
Research Article
Application of Filters to Multiway Joins in MapReduce

Taewhi Lee,1 Dong-Hyuk Im,2 Hangkyu Kim,3 and Hyoung-Joo Kim1

1 School of Computer Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
2Department of Computer and Information Engineering, Hoseo University, Asan, Chungnam 336-795, Republic of Korea
3 Software Center, Samsung Electronics, Suwon, Gyeonggi 443-370, Republic of Korea

Correspondence should be addressed to Dong-Hyuk Im; dhim@hoseo.edu

Received 6 November 2013; Revised 23 December 2013; Accepted 30 December 2013; Published 4 March 2014

Academic Editor: Cheng Shao

Copyright © 2014 Taewhi Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Joining multiple datasets in MapReduce may amplify the disk and network overheads because intermediate join results have to be
written to the underlying distributed file system, or map output records have to be replicated multiple times.This paper proposes a
method for applying filters based on the processing order of input datasets, which is appropriate for the two types of multiway joins:
common attribute joins and distinct attribute joins. The number of redundant records filtered depends on the processing order. In
common attribute joins, the input records do not need to be replicated, so a set of filters is created, which are applied in turn. In
distinct attribute joins, the input records have to be replicated, so multiple sets of filters need to be created, which depend on the
number of join attributes. The experimental results showed that our approach outperformed a cascade of two-way joins and basic
multiway joins in cases where small portions of input datasets were joined.

1. Introduction

Join processing in MapReduce [1] has attracted the attention
of researchers in recent years. This is because MapReduce
does not support join operations directly, although it is a
useful framework for large-scale data analysis. In particular,
joining multiple datasets in MapReduce has been a challeng-
ing problem because it may amplify the disk and network
overheads. Multiple datasets can be joined in the following
two ways: (1) using a cascade of two-way (or smaller multi-
way) joins and (2) with a single multiway join. However, both
methods have some drawbacks. A cascade of two-way joins
has to write the intermediate join results to the underlying
distributed file system, which generally replicates multiple
records to ensure high availability and fault tolerance. To
process multiway joins in a single MapReduce job, the map
output records have to be replicatedmultiple times, instead of
writing only the final join results to the distributed file system.

Previous studies have attempted to improve join per-
formance using filtering techniques [2–5], including our
previous study [6, 7]. These studies focused on reducing
the number of map output records that are not joined.
This may be more beneficial with multiway joins. The map

output records are replicated multiple times, so filtering out
redundant records removes multiple copies of the record in
multiway joins. Figure 1 shows an example of basic multiway
join processing in MapReduce. In this example, three input
datasets, that is, R(a,b), S(b,c), and T(c,d), are joined with two
attributes b and c. To join the three datasets simultaneously,
some datasets need to be replicated, that is, R and T in this
example. Replication may degrade the join performance, so
it is important to reduce the number of redundant records,
which are marked with strikethroughs in Figure 1.

In this study, we extend the concept of filtering techniques
to multiway joins. Multiway joins can be classified into two
types: common attribute joins and distinct attribute joins [8].
A common attribute join combines datasets based on one or
more shared attributes, whereas some relations do not have
join attributes in a distinct attribute join.The example shown
in Figure 1 illustrates a distinct attribute join, because R does
not have the attribute c and T does not have the attribute
b. Thus, we propose methods for filter application that are
suitable for both cases.We do not limit the filtering technique
used and various techniques can be applied. Simple hash
filters were used for the evaluation. The contributions of this
study are as follows.
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Figure 1: Basic multiway join processing in MapReduce.

(i) We propose methods for applying filters to multiway
joins. For common attribute joins, a set of filters is cre-
ated and applied in turn. For distinct attribute joins,
multiple sets of filters are created, according to the
number of join attributes. The filters can be applied
in various patterns, according to the processing order
of the input datasets.

(ii) We provide specific details of our prototype imple-
mentation. We briefly introduce MFR-Join, which is
our general join framework with filtering techniques
implemented in Hadoop [9]. Based on this frame-
work, algorithms that perform multiway joins with
filters are described.

(iii) Experimental results obtained using our basic frame-
work are presented. Our proposed techniques were
evaluated based on comparisonwith a cascade of two-
way joins and a multiway join without filters. The
results showed that our approach outperformed the
other techniques in cases where small portions of the
input datasets were joined.

