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Experience reveals that reliability varies depending on the characteristics of operation. The manufacturing process based on
multifunction equipment gives a usual case of variation in operating conditions.Thiswork presents amethodology for the reliability
analysis of multifunction processes, using the RCM approach, and a modification of the Universal Generating Function (UGF)
under a massive manufacturing context. The result is a characterization of reliability, for each piece of equipment and for the
production system. The methodology is applied in a workshop of a textile industry, where there is prior evidence that the failure
behavior varies according to the type of function executed by multifunction machines.

1. Introduction

The theory of reliability is especially important under the
competitive global scenario, since it is essential to determine
the real productive capacity and economic benefit of a plant
in the short and long term [1]. The failure behavior of plants
and equipment is not totally explained by accurate causes
assigned to preset conditions, but it varies depending on the
characteristics of the use of each element within the system
[2]. Time is the most common variable to determine the
behavior and remaining life of components and equipment;
however, empirical studies have shown that the behavior of
the failure rate depends largely on the type of job, workload,
and the characteristics of the products (or raw material)
which are produced or processed [3–7]. On the other hand,
within the environment of the Industry (4) 0 concept,
manufacturing has experienced a growth on operations and
data volume [8]. Flexibility and customization have made
common manufacturing lines constituted by automatized
multifunction equipment, which are able to run a variety
of works in little time. Regarding advanced multifunction
equipment, the different operating conditions demanded by
each particular type of work suppose that the reliability of the
multifunction system depends on the mixture scheduled to

be produced [9]. Nevertheless, to the best of our knowledge,
there are no previous works that consider, in the calculation
of the systemic reliability, the differences originated by the
operation of multifunctional systems.What is usually done is
not to differentiate the effect on the reliability granted by the
operation of each function, but the calculations are made in
an aggregated form, which causes loss of information that can
be valuable for the maintenance management of the system.
Therefore, it is interesting to model this behavior, using
for this the support of the existing reliability theory, taking
into account the difference in the intrinsic properties of the
multifunction equipment. To this aim, this proposal is based
on addressing studies related to the analysis of Multistate
Systems (MSS) [10, 11] and by suitable adaptation achieving a
common and widespread valid approach for a multifunction
production process [7].

One of the classic tools for the analysis of systemic
reliability is the RCM approach (Reliability CenteredMainte-
nance), which describes the operation of equipment arranged
in a logical configuration and that allows its modeling and
understanding, enabling formulation of suitablemaintenance
policies [12]. Given that the multifunction problem includes
an important size of data of multiple states and transitions,
it is necessary to have a structured methodology for its
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reliability study, which is based on the typical process for data
analysis [13–15] composed of four phases: (1) data acquisition,
(2) data preprocessing, (3) data analysis, and (4) prediction
and application. In particular, the RCM approach and the
UniversalGenerating Function (UGF)will be used during the
second and third stages to deal with the complexity of the data
dimension [16] and to obtain the reliability performance of
the entireMultistate System (MSS) based on the performance
of its elements, using algebraic procedures [17]. In this article,
the proposed methodology is applied to a case study in the
textile sector.

2. Problem Statement

Automatized multifunction machines, used in the last gen-
eration production systems, often work under very changing
operationmodes, characterized by varying loads andworking
speeds, using different raw materials, and being frequently
under different environmental conditions. These operational
modes result in different failure rates and life distributions.
However, in terms of reliability analysis, this is a problem that
to the best of our knowledge has not been fully addressed,
with any formal proposals that quantify the effect of the
multifunctionality in the systemic reliability. For this reason,
it is interesting to propose a methodology for reliability
analysis in multifunction processes. This methodology is
structured as a sequence of analysis of data and as theoret-
ical basis it has the existing previous studies in reliability
for Multistate Systems (MSS), adapting them conveniently.
A binary logic of operation of equipment is considered,
either when functioning properly (UP) or with total failure
(DOWN), and the type of function to be executed by the
system is characterized defining multiple operating states.𝐽 = {1, 2, . . . , 𝑛} is the set of elements that compose the
whole production system, and 𝐻 = {1, 2, . . . , 𝑘} is the set of
functions to be manufactured or states. A MSS composed of𝑛 different repairable elements (or equipment), where each
element 𝑗 has 𝑘𝑗 different levels of performance, has a model
with 𝐾 = ∏𝑛𝑗=1𝑘𝑗 states. This number can be quite large even
for a relatively small MSS, so the methodology proposed here
uses tools like the UGF to simplify the problem.

