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Abstract We present a mechanism for a generic, powerful force of assembly and mobility for

transmembrane proteins in lipid bilayers. This force is a pre-transition (or pre-melting) effect for the

first-order transition between ordered and disordered phases in the membrane. Using large-scale

molecular simulation, we show that a protein with hydrophobic thickness equal to that of the

disordered phase embedded in an ordered bilayer stabilizes a microscopic order–disorder

interface. The stiffness of that interface is finite. When two such proteins approach each other, they

assemble because assembly reduces the net interfacial energy. Analogous to the hydrophobic

effect, we refer to this phenomenon as the ’orderphobic effect’. The effect is mediated by

proximity to the order–disorder phase transition and the size and hydrophobic mismatch of the

protein. The strength and range of forces arising from this effect are significantly larger than those

that could arise from membrane elasticity for the membranes considered.

DOI: 10.7554/eLife.13150.001

Introduction
This paper presents implications of first-order order–disorder phase transitions in lipid bilayers. The

fluid mosaic model (Singer and Nicolson, 1972) and the lipid raft hypothesis (Simons and Ikonen,

1997; Munro, 2003) have guided intuition on how proteins diffuse and assemble in biological mem-

branes—ordered clusters floating in an otherwise disordered fluid membrane (Simons and Toomre,

2000; Lingwood and Simons, 2010). However, recent advances show that a significant proportion

of the membrane is liquid-ordered (Swamy et al., 2006; Owen et al., 2012; Polozov et al., 2008),

with coexistence between the liquid-ordered and disordered phases. This coexistence suggests that

effects of an order–disorder transition might be at play in the assembly of proteins. This possibility is

studied here by examining the effects mediated by the simplest related order–disorder transition,

that between solid-ordered and liquid-disordered phases.

Specifically, with molecular simulation, we study a coarse-grained model of a hydrated one-com-

ponent bilayer and proteins that are added to the membrane. The model membrane exhibits two

distinct phases—a solid-ordered phase and a liquid-disordered phase—and a first-order transition

between them. We find that a transmembrane protein in the ordered bilayer can induce effects that

resemble pre-melting (Lipowsky, 1982; 1984; Limmer and Chandler, 2014). In particular, within

the otherwise ordered membrane phase, mesoscopic disordered domains surround proteins that
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favor disordered states. Importantly, the boundary of the domains resembles a stable, fluctuating

order–disorder interface. The dynamic equilibrium established at the boundary allows the protein

and its surrounding domain to diffuse. Moreover, because the interface has a finite stiffness, neigh-

boring proteins can experience a membrane-induced force of adhesion, an attractive force that is

distinctly stronger and can act over significantly larger lengths than those that can arise from simple

elastic deformations of the membrane (Dan et al., 1993; Goulian et al., 1993; Phillips et al., 2009;

Kim et al., 1998; Haselwandter and Phillips, 2013).

This force between transmembrane proteins is analogous to forces of interaction between

hydrated hydrophobic objects. In particular, extended hydrophobic surfaces in water can nucleate

vapor–liquid-like interfaces. In the presence of such interfaces, hydrophobic objects cluster to reduce

the net interfacial free energy. This microscopic pre-transition effect manifesting the liquid–vapor

phase transition can occur at ambient conditions (Chandler, 2005; Lum et al., 1999; Willard and

Chandler, 2008; Stillinger, 1973; ten Wolde and Chandler, 2002; Mittal and Hummer, 2008;

Patel et al., 2011; 2012). In the transmembrane case, we show here that a protein favoring the dis-

ordered phase creates a similar pre-transition effect. In this case it manifests the order–disorder tran-

sition of a lipid bilayer. Like the raft hypothesis, therefore, clusters do indeed form, but the

mechanism for their assembly and mobility emerge as consequences of order–disorder interfaces in

an otherwise ordered phase. We refer to this phenomenon as the ’orderphobic effect’.

While considering the effect with one specific order–disorder transition, one should bear in mind

its generic nature. The orderphobic effect should be a general consequence of a first-order transi-

tion, whether the transition is between solid-ordered and liquid-disordered phases as considered

eLife digest The membrane that surrounds cells provides a selective barrier that allows some

molecules through, but blocks the path of others. A cell’s membrane is made up of two layers of

molecules with oily tails, and is therefore known as a bilayer. Many proteins are dotted within and on

the inner and outer surfaces of the bilayer: some act as channels that control what goes in and out

of the cell, while others protrude outside the cell so that they can sense changes in the environment.