The remainder of this paper is organized as follows.
Section 2 reviews background information and previous
research related to this study. Section 3 explains our pro-
posed methods for applying filters to multi-way joins.
Section 4 describes the implementation details of our meth-
ods. Section 5 discusses our experimental results. Finally, we
conclude this paper in Section 6.

2. Background and Related Work

This section presents the basic concepts andprevious research
related to our study. Section 2.1 explains the basis framework,
MapReduce. Next, two-way and multiway join algorithms in
MapReduce are reviewed in Sections 2.2 and 2.3.

2.1. MapReduce. MapReduce [1] is Google’s programming
model for large-scale data processing, which is run on
a shared-nothing cluster. MapReduce liberates users from
the responsibility of implementing parallel and distributed
processing features by providing them automatically. Thus,
users only have to write MapReduce programs with two
functions: map and reduce. The map function takes a simple
key/value pair as its input and it produces a set of intermediate
key/value pairs. The reduce function takes an intermediate
key and a set of values that correspond to the key as its input,
and it generates the final output key/value pairs.

A MapReduce cluster comprises one master node and
a number of worker nodes. When a MapReduce job is
submitted, the master node creates the map, reduces tasks,
and assigns each task to idle workers. Amapworker reads the
input split and executes the map function submitted by the
user. The map output records are grouped and sorted by the
key and then stored in partitions for each reduce worker. A
reduce worker reads its corresponding partitions from all the
map workers, merges the partitions, and executes the reduce
function. When all of the tasks are complete, the MapReduce
job is finished.

Hadoop [9] is a popular open-source implementation
of the MapReduce framework. In Hadoop, the master node
is called the jobtracker and the worker node is called the
tasktracker. Tasktrackers run one ormoremapper and reducer
processes, which execute map and reduce tasks, respectively.
The proposed method was implemented using Hadoop, so
the Hadoop terminology is used in the remainder of this
paper.

2.2. Join Processing inMapReduce. Join algorithms inMapRe-
duce are classified roughly into two categories: map-side joins
and reduce-side joins [10]. Map-side joins produce the final
join results in the map phase and do not use the reduce
phase. They do not need to pass intermediate results from
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mappers to reducers, which means that map-side joins are
more efficient than reduce-side joins, although they can only
be used in particular circumstances. Hadoop’s map-side join
[11], referred to as the map-merge join [10], merges input
datasets that are partitioned and sorted on the join keys
in the same manner, which is similar to the merge join in
traditional DBMS. An additional MapReduce job is required
if the input datasets are not partitioned and sorted in advance.
The broadcast join [12] distributes the smaller of the input
datasets to all of the mappers and performs the join in the
map phase. This approach is efficient only if the input dataset
is small.

Reduce-side joins can be used in more general cases, but
they are inefficient because large intermediate records are sent
from mappers to reducers. The repartition join [12] is the
most common join algorithm in MapReduce, but all of the
input records have to be sent to reducers, including redundant
records that are not relevant to the join. This may lead to
a performance bottleneck. The semijoin in MapReduce [12]
works in a similar manner to semijoin in traditional DBMS.
This approach may reduce the size of the intermediate results
by filtering out the unreferenced records with unique join
keys. Therefore, it is efficient when small portions of records
participate in joins. However, the semijoin requires three
MapReduce jobs, whichmeans that the results of each job are
written and read in the next job. This incurs additional I/O
overheads.

Recent studies have attempted to adapt the bloomjoin
[13], which filters out tuples that do not participate in a
join using Bloom filters [14], to the MapReduce framework.
Reduce-side joins with a Bloom filter were proposed previ-
ously [2, 4, 5], but they create the filter via an independent job.
Therefore, they have to process the input datasets multiple
times. Koutris [3] theoretically investigated join methods
using Bloom filters within a single MapReduce job but did
not provide specific technical details.

2.3. Multiway Joins in MapReduce. Several datasets can be
joined simultaneously in a single MapReduce job by repli-
cating some input datasets, as shown in Figure 1. Previous
studies have also attempted to optimize the number of input
records replicated in multiway joins [15, 16] and they use
similar methods for minimizing the number. Figure 2 shows
a partial replication of the input records for a join example
with three datasets and nine reducers. Unlike the naive
multiway join that replicates some input datasets fully, the
input records of R and T are replicated by only three reducers,
depending on the hash values of the join attributes b and c.
This optimization problem can be formulated as a problem
of minimizing the total number of records that are sent to
reducers. Afrati and Ullman [15] solved the minimization
problem using a method based on Lagrangian multipliers to
find the optimal solution. Jiang et al. [16] used a heuristic
approach to find an approximate solution. These studies
can be used in combination with our approach, which uses
filtering techniques to facilitate more efficient multi-way join
processing.
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Figure 2: Optimizing multiway joins in MapReduce.