3. Proposition for Methodology

The analysis of data coming from heterogeneous sources, as
machines operating at different conditions, is a challenge.
In general, there is an elemental algorithm used by several
authors [13, 15], to dealwithmaintenance data.This algorithm
is taken as the structure for this methodological proposal
and it is composed of the following stages or phases: (1) data
acquisition (to define the object of study and to collect data),
(2) data preprocessing (to extract, transform, and prepare
data), (3) data analysis (to obtain a diagnosis about the
reliability of the system), and (4) prediction and application
(to generate a prognosis analysis for decision making).
According to Wang and Zang [13] the prediction accuracy
improves when data is increased in size.

The proposed methodology has as an innovative char-
acteristic of its application for the reliability analysis of

a multifunction manufacturing system. As it is known, the
reliability analysis is a key element of decision making by
analyzing the technical and economic performance of a
manufacturing system. To this aim, data such as product
demand, manufacturing quantities, and probabilities associ-
ated with the execution of each function shall be considered
as given, for example, by the production planning. It should
be emphasized that this proposal is a methodology and not
an algorithm, so its application is not one hundred percent
accurate and tight end to stringent rules. The phases of
the proposed methodology are represented in Figure 1. The
methodology includes four phases and each phase is made
by several steps.

Phase I (data acquisition). This involves the use of physical
inspection and/or wireless sensors about the health condition
of equipment and its main control variables. Besides, histori-
cal information from a Computer MaintenanceManagement
System (CMMS) is another valuable source of data to be used
throughout the methodology. The interoperability of devices
is an important issue, solved by ISA-95, MIMOSA, ISO
15745/13374 standards. Proactive maintenance techniques as
CBM+ and PHM are based on adequate interoperability
and data acquisition. At this point, the proposed method-
ology emphasizes the previous identification of the system,
production system, or equipment, object of analysis in a
multifunction context. Having multifunction machines is a
necessary condition, but not sufficient to satisfy this point,
since it is essential that the equipment have the tendency to
react differently (or to support different loads, e.g.) depending
on the function it is performing. Then, it is necessary to
focus themethodology on a production system that processes
a common set of functions. In the case of several sets, the
methodology should be applied separately on each form.
The focus of the reliability analysis is on the parts of the
production systemwhich satisfy themultifunction condition.
However, the parts that do not meet this condition should
also be considered since they still make an impact on the
reliability of the system.

Phase II (data preprocessing). The general objective of this
phase is to extract, transform, and prepare data. Here the
collected data is synchronized and segmented; the control
features are extracted and combined into a matrix. There is a
myriad of explicit techniques to do this, nevertheless, specif-
ically for reliability proposals, the preprocessing focuses on
treating data to characterize the different states of equipment.
This phase is done through the following steps.

Step 2.1. To determine the normal operational conditions
of the 𝑛 elements of the system when they are performing
each function ℎ and to determine a measure of performance
of each 𝑗 element, depending on the nature of the process
executed, this can be represented by a workload 𝑔𝑗ℎ given
by the production planning and assuming that each function
generates a different workload for the equipment perfor-
mance.The set𝑔𝑗 = {𝑔𝑗1, 𝑔𝑗2, . . . , 𝑔𝑗𝑘} represents the standard
load or performance of the element 𝑗 in the state ℎ. 𝐺𝑗 is
a random variable of each item 𝑗 and it represents the load



Complexity 3

To determine
reliability 
functions and 
indicators for 
different system 
scenarios

CMMS data
driven

CBM Data
acquisition Preprocessing Data

analyzing

Prediction 
and 
application

Physical 
Signals and 
sensors

ISA-95, MIMOSA, 
ISO 15745/13374 
standards

To identify the 
object of analysis 
under a multifunction
context

To characterize 
the different 
states of 
equipment

Consider the following:
(i) Workloads of

functions
(ii) Operational 

flexibility
(iii) RBD 

configuration
(iv) Probabilities 

of each state

Obtain the following:
(i) Reliability 

indicators: MTTR, 
MTBF, availability
of each function 
executed

(ii) Curves of 
reliability 
functions

(iii) Defining and analyzing
scenarios

Diagnosis Prognosis

To collaborate 
with 
maintenance, 
management, 
decision making

Obtain and consider
the following:

(i) Experience and 
knowledge 

(ii) Degradation
(iii) RUL
(iv) RLD
(v) Costs analysis

Figure 1: Phases for the proposed methodology for the reliability analysis of multifunction manufacturing systems.