Membrane proteins can move and interact within the bilayer, and various models have emerged

to try to explain this dynamic system. These models are based on the membrane having some

fluidity but also having regions where there is more structure, and typically describe the proteins as

ordered clusters floating in an otherwise disordered fluid membrane. However, many researchers

now think some proteins that pass through both layers of the bilayer (i.e., transmembrane proteins)

make membranes more ordered, with a possibly gel-like state. However, it is not clear how

transmembrane proteins can move and assemble together within such a relatively rigid membrane.

To investigate this, Katira, Mandadapu, Vaikuntanathan et al. carried out computer simulations

using a model of a simple bilayer membrane. This membrane can exist in an ordered state, where

the oily tails are neatly aligned, or a disordered state, where they are irregularly packed. Virtual

‘heating’ of the membrane caused it to shift from an ordered to a disordered state. When a simple

transmembrane protein favoring the disordered state was inserted into the ordered state of the

modeled membrane, disordered regions formed locally around the protein and the protein was able

to diffuse within the membrane.

Modeling what would happen if two transmembrane proteins approached each other revealed

that a consequence of the order–disorder transition is a strong attractive force that assembles the

proteins together. Katira, Mandadapu, Vaikuntanathan et al. named this new phenomenon the

’orderphobic effect’. The forces arising from this effect were much greater than those currently

believed to contribute to the assembly of membrane protein complexes, such as those generated by

the elasticity of the membrane. This means that the orderphobic effect may be responsible for

generating the protein clusters commonly seen in cell membranes.

Future work should next explore the opposite effect, where proteins favoring the ordered state

are inserted into the disordered state of a membrane. This is expected to cause clustering of such

proteins and thus large ordered regions in an otherwise disordered membrane.

DOI: 10.7554/eLife.13150.002
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explicitly herein, or between liquid-ordered and liquid-disordered phases as in multicomponent

membrane systems. More is said on this point in the Implications section of this paper.

The order–disorder transition is a first-order phase transition
We choose the MARTINI model of hydrated dipalmitoyl phosphatidylcholine (DPPC) lipid bilayers

(Marrink et al., 2007) to illustrate the orderphobic effect. SeeMaterials and methods. This membrane

model exhibits an ordered phase and a disordered phase. Figure 1A contrasts configurations from

the two phases, and it shows our estimated phase boundary between the two phases. The ordered

phase has regular tail packing compared to the disorganized tail arrangement of the disordered

phase. A consequence of the regular tail packing is that hydrophobic thickness of the ordered phase,

Do is larger than that of the disordered phase, Dd. Correspondingly, the area per lipid in the ordered

phase is smaller than that in the disordered phase.

Rendering the end particles of all the lipid chains in one of the two monolayers provides a conve-

nient visual representation that distinguishes the two phases. These tail-end particles appear hexag-

onally-packed in the ordered phase and randomly arranged in the disordered phase. Regions that

appear empty in this rendering are in fact typically filled by non tail-end particles or by tail-end par-

ticles from the other lipid monolayer.

To quantify the distinctions between the two phases, we consider a local rotational-invariant (Nel-

son, 2002; Halperin and Nelson, 1978; Frenkel et al., 1980), fl ¼ j ð1=6Þ
P

j2nnðlÞ expð6 i �ljÞ j
2, where

�lj is the angle between an arbitrary axis and a vector connecting tail-end particle l to tail-end particle

j, and the summation is over the six nearest neighbors of particle l. The equilibrium average, hfli, is 1

for a perfect hexagonal packing, and it is 1/6 or smaller in the absence of bond-orientation correla-

tions. Small periodically replicated samples of the hydrated DPPC membrane exhibit hysteretic

changes in area per lipid and in hfli during heating and cooling. See Appendix, and Marrink et al.

(2005) and Rodgers et al. (2012). To establish whether the first-order-like behavior persists to large

scales and thus actually manifests a phase transition, we consider larger systems and the behavior of

the interface that separates the ordered and disordered phases.

Figure 1B shows coexistence for a system size of N = 3900 lipids with an interface between the

two phases. To analyze interfacial fluctuations, we first identify the location of the interface at each

instant. This location is found with a two-dimensional version of the three-dimensional constructions

described in Limmer and Chandler (2014) and Willard and Chandler (2010). Specifically, and as

discussed in Materials and methods, the interface is the line in the plane of the bilayer with an inter-

mediate coarse-grained value of the orientational-order density,

fðrÞ ¼
X

l

fl dðr� rlÞ : (1)

where rl is the position of the lth tail-end particle projected onto a plane parallel to that of the bilayer,

r is a two-dimensional vector specifying a position in that plane, and dðrÞ is Dirac’s delta function. We

focus on this field rather than the tail-end number density, �ðrÞ ¼
P

l dðr� rlÞ, because the difference

between the two phases is larger for typical orientational-order than for typical tail-end density.