3. Application of Filters to Multiway Joins

This section presents the basic methods used to create and
apply filters to common and distinct multiway joins. To
simplify the discussion, joins between three datasets are
considered in the following subsections.We then consider the
processing of general joins between multiple datasets.

3.1. Common Attribute Joins. In common attribute joins, all
of the input datasets share join attributes. In these cases, the
input records do not need to be replicated and they can be
processed in a similarmanner to two-way joins. A set of filters
is created and probed in turn, depending on the processing
order of the input datasets.

Figure 3 shows an example of a common attribute join
between three input datasets, that is, R(a,b), S(a,c), and
T(a,d), based on the attribute a. Similar to two-way joins, the
input records of the first dataset, that is, R in the figure, are
not filtered out and they are used to create a set of filters for
the next dataset.The input records of the second dataset, that
is, S in the figure, are processed using the filters and some
redundant records can be filtered out. In addition, another
set of filters is created using the map output records from S
for the next dataset. Themap output records are contained in
the first set of filters, whichmeans that the second set of filters
is automatically the same as the intersection of the filters that
are created independently using the first and second dataset.
Finally, the third input dataset, that is, T in the figure, is
processed with the second set of filters. Another set of filters
does not need to be created because this is the final input
dataset for the join attribute.

The input datasets are processed in the order of R, S, and
T in this example, but any order can be processed in the same
way. The join cost depends on the number of input records,
the ratio of the joined records, and the false positive rate of
the filters.

3.2. Distinct Attribute Joins. In distinct attribute joins, the
input datasets may not have some join attributes. Thus, some
of the datasets with missing attributes need to be replicated
because their records may be joined to the input records of
other datasets with any values of the missing attributes. Let
us consider the join example shown in Figure 1, which is a
join between three input datasets, that is, R(a,b), S(b,c), and
T(c,d), based on two attributes, that is, b and c. We assume
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Figure 3: Common attribute join.

that R and T are replicated by two reducers in this example.
The example join can be processed in 3! = 6 different orders
of the input datasets. Depending on the processing order, the
filters can be applied in three patterns: chain, star-fact, and
star-dim.

3.2.1. Chain. The chain pattern creates and probes filters
in turn, in a similar manner to common attribute joins,
except that each set of filters is created for a different
join attribute. This is analogous to the indirect partitioning
method proposed by Kemper et al. [17]. Two processing
orders correspond to this pattern, that is, R-S-T and T-S-
R. Figure 4(a) illustrates an example of a distinct attribute
join with the chain pattern. The first dataset R is replicated
by reducers and a set of filters is created with the values of
the join attribute, b in R. The second dataset S is processed
using the filters and some redundant records may be filtered
out. Meanwhile, another set of filters is created using the
map output records from S based on the other join attribute
c. Next, the third dataset in the figure, T, is replicated and
processed with the second set of filters.

3.2.2. Star-Fact. The star-fact pattern creates filters using the
dataset with both join attributes and uses the filters to process
the other datasets. In database terms, a fact table in a star join
is used to create the filters. Two processing orders correspond
to this pattern, that is, S-R-T and S-T-R. Figure 4(b) shows
an example of a distinct attribute join with the star-fact
pattern. The first dataset S, which has both join attributes, is
processed and two sets of filters for each join attribute, that
is, b and c, are created. Next, the other datasets, that is, R
and T, are replicated and processed using the set of filters that
correspond to the join attribute.

3.2.3. Star-Dim. The star-dim pattern creates filters using the
datasets with missing join attributes and uses the filters to
process the other dataset. In database terms, the dimension

tables in a star join are used to create the filters.The remaining
two cases, that is, R-T-S andT-R-S, correspond to this pattern.
Figure 4(c) shows an example of a distinct attribute join with
the star-dim pattern. The first and second datasets, that is,
R and T, are replicated and processed without filters. Each
set of filters for the join attributes is created using their join
attribute values. Next, the third dataset S is processed using
both filters and some redundant records are filtered out. The
star-dim pattern appears to be inefficient in this example, but
it is efficient if the number of records in the third dataset is
much larger than those in the other datasets.