(type of function) that the equipment is executing. This also
involves knowing the respective probabilities of the process
according to each element or knowing them according to
each function to execute. The probabilities associated with
the different states of the element 𝑗 can be represented by the
set: 𝑝𝑗 = {𝑝𝑗1, 𝑝𝑗2, . . . , 𝑝𝑗𝑘}, where 𝑝𝑗ℎ = Pr{𝐺𝑗 = 𝑔𝑗ℎ} and∑𝑘ℎ=1 𝑝𝑗ℎ = 1.
Step 2.2. It includesmaking an analysis of operational flexibil-
ity, describing the results of the production scheduling of the
equipment, regarding their working standard time intervals
(minimum time during which only one type of function is
executed).

Step 2.3. It includes illustrating the logical configuration
of the system using the Reliability Blocks Diagram (RBD)
and understanding the size and behavior of product flows
circulating in the system and the dimension of each executed
function.

Step 2.4. It includes obtaining the possible output values of
each function and the probability of occurrence of each one
of these states, by the modified UGF tool, the equation of the
u-function (see (1)), and the polynomial 𝑈(𝑧) of the entire

system (see (2)), taking into consideration the polynomial𝑈disp(𝑧) that includes the availability (A) (see (3)).
𝑢𝑗 (𝑧) = 𝑘∑

ℎ=1

𝑝𝑗ℎ𝑧ℎ𝑔𝑗ℎ (1)

𝑈 (𝑧) = ⊗𝜑(𝑢1 (𝑧) , . . . , 𝑢𝑛 (𝑧))
= ⊗
𝜑

( 𝑘∑
ℎ=1

𝑝1ℎ𝑧ℎ𝑔1ℎ , . . . , 𝑘∑
ℎ=1

𝑝𝑛ℎ𝑧ℎ𝑔𝑛ℎ)

= 𝑘∑
ℎ=1

( 𝑛∏
𝑗=1

𝑝𝑗ℎ𝑧ℎ𝜑(𝑔1ℎ ,...,𝑔𝑛ℎ))
(2)

𝑈disp (𝑧) = 𝑘∑
ℎ=1

( 𝑛∏
𝑗=1

𝑝𝑗ℎ𝑧ℎ𝜑(𝑔1ℎ ,...,𝑔𝑛ℎ)∗𝐴ℎ) . (3)

Phase III (data analysis). The main objective of this phase is
determining the reliability functions and the main indicators
for different systemic scenarios. The steps involved in this
phase are the following.
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Step 3.1.Once the polynomial𝑈(𝑧) of the production system
is known, it is possible to obtain indicators for the analysis
of reliability of the system from an acceptability function𝑓(𝑉, 𝜃), which represents the desired relation between the
performance of the system 𝑉 and some limit value 𝜃 called
systemdemand (𝑓(𝑉, 𝜃) = 1, if the performance of the system
is acceptable, and 𝑓(𝑉, 𝜃) = 0 if it is not). The MSS reliability
is defined as its expected acceptability. Given the probability
mass function of the 𝑞𝑖 system, V𝑖, 1 ≤ 𝑖 ≤ 𝐾, where 𝑞𝑖 =
Pr{𝑉 = V𝑖}, it is possible to obtain its reliability as shown in

𝑅 (𝜃) = 𝐸 [𝑓 ( 𝑉, 𝜃] = 𝐾∑
𝑖=1

𝑞𝑖𝑓 (V𝑖, 𝜃) (4)

Step 3.2. Get output data useful for reliability analysis of
each function executed, such as mean time between failures
(MTBF) and mean time to repair (MTTR).These data can be
found in the CMMS.

