to infinity by taking (5.6) and (5.7)
into account, it yields

z̃(·, t)=
∫ t

0
ϕdτ ∀t ∈ I , (5.9)

from which we conclude, see for instance [14, Lemmas 1.3.2 and 1.3.6], that

z̃ ∈ C
(
I ;L2(Ω)

)
, (5.10)

differentiable for almost everywhere t ∈ I and ∂z̃/∂t = ϕ in L2(I ;L2(Ω)), namely,

∂zn
∂t
−−−−→
n→∞

∂z̃

∂t
in L2(I ;L2(Ω)

)
. (5.11)

Consequently, for Lc3 < 1 the limit relation (5.3) is satisfied. �

Theorem 5.2. Suppose that assumption of Theorem 4.1 is satisfied, moreover assume that
f (x, t,0,0)∈ L2(I ;L2(Ω)).Then the limit function z̃ = z̃(x, t) is the weak solution of problem
(2.5) in the sense of Definition 2.1.

Proof. According to Theorem 5.1, assertions (i) and (ii) of Definition 2.1 are fulfilled.
Moreover, from (5.9) we conclude that z̃(·,0) = 0 holds in L2(Ω), and so assertion (iii)
is verified. It remains to prove that z̃ satisfies the integral identity (iv). Since zn is the
solution of (3.1), we have for all θ ∈ L2(I ;H1

0 (Ω)),

(
∂zn
∂t

,θ
)

L2(I ;L2(Ω))
+d
(∇zn,∇θ)L2(I ;L2(Ω)) = ( fn,θ)L2(I ;L2(Ω)), (5.12)

which can be written

(
∂zn
∂t
− ∂z̃

∂t
,θ
)

L2(I ;L2(Ω))
+
(
∂z̃

∂t
,θ
)

L2(I ;L2(Ω))
+d(∇zn−∇z̃,∇θ)L2(I ;L2(Ω))

+d(∇z̃,∇θ)L2(I ;L2(Ω)) =
(
fn− f ,θ

)
L2(I ;L2(Ω)) + ( f ,θ)L2(I ;L2(Ω)).

(5.13)
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If we show that

I1 =
(
∂zn
∂t
− ∂z̃

∂t
,θ
)

L2(I ;L2(Ω))
+d
(∇zn−∇z̃,∇θ)L2(I ;L2(Ω)) −−−−→n→∞ 0,

I2 =
(
fn− f ,θ

)
L2(I ;L2(Ω)) −−−−→n→∞ 0,

(5.14)

z̃ will be a solution of (2.5) in the sense of Definition 2.1.
For I1, we have

I1 =
(
∂zn
∂t
− ∂z̃

∂t
,∇θ

)

L2(I ;L2(Ω))
+ (∇zn−∇z̃,∇θ)

L2
(
I ;L2(Ω)

)

≤
∥
∥
∥
∥
∂zn
∂t
− ∂z̃

∂t

∥
∥
∥
∥
L2(I ;L2(Ω))

‖θ‖L2(I ;L2(Ω))

+
∥
∥∇zn−∇z̃

∥
∥
L2(I ;L2(Ω))‖∇θ‖L2(I ;L2(Ω))

≤
(∥∥
∥
∥
∂zn
∂t
− ∂z̃

∂t

∥
∥
∥
∥
L2(I ;L2(Ω))

+‖zn− z̃‖L2(I ;H1
0 (Ω))

)
‖θ‖L2(I ;H1

0 (Ω)).

(5.15)

Thanks to (5.3) we obtain limn→∞ I1 = 0. For the remaining term I2, we use the Schwarz
inequality and Assumption 2.2 to get

I2 =
(
fn− f ,θ

)
L2(I ;L2(Ω))

≤ ∥∥ fn− f
∥
∥
L2(I ;L2(Ω))‖θ‖L2(I ;L2(Ω))

= ∥∥ fn(·,·,zn−1,∇zn−1)− f (·,·, z̃,∇z̃)
∥
∥
L2(I ;L2(Ω))‖θ‖L2(I ;L2(Ω))

≤ L
[∥
∥zn−1− z̃

∥
∥
L2(I ;L2(Ω)) +

∥
∥∇zn−1−∇z̃

∥
∥
L2(I ;L2(Ω))

]
‖θ‖L2(I ;L2(Ω))

≤ L
∥
∥zn−1− z̃

∥
∥
L2(I ;H1

0 (Ω))‖θ‖L2(I ;L2(Ω)).