3.3. General Multiway Joins. The basic filtering patterns are
presented in Sections 3.1 and 3.2.Multiway joins ofmore than
three datasets can be processed by combining these patterns.
In general, multiple datasets can be joined in any processing
order for input datasets using the following rules.

For each join attribute,

(i) create a set of filters if the dataset is not the last one
with the attribute;

(ii) probe the existing set of filters if the dataset is not the
first one with the attribute.

All combinations of these patterns can be summarized using
these rules.The filters can be applied in any processing order,
but the processing order must be selected carefully because it
affects the join cost.

3.4. Cost Analysis. The number of intermediate map output
records is the most important factor that influences the
overall cost. Formulti-way joins, the number is affected by the
replication factors for each join attribute. Let 𝑛

𝑖
be the number

of records in the 𝑖th input dataset and let 𝑓
𝑖
be the replication

factor for the 𝑖th join key. Next, let 𝜎
𝑖 𝑗
be the ratio of joined

records in the 𝑖th dataset relative to a previously processed
𝑗th dataset, and let 𝑝

𝑖 𝑗
be the false positive probability of the

previously created filters for the 𝑗th join attributes when the
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Figure 4: Distinct attribute joins.

𝑖th dataset is processed. In addition, let 𝑐(𝑖, 𝑗)be a binary value
function that returns whether the 𝑖th dataset contains the 𝑗th
join attribute as follows:

𝑐 (𝑖, 𝑗)

= {

1, if 𝑖th dataset contains the 𝑗th join attribute,
0, otherwise.

(1)

Assuming that the attribute values of the input datasets are
independent, the number of intermediatemap output records
𝑛
𝑓

inter in a multi-way join between 𝑛 datasets based on 𝑘 join
attributes can be expressed as follows:

𝑛
𝑓

inter

=

𝑘

∑

𝑖=1

(𝑓
𝑖
⋅ 𝑛
𝑖
⋅ 𝑆
𝑖
+ 𝑓
𝑖
⋅ 𝑛
𝑖
⋅ (1 − 𝑆

𝑖
) ⋅

𝑘

∏

𝑗=1

( 𝑝
𝑖 𝑗
⋅ 𝑐 (𝑖, 𝑗))) ,

(2)

where

𝑆
𝑖
=

{
{

{
{

{

1, if 𝑖 = 1,

𝑖−1

∏

𝑗=1

𝜎
𝑖 𝑗
, otherwise,

𝑘

∏

𝑖=1

𝑓
𝑖
= (# of reducers) .

(3)

We need to find the replication factors and processing
order for input datasets that minimizes the number of
intermediate map output records. Note that the factors 𝑓

𝑖
, 𝑆
𝑖
,

and 𝑝
𝑖 𝑗
depend on the processing order of the input datasets.

These equations can be used to select the processing order and
to estimate the join cost, but theremay be a large search space
if the numbers of reducers and the input datasets are large. In
these cases, the factors have to be selected using heuristics.
For example, the replication factors can be computed using
the method proposed by Afrati and Ullman [15], which does
not consider filters, or they can be predefined by users or
determined by optimizer modules. The brute force approach
was used in the experiments conducted with ten reducers in
the present study.

4. Implementation Details

In this section, we briefly introduce our basic framework,
which is called MFR-Join. The two major issues when
processing multi-way joins simultaneously in the framework
are replicating the records for the corresponding reducers and
processing multiple join attributes for filtering.The following
subsections describe the specific implementation details that
address these issues.

4.1. MFR-Join. MFR-Join is a general join framework with
filtering techniques in MapReduce, which is proposed in our
previous studies [6, 7]. MFR-Join, which was implemented in
Hadoop, has twomajor differences from the original Hadoop
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⊳ 𝑛: the number of join attributes
⊳ 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟: an array of join attribute values (some values may be missing)
⊳ 𝑟𝑒𝑝𝑙: an array of replication factors for each join attribute

(1) procedure FindTargetReducers(𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[1, . . . , 𝑛], 𝑟𝑒𝑝𝑙[1, . . . , 𝑛])
(2) 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡 ← 0

(3) 𝑐𝑜𝑜𝑟𝑑 ← 0

(4) for 𝑖 = 1 to 𝑛 do
(5) if 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[𝑖] is not null then