Step 3.3. It includes estimating the different availabilities
of the system according to the functions executed and
by polynomial 𝑈disp(𝑧) (see (3)), to determine the output
quantities of each function ℎ, depending on the availability
and the probabilities associated with each state.

Step 3.4. It includes performing an appropriate parameteri-
zation of the failure data according to the executed function,
adjusting the data to the probability density curves of rep-
resentative failures of the case under study, and showing the
reliability model of the equipment.

Step 3.5.Through amathematical tool, a probabilistic reliabil-
ity assessment scenario is defined, which depends on the odds
of developing each function and on the operational flexibility
of the production system.

Step 3.6. A simulation with multiple iterations that change
the executed functions at each minimum time interval of
processing, whose transition probabilities depend on the
function executed in the previous time interval, is performed.
This is with the aim of determining expected values of
reliability for the equipment, in other words, getting the
reliability values that together consider all the executed
functions and, thus, building an expected reliability curve for
each equipment.

Step 3.7. The reliability analysis at the level of the entire
production system is added, by performing mathematical
operations required to reach the global values from those
thrown by the equipment.

Phase IV (prediction and application). This phase consol-
idates the information obtained to facilitate the decision
making. This is made into a prognosis context. The main
idea is to develop an analysis of the future condition of
each machine and of the production system, to decide the
best strategy. Several elements have to be considered. First
of all, the experience and knowledge of expert personnel
are considered. As Kreinovich and Ouncharoen [18] set, the

expert knowledge is still valuable in an automated analysis
environment. In fact, they propose several techniques to best
handle this knowledge. Other important methods for predic-
tion and decision making are the analysis of the Degradation
Function, Remaining Useful Life (RUL) function, Remaining
LifeDistribution (RLD), and the Total Cost evaluation during
the entire life cycle of the asset. If desirable, with the results
already obtained, complementary analysis tools are applied.
Latest trends point out that the results of an analysis of Big
Data should be delivered not as a noneditable document,
but as an interface where the final user can experiment with
different scenarios, trying to find correlations and useful data
for everyday use.

4. Case Study

Consider a production process in a textile and embroidery
factory. This factory works with massive volumes of sewing,
embroidery, and quilting. The main workshop machines are
multifunctional. Each machine is capable of performing the
three functions: sewing (functionA), embroidering (function
B), and quilting (function C). These machines are remotely
programmable in terms of the type of stitch and the function
to be carried out.They also can be controlled by touch screen.
The machine reminds sequences and changes performed in
the stitches with each production batch.

Each machine is integrated into a system equipped with a
processor, memory to keep the scheduled works and stitches,
and devices to send and receive information. There is a set of
sensors that control variables of performance and condition
of the equipment, mainly vibration, speed, term of materials,
and position of the needle and the thread. They also are
able to generate data about their operational time, number
of detentions, and duration of detentions and the causes of it.
There is information of failure data of a period of five years.
Then, this case study is developed according to the four-phase
methodology proposed in this article.

4.1. Stage I: Data Acquisition

4.1.1. Process Description. The system under study is a pro-
duction process of the textile industry, comprised of 25 work
stations of multifunction equipment, specifically, machines
to sew, embroider, and make quilts. The production config-
uration is typical of this kind of processes and it consists
of numerous machines arranged as a workshop. Due to the
characteristics of the process, quality and velocity of the
sewing, embroidering, and quilting affect the entire flow
process and the productive capacity of the entire plant.

Each work station contains one multifunction machine
and each machine may present various failure modes. The
movement of material between work stations is carried out
by mechanical means.

4.1.2. Identification of Multifunction Components in the Pro-
duction System. In the experience of the staff, the failure
behavior of somemachines of theworkshopdependsmore on
the operation constitution than on the operating time. In this
case, the three functions executed (sewing, embroidery, and
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quilting) present processing conditions that cause different
failure rate conditions (this is especially because of differences
in speed of the needle, length of the stitch, and hardness of the
yarn used).

Themachines to be analyzed are identified, as well as their
associated data repositories.Themain variables to control are
related to their operational condition according to reliability
requirements: type of function executed, operational time,
number, cause, and duration of interruptions.