A director density field, uðrÞ ¼
P

l ul dðr� rlÞ, could also be used to distinguish disordered

regions from ordered regions. ul would specify the degree to which the hydrophobic chain of lipid l

is perpendicular to the average plane of the membrane. A field of this form would be useful for sys-

tems where liquid-ordered behavior occurs in the absence of solid-ordered behavior. Multicompo-

nent membranes, for example, can exist in solid-ordered, liquid-ordered, and liquid-disordered

states. For constructing the order–disorder interface of the simple one-component membrane con-

sidered here, however, uðrÞ offers little more information than fðrÞ.

Figure 1C shows the Fourier spectrum of the height fluctuations of this interface, hjdhkj
2i. Two dif-

ferent system sizes are studied, with the larger system having approximately double the interface

length of the smaller system. The Fourier component dhk is related to the height fluctuation dhðxÞ as

dhðxÞ ¼
P

k dhk expðikxÞ where x is a point along the horizontal in Figure 1B. Here, 0ł xł L, and L is

the box length. With periodic boundary conditions, k ¼ 2pm=L, m ¼ 0;�1;�2; � � �. According to capil-

larity theory for crystal–liquid interfaces (Nozières, 1992; Fisher et al., 1982), hjdhkj
2i ~ kBT=Lgk

2 for

small k, with kB being Boltzmann’s constant.
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Figure 1. First-order phase transition in a model lipid bilayer. (A) Order–disorder phase diagram in the tension–

temperature, l� T , plane. The lateral pressure across the membrane is �l. Points are estimated from 10

independent heating runs like those illustrated in Appendix 1–figure 1 for a periodic system with 128 lipids.

Insets are cross sections showing configurations of a bilayer with 3200 lipids in the ordered and disordered

phases. The heads are colored gray while the tails are colored pink. Water particles are omitted for clarity. The

hydrophobic thicknesses, Do and Dd, are the average vertical distances from the first tail particle of the upper

monolayer to that of the lower monolayer. A macroscopic membrane buckles for all l < 0. Snapshots of the last

tail beads in one monolayer of each phase are shown to illustrate the difference in packing. (B) Snapshot of a

system showing coexistence between the ordered and disordered phases. The gray contour line indicates the

location of the interface separating the ordered and disordered regions. The snapshot is a top view of the bilayer

showing the tail-end particles of each lipid in one monolayer. hðxÞ is the distance of the instantaneous interface

from a reference horizontal axis. (C) Fourier spectrum of hðxÞ. The line is the small-k capillarity-theory behavior with

g ¼ 11:5 pN.

DOI: 10.7554/eLife.13150.003
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Given the proportionality with 1=k2 at small k (i.e., wavelengths larger than 10 nm), comparison of

the proportionality constants from simulation and capillarity theory determines the interfacial stiff-

ness (Camley et al., 2010), yielding g ¼ 11:5� 0:46 pN. This value is significantly larger than the

prior estimate of interfacial stiffness for this model, 3� 2 pN (Marrink et al., 2005). That prior esti-

mate was obtained from simulations of coarsening of the ordered phase.

Because the ordered phase has a hexagonal packing, the interfacial stiffness depends on the

angle between the interface and the lattice of the ordered phase. For a hexagonal lattice, there are

three symmetric orientations for which the interfacial stiffnesses are equal. We will see that for the

model we have simulated there appears to be only little angle dependence. Irrespective of that

angle dependence, the stability of the interface and the quantitative consistency with capillary scal-

ing provide our evidence for the order–disorder transition being a first-order transition in the model

we have simulated.

The system sizes we have considered contain up to 107 particles, allowing for membranes with

N » 104 lipids, and requiring 10 ms to equilibrate. As such, our straightforward simulations are unable

to determine whether the ordered phase is hexatic or crystal because correlation functions that would

distinguish one from the other (Nelson et al., 1982) require equilibrating systems at least 10 times

larger (Bernard and Krauth, 2011). Similarly, we are unable to determine the range of conditions for

which the membranes organize with ripples and with tilted lipids (Sirota et al., 1988; Smith et al.,

1990). Presumably, the ordered domain of the phase diagram in Figure 1A partitions into several sub-

domains coinciding with one or more of these possibilities. With advanced sampling techniques

(Frenkel and Smit, 2001), free energy functions of characteristic order parameters can be computed

to estimate the positions of boundaries between these various ordered behaviors. Here, we do not

pursue this additional level of detail in the phase diagram because the additional boundaries refer to

continuous transitions (Sirota et al., 1988). It is only the first-order transition, with its discontinuous

change between ordered and disordered phases, that supports coexistence with a finite interfacial

stiffness, and it is this stiffness that results in the orderphobic effect, which we turn to now.