⊳ 𝐺𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(): returns a number in the range [0 and (repl [𝑖] − 1)]
(6) 𝑐𝑜𝑜𝑟𝑑[𝑖] ← 𝐺𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[𝑖], 𝑟𝑒𝑝𝑙[𝑖])

(7) else
(8) 𝑐𝑜𝑜𝑟𝑑[𝑖] ← 0

(9) end if
(10) end for
(11) while 𝑡𝑟𝑢𝑒 do
(12) 𝑟𝑖𝑑 ← 𝐶𝑜𝑜𝑟𝑑𝑇𝑜𝑅𝑒𝑑𝑢𝑐𝑒𝑟(𝑐𝑜𝑜𝑟𝑑, 𝑟𝑒𝑝𝑙)

(13) 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡 ← 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡 ∪ 𝑟𝑖𝑑

(14) if 𝐼𝑛𝑐𝑟𝐶𝑜𝑜𝑟𝑑(𝑐𝑜𝑜𝑟𝑑, 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟, 𝑟𝑒𝑝𝑙) = 𝑓𝑎𝑙𝑠𝑒 then
(15) break
(16) end if
(17) end while
(18) return 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡

(19) end procedure

Algorithm 1: Finding target reducers.

(1) procedure coordtoreducer(𝑐𝑜𝑜𝑟𝑑[1, . . . , 𝑛], 𝑟𝑒𝑝𝑙[1, . . . , 𝑛])
(2) 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 ← 0

(3) 𝑏𝑎𝑠𝑒 ← 1

(4) for 𝑖 = 1 to 𝑛 do
(5) 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 ← 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 + 𝑏𝑎𝑠𝑒 ∗ 𝑐𝑜𝑜𝑟𝑑[𝑖]

(6) 𝑏𝑎𝑠𝑒 ← 𝑏𝑎𝑠𝑒 ∗ 𝑟𝑒𝑝𝑙[𝑖]

(7) end for
(8) return 𝑟𝑒𝑑𝑢𝑐𝑒𝑟

(9) end procedure

Algorithm 2: Converting a coordinate to a reducer id.

(1) procedure incrcoord(𝑐𝑜𝑜𝑟𝑑[1, . . . , 𝑛], 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[1, . . . , 𝑛], 𝑟𝑒𝑝𝑙[1, . . . , 𝑛])
(2) for 𝑖 = 1 to 𝑛 do
(3) if 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[𝑖] is not null then
(4) continue
(5) end if
(6) 𝑐𝑜𝑜𝑟𝑑[𝑖] ← 𝑐𝑜𝑜𝑟𝑑[𝑖] + 1

(7) if 𝑐𝑜𝑜𝑟𝑑[𝑖] < 𝑟𝑒𝑝𝑙[𝑖] then
(8) return 𝑡𝑟𝑢𝑒

(9) end if
(10) 𝑐𝑜𝑜𝑟𝑑[𝑖] ← 0

(11) end for
(12) return 𝑓𝑎𝑙𝑠𝑒

(13) end procedure

Algorithm 3: Increasing a coordinate.
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⊳ V𝑎𝑙𝑢𝑒: an input record from the 𝑖th dataset
⊳ 𝑟𝑒𝑝𝑙: replication factors that are pre-computed or pre-defined in the 𝑖𝑛𝑖𝑡 phase

(1) procedure map(𝑘𝑒𝑦, V𝑎𝑙𝑢𝑒)
(2) extract the join attribute values 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[1, . . . , 𝑛] by parsing the input record V𝑎𝑙𝑢𝑒

⊳ ‖: concatenation, #: delimiter
(3) 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟𝐾𝑒𝑦 ← 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[1] ‖#‖⋅ ⋅ ⋅ ‖#‖ 𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟[𝑛]
(4) 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡 ← 𝐹𝑖𝑛𝑑𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑠(𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟, 𝑟𝑒𝑝𝑙)

(5) for each 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 in 𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝐿𝑖𝑠𝑡 do
⊳ 𝑡𝑎𝑔: the dataset id of the record

(6) 𝐸𝑚𝑖𝑡((𝑗𝑜𝑖𝑛𝐴𝑡𝑡𝑟𝐾𝑒𝑦, 𝑟𝑒𝑑𝑢𝑐𝑒𝑟), (V𝑎𝑙𝑢𝑒, 𝑡𝑎𝑔))
(7) end for
(8) end procedure

Algorithm 4: Map function.