4.2. Stage II: Data Preprocessing

4.2.1. Analysis of Normal Operation Conditions. The ma-
chines have a different processing capacity in units per hour
for each function. The production planning determines the
type of product to be manufactured per shift and the type
of function to execute. The probability of switching between
functions and the proportion of each function relative to
the total executed are stationary at the long term. Modeling
reliability will depend on the specific long-term behavior.

4.2.2. RBD System Configuration. The system is composed of
25 machines. Considering that the machines are character-
ized by their flexibility and dynamism, it is possible to deter-
mine that the plant is under a load sharing configuration.The
particularity of a load sharing configuration is that it allows
obtaining a required capacity based on the sum of available
pieces of equipment that can even operate at a lower load than
the required.

4.2.3. Universal Generating Function (UGF) in the Production
System. By using the (1) and (2), it is possible to know
the polynomial 𝑈(𝑧) of the production system performance,
according to its RBD configuration. This polynomial shows
the stationary probabilities that are associated with the
execution rate, per hour, of each function. For elements in
load sharing configuration, the minimum production rate in
each composition is considered.

4.2.4. Failure Data Collection. Besides the information given
by the signal repository, there has been access to records of
failure that the technicians maintained during each shift, for
a total of 1810 days, that is, considering almost five years
of operations. This data is cleaned and treated before being
used. During the analyzed period, the line operated for
16 [h/day]. The repository contains the failure modes for this
period, classified for each shift, including the time between
failures (TBF) and the time to repair (TTR). It is important
to highlight that each failure mode was classified with the
respective function (sewing, embroidery, and quilting). The
total amount of intervention was 3.287 records.

4.3. Stage III: Data Analysis

4.3.1. Parameter Calculation. Knowing the values of time
between failures (TBF) and time to repair (TTR), a curve
fitting process was developed with the objective of finding
the one that best explains the behavior of failures. This was
done separately for each function in the case of the stations

with a multifunction nature and through a commercial
software. In the case of TBF the adjustment chosen was
Weibull, fromwhich scale (𝛼) and shape (𝛽) parameters were
obtained. Meanwhile the TTF are better fit to a lognormal
distribution, whose parameters are the mean (𝜇) and the
standard deviation (𝜎). For TTR, besides, there is no evidence
that shows a variation depending on the function executed
whose process has led to the failure, so its modeling is the
same for all functions.

4.3.2. Availability in Static State. Considering the individual
information about reliability andmaintainability, it is possible
to make the estimation of availability (𝐴) level for each
executed function. For the system, the availability level is
calculated based on the RBD configuration.

4.3.3. Polynomial 𝑈(𝑧) according to the Availability. By using
(3) it is possible to calculate the amount produced per hour,
depending on the availability of the workshop at steady
state, by adding the system availability to the already known
execution probabilities of each function. This represents a
performance indicator to the expected output per hour in
an undefined instant; however, it does not consider that
this influences a short-term scenario, in which there is a
probability of transition between the execution of a function
and another and where the elaborate proportions are not the
ones from the static scenario.

4.3.4. Reliability Analysis

(1) Failure Density and Failure Rate Functions. 𝑓𝑗ℎ(𝑡) is
defined as the probability density function of failure time of
station 𝑗 when executing function ℎ, and 𝜆𝑗ℎ(𝑡) is defined
as the failure rate of station 𝑗 when executing function ℎ.
By plotting both 𝑓𝑗ℎ(𝑡) and 𝜆𝑗ℎ(𝑡) for each function, the
failure behavior that each function causes in each station
can be appreciated. In addition, the parameters calculated in
Section 4.3.1 report differences in times of good performance
for each case. It is important to analyze the specific results
for the parameter 𝛽, showing the different function effects.
The function 𝐴 obtains 𝛽 of 1.87 (increasing failure rate), the
function 𝐵 obtains 𝛽 of 1.0 (constant failure rate), and the
function 𝐶 obtains a value of 1.22 (increasing failure rate).

(2) Reliability Curves per Equipment When Executing a Type
of Function. By using the classical formula of reliability
function fromWeibull it is possible to derive the equations of
the reliability curves per equipment and function executed,
where 𝑅𝑗ℎ(𝑡) is the reliability function of machine 𝑗 when
executing function ℎ. In static state it is possible to obtain
a reliability curve of the system, which is different for each
function executed.