(5.16)

Therefore by passing to the limit, we obtain limn→∞ I2 = 0. This completes the proof of
Theorem 5.2. �

6. Uniqueness and continuous dependence

Theorem 6.1. Suppose that assumptions of Theorem 5.2 are fulfilled. Let z1 and z2 be two
weak solutions of (2.5) in L2(I ;H1

0 (Ω)). Then

∥
∥z1− z2

∥
∥
L2(I ;H1

0 (Ω)) ≤ Lc1
∥
∥z1− z2

∥
∥
L2(I ;H1

0 (Ω)), (6.1)

where c1 is defined by (4.8).
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Proof. Let y = z1− z2, it is clear that y satisfies t ∈ I ,

∂y

∂t
−dΔy = f

(
x, t,z1,∇z1

)− f
(
x, t,z2,∇z2

)
in QT ,

y(x,0)= 0 in Ω,

y = 0 on ΣT .

. (6.2)

Considering the weak formulation of problem (6.2) and performing a similar calculation
to that for the establishment of estimate (4.7), we derive the desired result. �

As a consequence of Theorem 6.1, we obtain the following.

Corollary 6.2. Under assumptions of Theorem 6.1, the solution of problem (2.5) is unique.

Proof. The proof is obvious, it suffices to observe that by Theorem 6.1,

(
1−Lc1

)‖y‖L2(I ;H1
0 (Ω)) ≤ 0, (6.3)

and by assumption (5.1) 1− Lc1 > 0. Consequently, y = 0, which means z1 = z2, which
achieves the proof. �

Theorem 6.3. Suppose that u= u(x, t) and u∗ = u∗(x, t) are two solutions corresponding
to (u0, f ) and (u∗0 , f ∗). Moreover, assume that

∣
∣ f1(·, t, p1,q1

)− f ∗1
(·, t, p2,q2)

∣
∣≤ K(t) +L

(∥∥p1− p2
∥
∥+

∥
∥q1− q2

∥
∥), (6.4)

for some continuous nonnegative function K(t) and certain constant L. Then

∥
∥u(·, t)−u∗(·, t)∥∥2 ≤

(∥
∥u0−u∗0

∥
∥2

+
∫ t

0
K2(τ)dτ

)
ec4t, (6.5)

for all t ∈ I , where

c4 =max
(

2
L2

,1
)

exp
((

3L2

2
+ 2
)
τ
)
. (6.6)

Proof. Considering the weak formulation of problem (2.2) written for u, subtracting
from it the same integral identity written for u∗ and putting θ = u−u∗, and performing
an integration by parts, we get

∂

∂t

∥
∥u(·, t)−u∗(·, t)∥∥2

+ 2
∥
∥∇u(·, t)−∇u∗(·, t)∥∥2

= 2( f1(·, t,u(·, t),∇u(·, t))− f ∗1
(·, t,u∗(·, t),∇u∗(·, t)),u(·, t)−u∗(·, t)).

(6.7)
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Integrating (6.7) over (0, t), applying the Cauchy inequality, and using assumption (6.4),
we obtain

∥
∥u(·, t)−u∗(·, t)∥∥2

+ 2
∫ t

0

∥
∥∇u(·,τ)−∇u∗(·,τ)

∥
∥2

≤ ∥∥u0−u∗0
∥
∥2

+ 3ε
∫ t

0
K2(τ)dτ

+
(

1
ε

+ 3εL2
)∫ t

0

∥
∥u(·,τ)−u∗(·,τ)

∥
∥2
dτ

+ 3εL2
∫ t

0

∥
∥∇u(·,τ)−∇u∗(·,τ)

∥
∥2
dτ.