Transmembrane proteins can disfavor the ordered membrane
A disordering (i.e., orderphobic) transmembrane protein is one that solvates more favorably in the

disordered phase than in the ordered phase. The disordering effect of the protein could be pro-

duced by specific side chain structures. See Appendix. Here, in the main text, we consider a simpler

mechanism. In particular, we have chosen to focus on the size of the protein’s hydrophobic thickness

and the extent to which that thickness matches the thickness of the membrane’s hydrophobic layer

(Killian, 1998; Sharpe et al., 2010). See Figure 2.

The membrane’s hydrophobic layer is thicker in the ordered state than in the disordered state.

For instance, at zero lateral pressure and 294 K in the model DPPC membrane, we find that the aver-

age thicknesses of the hydrophobic layers in the ordered and disordered states are Do ¼ 3:1 nm and

Dd ¼ 2:6 nm, respectively. A transmembrane protein with hydrophobic thickness of size ‘» 2:6 nm

will therefore favor the structure of the disordered phase. If the protein is large enough, it can melt

the ordered phase near the protein and result in the formation of an order–disorder interface.

Spatial variation of the order parameter field characterizes the spatial
extent of the pre-melting layer
To evaluate whether a model protein is nucleating a disordered domain in its vicinity, we calculate

the average of the orientational-order density field as a function of r ¼ jrj, hfðrÞi (right axis of

Figure 2C). It exhibits oscillations manifesting the atomistic granularity of the system. Dividing by

the mean density h�ðrÞi largely removes these oscillations.

A profile of this ratio in the vicinity of the protein is depicted in Figure 2C (left axis). It changes

approximately sigmoidally, connecting its values of 0.15 and 0.45 in the disordered and ordered

phases, respectively. The shape of the profile suggests the formation of an order–disorder interface

(Rowlinson and Widom, 1982). Further, the increase in the spatial extent of the disordered region

with the increasing size of the protein, Figure 2D, is indicative of length scale dependent broaden-

ing effects brought about by capillary fluctuations. These impressions can be quantified by analyzing

fluctuations of the instantaneous interface, which we turn to now.
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An orderphobic protein nucleates a fluctuating order–disorder interface
Figure 3A shows a configuration of the instantaneous interface that forms around the orderphobic

protein shown in Figure 2B. The interface is identified as described above. A video of its dynamics is

provided as Video 1. As is common in crystal–liquid interfaces, the interface nucleated by an

Figure 2. Model proteins in the bilayer. (A) Idealized cylindrical protein-like solutes with radius R and hydrophobic

thickness ‘ (magenta). The hydrophilic caps of the protein are shown in white. (B) Cross section of the lipid bilayer

in the ordered phase containing a model protein of radius 2.7 nm with a hydrophobic thickness ‘ ¼ 2:3 nm � Dd.

(C) The radial variation of the order parameters hfðrÞi (right axis) and hfðrÞi=h�ðrÞi (left axis) show disorder in the

vicinity of the protein of radius 1.9 nm. (D) Comparison of the radial order parameter variation for three different

proteins shows an increase in the extent of the induced disorder region with protein radius.

DOI: 10.7554/eLife.13150.004
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orderphobic protein may exhibit hexagonal faceting (Nozières, 1992), remnants of which can be

observed in Figure 3A.

The mean interface is a circle of radius R0. Fourier analysis of fluctuations about that circle yields

a spectrum of components. To the extent that these fluctuations obey statistics of capillary wave the-

ory for a circular interface, the mean-square fluctuation for the kth component is

hjdRkj
2i ¼ kBT=2pgk

2R0, where k ¼ m=R0 and m ¼ �1, �2; � � �, and g is the order–disorder interfacial

stiffness, neglecting the dependence on the angle between the interface and the lattice. The dis-

crete values of k reflect periodic boundary conditions going full circle around the model protein.