(3) Calculation of the Expected Reliability with Multifunction.
Based on the analysis of Sections 4.3.4(1) and 4.3.4(2), it is
possible to model the reliability curves for each executed
function and in consequence to analyze the complete mul-
tifunction scenario.The reliability of the equipment will then
be variable depending on the type of executed function in
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a determined time horizon and on the order these are
executed. The first step then is to define a stochastic model
that shows the possible scenarios of the workshop over time.
These scenarios can be generated by simulation, considering
a horizon of working days and shifts. For this case it is defined
as follows: for each shift it is possible to execute either func-
tionA, functionB, or functionC, depending on the transition
probabilities between the manufacturing of products which
were previously calculated. Taking into account the fact that
during one shift a single type of function is executed, the
reliability function of each equipment is built depending on
which function has been executed during all the shifts on the
horizon of analysis. For this, the parameters in the reliability
function change depending on their last condition.Therefore,
the reliability when executing function 𝑗 and during a shift𝑚 decreases in the proper proportion to the length of time
to process that function, but since the case is integrated
with the other functions, the “initial” availability of that shift
depends on the function configuration adopted during the𝑚−1 previous shifts. Hence, the curves are formed section by
section, and they take countless forms through the iterations.

(4) Reliability Curves per Equipment and for the Production
System with Multifunction. A simulation was performed with
1.000.000 iterations that make the executed function change
shift by shift, producing changes in the reliability values of
each equipment. The expected reliability value was obtained
in every single instant of time 𝑡, between 0 [h] and 1.000 [h],
and from that information the expected failure density
curves, the expected failure rate, and the expected reliability
per equipmentwere built, all of themunder themultifunction
conditions. The expected reliability curve of the machine𝑗 is denoted as 𝑅 exp𝑗(𝑡). From this curve the reliability
parameters of the 25 machines were estimated, iterating with
Weibull parameters according to the situation and looking for
a coefficient of determination value (𝑅2) as high as possible.𝑓expj(𝑡)was also calculated and plotted as an expected failure
density function of themachine 𝑗 and𝜆 expj(𝑡) as an expected
failure rate of the equipment 𝑗, both considering multifunc-
tion. Subsequently, the expected values of reliability of the
entire system are calculated, as the product of the stochastic
reliability of all the machines. The expected reliability curve
of the entire system is denoted as 𝑅 exp(𝑡). As an example,
Figure 2 shows the expected reliability curve of the entire
workshop in the case under study, besides the reliability
curve for the iterations performed. Each iteration generates
a different curve according to the production planning.

Furthermore, just as in the analysis done for each equip-
ment, from the expected values of reliability of the system,
theWeibull parameters are estimated and𝑓 exp(𝑡) is obtained
as an expected failure density function for the entire system
(Figure 3). Then, 𝜆 exp(𝑡) is calculated as an expected failure
rate function for the workshop (Figure 4).

(5) Calculation of MTTF, MTTR, and Expected Availability
with Multifunction.With the Weibull parameters for reliabil-
ity, it is possible to obtain the mean time to failures (MTTF)
values, the mean time to repair (MTTR) values (this is the
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Figure 2: System expected reliability curve and reliability curves in
iterations.
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Figure 3: System expected failure density function.
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Figure 4: System expected failure rate function.

called “maintainability”), and the availability (A), the latter
being both at a disaggregated level and as a total for the
workshop. By using the equations of the reliability curves
obtained for each station and expression (5), it is possible to
obtain the MTTF of the stations for multifunction stochastic
scenario.

MTTF = ∫∞
0
𝑅 (𝑡) 𝑑𝑡. (5)

For the maintainability analysis, the values of MTTR are
obtained from the CMMS database, remembering that it is
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assumed that these values do not vary depending on the
function being executed, the availability both for each piece
of equipment and for the workshop as a whole is calculated,
throwing a value for this case study of 𝐴 exp = 0.9320.
4.4. Stage IV: Results Analysis. Considering the results of
Stage III it is possible to elaborate an analysis that facilitates
the understanding of the failure behavior and the decision
making related to the production process, as follows.