(6.8)

Choosing ε = 2/3L2 and applying Gronwall’s lemma to the obtained inequality, we get
estimate (6.5), which completes the proof. �

7. Generalizations

(i) The above results can be extended for more general equations of the type of (1.5),
(1.6) with higher-order derivatives and coefficients depending on x and t, namely, for the
following problem:

∂u

∂t
−

∑

|i|,| j|≤m
(−1)|i|Di

(
a(1)
i j (x)Dju

)

= f1(x, t,u,v,∇u,∇v, . . . ,∇m−1u,∇m−1v) +F(x) in QT ,

∂v

∂t
−

∑

|i|,| j|≤m
(−1)|i|Di

(
a(2)
i j (x)Djv

)

= f2(x, t,u,v,∇u,∇v, . . . ,∇m−1u,∇m−1v) +G(x) in QT ,

(7.1)

since the compactness Hm
0 (Ω)↩Hm−1(Ω) can be used, where a(k)

i j (x) (k = 1,2) are such

that
∑
|i|,| j|≤ma

(k)
i j ξiξ j ≥ C

∑
|i|=m ξ2

i , a(k)
i j = a(k)

ji for all couples |i| ≥ 1,| j| ≥ 1, a(k)
i j a Lips-

chitz continuous in t on Q (|i|,| j| ≤m). Here, homogeneous Dirichlet boundary condi-
tions

∂su

∂ϑs
= ∂sv

∂ϑs
= 0 on ∂Ω, (7.2)

for s= 0,1, . . . ,m− 1, are considered instead of (1.14).
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(ii) Our results make it possible to study the boundary value problem for a quasilinear
pluriparabolic system, that is a system with the form

n∑

i=1

∂u

∂ti
−d1Δu= f1(x, t,u,v,∇u,∇v) +F(x) in QT ,

n∑

i=1

∂v

∂ti
−d2Δv = f2(x, t,u,v,∇u,∇v) +G(x) in QT ,

u
(
x, ti,0

)=Φi
(
x, ti
)
, v

(
x, ti,0

)=Ψi
(
x, ti
)

for (x, t)∈Qi
0,

u= v = 0, on ΣT ,

(7.3)

or more generally for a quasilinear pluriparabolic system with nonlocal initial conditions

n∑

i=1

∂u

∂ti
−d1 sing

n∏

i=1

(
1−‖λi‖2)Δu= f1(x, t,u,v,∇u,∇v) +F(x) in QT ,

n∑

i=1

∂v

∂ti
−d2 sing

n∏

i=1

(
1−‖λi‖2)Δv = f2(x, t,u,v,∇u,∇v) +G(x) in QT ,

(�iu)(x, t) := u
(
x, ti,0

)− λiu
(
x, ti,T

)=Φi
(
x, ti
)

in Qi
0,

(�iv)(x, t) := v
(
x, ti,0

)− λiv
(
x, ti,T

)=Ψi
(
x, ti
)

in Qi
0,

u= v = 0, on ΣT ,

(7.4)

where

t = (t1, . . . , tn
)
, ti = (t1, . . . , ti−1, ti+1, . . . , tn

)
,

ti,0 = (t1, . . . , ti−1,0, ti+1, . . . , tn
)
,

ti,T = (t1, . . . , ti−1,Ti, ti+1, . . . , tn
)
,

(i= 1, . . . ,n) Ii = (0,Ti), Ti <∞ (i= 1, . . . ,n), I =
n∏

i=1

Ii,

Qi
0 = I1×···× Ii−1×{0}× Ii+1×···× In (i= 1, . . . ,n).

(7.5)
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[13] V. Hutson, J. López-Gómez, K. Mischaikow, and G. Vickers, Limit behaviour for a competing

species problem with diffusion, Dynamical Systems and Applications (R. P. Agarwal, ed.), World
Sci. Ser. Appl. Anal., vol. 4, World Scientific, New Jersey, 1995, pp. 343–358.

[14] J. Kačur, Method of Rothe in Evolution Equations, Teubner Texts in Mathematics, vol. 80, BSB B.
G. Teubner, Leipzig, 1985.

[15] R. Landes and V. Mustonen, On parabolic initial-boundary value problems with critical growth
for the gradient, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 11 (1994), no. 2,
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