⊳ V𝑎𝑙𝑢𝑒𝑠: intermediate records (𝑟𝑒𝑐𝑜𝑟𝑑, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐼𝑑) with the same reducer id
(1) procedure reduce(𝑘𝑒𝑦, V𝑎𝑙𝑢𝑒𝑠)

⊳ 𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡: lists for buffering the intermediate records based on their dataset id
(2) 𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡 ← 0

(3) for each V𝑎𝑙𝑢𝑒 in V𝑎𝑙𝑢𝑒𝑠 do
(4) 𝑑𝑠𝑖𝑑 ← V𝑎𝑙𝑢𝑒.𝑡𝑎𝑔
(5) 𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡[𝑑𝑠𝑖𝑑] ← 𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡[𝑑𝑠𝑖𝑑] ∪ V𝑎𝑙𝑢𝑒.𝑟𝑒𝑐𝑜𝑟𝑑
(6) end for

⊳ 𝐽𝑜𝑖𝑛(𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡): returns the join results between the records in each record list
(7) 𝐸𝑚𝑖𝑡 (𝐽𝑜𝑖𝑛 (𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑖𝑠𝑡))

(8) end procedure

Algorithm 5: Reduce function.

system. First, the map tasks are scheduled according to the
order of the dataset, whereasHadoop assignsmap tasks based
on the order of the input split size. This allows us to apply
database techniques such as tuple filtering and join ordering.
Second, the filters are constructed dynamicallywithin a single
MapReduce job.The filters are created based on the first input
dataset in a distributed manner to filter out the second input
dataset. In this way,MFR-Join can reduce the communication
cost for redundant records by processing the input datasets
only once. Our previous studies [6, 7] provide further details
of these processes.

4.2. Partition Assignment. For each input dataset, its corre-
sponding reducers for replication are determined as shown
in Figure 2. The replication of input records for their corre-
sponding reducers can be implemented in a similar manner
to the data partitioning method described by Zhang et
al. [18]. Algorithm 1 demonstrates how to find the target
reducers that correspond to an input record. Depending
on the number of join attributes 𝑛, we may assume that
there is an 𝑛-dimensional space with integer coordinates,
where each dimension represents each join attribute and a
position represents a reducer. Note that 𝑛 is the number of
join attributes, rather than the number of input datasets,
which was the case in a previous study [18] that aimed to
process theta joins. Then, the corresponding positions of
an input record can be obtained by partitioning the join

attribute values of the record in a range from zero to the
corresponding replication factor-1. A coordinate for amissing
join attribute can be expressed using a special character, that
is, “∗.” This indicates that the record corresponds to the
reducers with all possible values for the coordinate. Next,
the positions are converted into integer identifiers of the
reducer by adding up the values of each position, which
are multiplied by the replication factors for the preceding
dimensions. Algorithms 2 and 3 show the pseudocodes for
the conversion process.

Now, we consider an example of three-way joins between
R(a,b), S(b,c), and T(c,d) using the two join attributes shown
in Figure 2. We assume that the number of reducers is
nine and that there are three replication factors for both
R and T. The positions that correspond to each record
of R, S, and T in the figure are ⟨1, ∗⟩, ⟨1, 2⟩, and ⟨∗, 2⟩,
respectively. ⟨1, ∗⟩ represents the positions ⟨1, 0⟩, ⟨1, 1⟩, and
⟨1, 2⟩. If we assign each reducer with an integer identifier
from zero to eight incrementally, starting from the top-left
cell in a vertical direction, the identifiers of the reducers that
correspond to the records for R are 1, 4, and 7. Similarly,
because ⟨2⟩ represents the positions ⟨0, 2⟩, ⟨1, 2⟩, and ⟨2, 2⟩,
the identifiers of the reducers that correspond to the records
of T are 6, 7, and 8. The position of the record of S is ⟨1, 2⟩,
so the identifier of its corresponding reducers is 7. Thus,
these records are gathered and joined by the reducer with the
identifier 7.
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4.3. MapReduce Functions. A prototype MFR-Join frame-
work has been implemented to create and probe filters using
the keys of map output records. To process distinct attribute
multi-way joins withmultiple join attributes, the keys need to
be separated with a delimiter, which is configured using the
additional parameter mapred.filter.key.delimiter. The
target reducers for a record can be found using Algorithm 1,
which is described in Section 4.2. Algorithm 4 is the pseu-
docode for the map function used in multiway joins.