After modeling each machine and the system under a
load sharing configuration, the reliability analysis confirms
the presence of a multifunction failure behavior, considering
increasing failure rates for sewing (function A) and quilting
(function C). The embroidering (function B) has a constant
failure rate behavior. So, it is necessary to incorporate an
analysis of the accumulated time per function for each
machine, because the wear-out degree of the elements will
be driven by this indicator, transforming the maintenance
policies from an operation time criterion to an accumulated
function operation time criterion.

To provide to the user with a way of easy access, this
phase should be supplemented designing a Web platform.
This should allow referring to both information and reports,
so as to see the state of the system in real-time, as well as
making new simulations bounded to scenarios determined
by the user.

5. Conclusions

It is common in manufacturing industries of a varied nature
that the same equipment participates in a mixture of func-
tions. The reliability analysis of this multifunction manufac-
turing has not been fully explored, and a general solution for
this problem has not been raised, at least to the best of our
knowledge. To try to fill this gap, this work has developed
a methodology based on the general procedure of data
analysis, the Universal Generating Function, and the classical
RCM reliability approach for the analysis of a multifunction
manufacturing system. It is important to mention that this
methodology is recommended primarily to be applied to very
standardized processes, working as a continuous production
system. Typical workshop configurations are not subject of
the application of this methodology. Also, as expected, the
more different the nature of each function, the more potent
the application of this proposal.

Through a case study, consisting of the analysis and evalu-
ation of reliability in a plant of automated textile production,
the use of themethodology proposedwas shown.The analysis
was able to show that the nature of the machines of the
workshop is multifunction, since the failure behavior varies
depending on the function they are executing. Through the
analysis of the operating conditions of the machines and the
analysis of the operational flexibility, the stochastic scenario
of production was defined. By using the methodology, it
was possible to determine the failure behavior of the entire
workshop according to the scheduled jobs. This is useful for
the decision making in a static scenario, but it also shows
the reliability effects of making certain products and executes
each function on a long-term horizon.

Numerous iterations were executed that show possible
scenarios of shifts programming in the production. Through
them and through the expected values of reliability for each
instant of time, the expected reliability of each machine
was modeled, and an aggregated analysis of the system
was performed. The analysis is completed using the graphic
display of the probability density functions of failures and the
failure rate functions. Through the joint analysis of results
and studying the impact that each workstation has on the
failure behavior of the workshop, it was possible to generate
some conclusions about the reliability of the whole process
and about the criticality of the elements that compose it.

Some recommendations for possible future studies are
as follows: it would be helpful to develop approaches that
beyond analyzing reliability also consider other areas of
interest in the industry, like the costs analysis, maintenance
strategies, equipment sizing, and problems of demand sat-
isfaction, among others. All of these focused on any case
of multifunction manufacturing and even beyond on any
other multistate condition. It is also possible to recommend
a posteriori some complementary analysis as a support to
the study performed with additional points of view, such as
those that the Markov chains can provide for the evaluation
of reliability in Multistate Systems, and to formulate an opti-
mization model of global costs that integrates load distribu-
tion decisions and tactical production planning, considering
the costs of switching the equipment capacity and the idle
capacity costs.

Finally, it is well known that if we have a forecast of the
maintenance interventions with high levels of compliance
and efficiency, the management of spare parts inventories
can be favored. The demand for spare parts would be more
accurately known. This could be another interesting future
extension of this multifunction analysis work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] C. Stenström, P. Norrbin, A. Parida, and U. Kumar, “Preventive
and corrective maintenance cost comparison and costbenefit
analysis,” Structure and Infrastructure Engineering, vol. 12, no.
5, pp. 603–617, 2016.

[2] J. Yuan, C. Lin, S. J. Chang, and S. Lai, “Reliability modeling
and evaluation for networks under multiple and fluctuating
operational conditions,” IEEE Transactions on Reliability, vol.
36, no. 5, 1987.

[3] M.-Y. You, H. Li, and G. Meng, “Control-limit preventive
maintenance policies for components subject to imperfect
preventive maintenance and variable operational conditions,”
Reliability Engineering and System Safety, vol. 96, no. 5, pp. 590–
598, 2011.
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