The records generated by the map function are then pro-
cessed by theMFR-Join framework, as explained in Section 3.
Some redundant records will be filtered out, depending on
the processing order of the input datasets. The map output
records that passed the filters have been gathered in the
corresponding reducers by their reducer identifiers. Using the
reduce function, the records are classified based on the tag
representing their original dataset and they are joined with
traditional join algorithms. Algorithm 5 is the pseudo-code
for the reduce function in multi-way joins.

5. Performance Evaluation

In this section, we present our experimental results for
common and distinct attribute joins. All of the experiments
were run on a cluster of 11 machines, which comprised one
jobtracker and 10 tasktrackers. Each machine had a 3.1 GHz
quad-core CPU, 4GB RAM, and a 2 TB hard disk. The
operating systemwas 32-bitUbuntu 10.10 and the Java version
used was 1.6.0 26.

Our proposed framework was implemented in Hadoop
0.20.2. The Hadoop distributed file system (HDFS) was set
to use 128MB blocks and to replicate them three times. Each
tasktracker could run three map tasks and one reduce task
simultaneously. The I/O buffer was set to 128KB and the
memory used to sort the data was set to 200MB.

5.1. Common Attribute Joins. We used TPC-H benchmark
[19] datasets with a scale factor of 100 for evaluation.The scale
factor was the size of the entire database in gigabytes. We
performed a join between three tables in the database, that
is, part, partsupp, and lineitem, which had a common
attribute, that is, partkey. The sizes of the datasets are shown
in Table 1.

Our test querywas extracted fromTPC-HQ9 and it could
be expressed in SQL-like syntax as follows:

SELECT l.orderkey, l.partkey,
l.suppkey, ps.suppkey,
l.extendedprice ∗ (1 − l.discount)
− ps.supplycost ∗ l.quantity as profit

FROM part p, partsupp ps, lineitem l
WHERE p.partkey = l.partkey
AND ps.partkey = l.partkey
AND p.name like ‘%green’
AND ps.supplycost < 𝑐

𝑝𝑠
.

To control the amount of joined records, the selection
predicate ps.supplycost < 𝑐

𝑝𝑠
was added to the query.

The attribute ps.supplycost had a decimal value in the

Table 1: Test datasets for common attribute joins.

Table Number of
records Size

Number of records
satisfying selection

predicate
Part 20M 2.3GB 1.08M
Partsupp 80M 12GB 80M∗𝜎

𝑝𝑠

Lineitem 600M 75GB 600M (no predicate)

range of 1.0 to 1000.0. We ran the query and changed the
predicate value 𝑐

𝑝𝑠
in the predicate with increments of one

hundred.Thus, the ratio of records that satisfied the predicate
in partsupp 𝜎

𝑝𝑠
was changed by about 10%. We compared

the performance of our join method with a repartition
join without filters, because common attribute joins can be
processed without replication in a single MapReduce job. In
our method, simple hash filters with a size of 8Mb were used
and the input datasets were processed in the following order:
part, partsupp, and lineitem.

We compared the performance of our techniques to that
of the existing repartition join [12] because input records
do not need to be replicated. Although there are a few
existing techniques such as the semijoin [12] with Bloom
filters [2], we did not compare them as our previous paper
showed thatMFR-Join outperforms them [7], and they do not
support multiway joins directly. Figure 5 shows the execution
times and the sizes of the intermediate results for the test
queries. The results showed that our method significantly
outperformed the repartition join for all of the test cases in
Figure 5(a).This is because large numbers of redundant inter-
mediate results from the lineitem dataset are filtered out
using our method, as shown in Figure 5(b). The lineitem
dataset has no selection predicate, so the repartition join has
to generate the entire dataset as intermediate results.

5.2. Distinct Attribute Joins. For distinct attribute joins, the
TPC-H benchmark [19] datasets were also used, but with
a scale factor of 300. We performed the following join
query, which was extracted from TPC-H Q2, between the
following five tables: nation, region, supplier, part, and
partsupp, where the sizes are as shown in Table 2. The two
tables, nation and region, contained just a few records, so
we treated the joins of the tables as in-memory hashing and
excluded the two tables from Table 2.

SELECT s.acctbal, s.name, n.name,
p.partkey, ps.supplycost, p.mfgr,
s.address, s.phone, s.comment

FROM nation n, region r, supplier s,
part p, partsupp ps

WHERE n.regionkey = r.regionkey
AND r.name = ‘EUROPE’
AND s.nationkey = n.nationkey
AND s.suppkey = ps.suppkey
AND p.partkey = ps.partkey
AND p.type like ‘%BRASS’
AND p.size <= 𝑐

𝑝
.
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Figure 5: Performance of common attribute joins.

Table 2: Test datasets for distinct attribute joins.

Table Number of
records Size

Number of records
satisfying selection

predicate
Supplier 3M 0.4GB 0.6M
Part 60M 6.9GB 60M∗ 0.2∗𝜎

𝑝

Partsupp 240M 35GB 240M (no predicate)

Similar to the test query for common attribute joins,
we added a selection predicate, p.size <= 𝑐

𝑝
, to control

the amount of joined records. The attribute p.size had an
integer value in the range of 1 to 50 and we ran the query by
changing the predicate value 𝑐

𝑝
with increments of five.Thus,

the ratio of records that satisfied the predicate in part 𝜎
𝑝

was changed by about 10%. Distinct attribute joins required
the replication of some input datasets, so we selected the
best from the results using all possible combinations of the
replication factors.

We compared the performance of our multi-way join
method (denoted as 3-way MFR-Join) with that of the basic
multi-way join (denoted by 3-way replicate join) and with
that of the cascade of two-way joins with and without filters
(denoted by Cascade 2-way MFR-Join and Cascade 2-way
join, resp.). Simple hash filters with a size of 8 Mb were
also used for the multi-way join and the cascade of two-way
MFR-Join. In the two-way joins, supplier and partsupp
were joined first, before the intermediate join results and
part were joined. Figure 6 shows the execution times and
intermediate result sizes for the test queries. The results of
our three-way MFR-Join with the star-dim filtering pattern
had the best performance with the queries. The multi-way
joins outperformed two-way joins for the test queries shown

in Figure 6(a). The cascade of two-way joins processes the
join queries in two MapReduce jobs, which means that they
must write the intermediate results of the first join to HDFS,
before reading them from HDFS. Furthermore, there are
additional costs of initializing and cleaning up a job. In two-
way and multi-way joins, our MFR-Join methods with filters
delivered better performance than the basic join methods
without filters. This was because large numbers of redundant
intermediate results from the partsupp dataset, which had
no selection predicate, were filtered out by the MFR-Join, as
shown in Figure 6(b).

Figure 7 shows the experimental results obtained with
our three-way MFR-Join using the filtering pattern. In
Figure 7(a), the star-dim pattern delivered the best perfor-
mance compared with the other patterns using the test
queries.This was because the fact table, partsupp, wasmuch
larger than the dimension tables, supplier and part, in the
test datasets. As shown in Figure 7(b), the number of inter-
mediate results decreased most with the star-dim pattern. In
particular, it should be noted that the star-fact pattern did
not decrease the number of intermediate results at all. The
join attributes in the queries were the foreign keys in the
databases. Furthermore, no selection predicate was specified
for the partsupp dataset in our test queries, so the records in
partsupp did not play a role in filtering. The increase in the
amount with a 𝑐

𝑝
value of 15 was caused by the difference in

the replication factors with the best execution time.Thus, the
execution times were increased slightly by creating, merging,
and probing the filters needlessly. We consider that each
filtering patternmay be effective in different cases, depending
on the sizes of the input datasets and the ratios of joined
records. Therefore, it is important to apply the filters using
an advantageous pattern. If our methods are combined with
upper-layer data warehouse systems, such as Hive [20], this
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Figure 6: Performance of distinct attribute joins.
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Figure 7: Performance of distinct attribute joins with the filtering pattern.

could be determined using its optimizer module based on
statistical information related to the stored tables. This task
will be addressed in our future work.

6. Conclusions

In this study, we developed methods to improve the perfor-
mance of multi-way joins by applying filters. A set of filters
is created and applied in turn to achieve common attribute
joins and multiple sets of filters are used in various patterns,
which depend on the processing order of input datasets,

thereby producing distinct attribute joins. We also provide
specific details for assigning reducers andwritingmap/reduce
functions using our basic framework. We compared our
proposed approachwith basicmultiway joins and the cascade
of two-way joins. The experimental results showed that
our approach improves the execution time significantly by
reducing the amount of intermediate results when small
portions of input datasets are joined. In future work, we plan
to integrate our framework with data warehouse systems that
provide query languages, such as Hive, and we aim to modify
the optimizermodule that supportsmulti-way joins to exploit
filters using an appropriate pattern.
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