In Figure 3B, we use the interfacial stiffness from the free interface (g ¼ 11:5 pN) separating coex-

isting ordered and disordered phases with the capillary theory expression, and its corresponding

spectrum, to compare with the spectrum of the protein-induced interface. The agreement between

Figure 3. Soft order–disorder interface. (A) Arrangement of the tail-end particles of the top monolayer

corresponding to the protein in Figure 2B. Far away from the protein, the tail-end particles show hexagonal-like

packing and are in the ordered state. Proximal to the protein, it can be seen that the tail-end particles are

randomly arranged, and resemble the disordered phase. The line connected by the black points denotes the

instantaneous order–disorder interface. (B) The fluctuations in the radius of the order–disorder interface are

consistent with the fluctuations of a free order–disorder interface at coexistence. R0 is the mean radius of the

order–disorder interface surrounding a model protein of radius R.

DOI: 10.7554/eLife.13150.005
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the theory, the free interface and the protein-

induced interface is good, and it improves as

the radius of the orderphobic protein increases

and the wave vector k decreases. This agree-

ment indicates that the orderphobic protein

does indeed nucleate an interface manifesting

the order–disorder transition. The deviations of

the fluctuations of the free interface from capil-

lary wave theory occur for k >~ 0:8 nm�1, corre-

sponding to wavelengths 2p=k <~ 7 nm, and a

mean interface radius R0
<~ 1 nm. Indeed, Fig-

ure 2 suggests that even a small protein of

radius 0.5 nm, which supports an interface of

radius R0 » 1:2 nm, is sufficient to induce an

order–disorder interface with fluctuations consis-

tent with capillary theory.

The orderphobic effect generates
forces of assembly and facilitates
protein mobility
Figure 4 shows three snapshots from a typical

trajectory initiated with two orderphobic proteins of radius 1.5 nm separated by a distance of

14 nm. Each induces a disordered region in its vicinity, with soft interfaces separating the ordered

and disordered regions. The free energy of the separated state is approximately gðP1 þ P2Þ, where

Pi is the perimeter of the order–disorder interface around protein i. On average, hPii ¼ 2pR0. After

a few hundred nanoseconds, a fluctuation occurs where the two interfaces combine. While the single

large interface remains intact, the finite tension of the interface pulls the two proteins together.

Eventually, the tension pulls the two proteins together with a final perimeter, Pf , that is typically

much smaller than P1 þ P2. A video of its dynamics is provided as Video 2.

After the separated interfaces join, the assembly process occurs on the time scale of microsec-

onds. This time is required for the proteins to push away lipids that lie in the path of the assembling

proteins. Given this time scale, a reversible work calculation of the binding free energy would best

control both the distance and the number of lipids between the proteins. Moreover, the evident role

of interfacial fluctuations indicates that the transition state ensemble for assembly must involve an

interplay between inter-protein separations and lipid ordering as well as lipid concentration.

While we leave the study of reversible work surfaces and transition state ensembles to future

work, it seems already clear that the net driving force for assembly is large compared to thermal

Video 1. Instantaneous interface around an

orderphobic protein. Also uploaded to https://goo.gl/

NBQJP9.

DOI: 10.7554/eLife.13150.006

Figure 4. Demonstration of the orderphobic force: two proteins separated by a center-to-center distance of

14 nm are simulated at 309 K. Snapshots at various times reveal the process of assembly in which the two order–

disorder interfaces merge into a single interface.

DOI: 10.7554/eLife.13150.007
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energies. For example, with a model orderpho-

bic protein radius of 1.5 nm, we find

gðhPfi � 2hP1iÞ » � 30 kBT . The range over which

the force acts is given by the average radius of

the two interfaces, 2R0. This range is further

amplified by the width of the interface, which is

of OðR0Þ for one-dimensional interfaces in two-

dimensional systems (Kardar, 2007). The typical

range is » 10 to 30 nm. In comparison, given the

elastic moduli of the membranes we consider,

elastic responses will generate attractive forces

between transmembrane proteins that are much

smaller in strength and range, typically �5 kBT

and 1 nm, respectively (Haselwandter and Phil-

lips, 2013; de Meyer et al., 2008). Moreover,

similarly weak and short ranged forces are found

from solvation theory that accounts for linear

response in microscopic detail while not

accounting for the possibility of an underlying

phase transition (Lagüe et al., 1998).

As in the hydrophobic effect (Chan-

dler, 2005), the strength and range of the orderphobic force leverages the power of a phase transi-

tion, depending in this case on the ability of the orderphobic protein to induce a disordered layer in

its vicinity. This ability depends upon the proximity to the membrane’s phase transition, and, for the

simple protein models considered in this paper, it depends upon the protein’s radius and hydropho-

bic mismatch with the membrane. The spatial extent of the disordered region increases with proxim-

ity to phase coexistence as shown in Figure 5A.

Furthermore, Figure 5B shows that the strength of the effect is maximal for a hydrophobic thick-

ness equal to that of the disordered phase, and it decreases as the hydrophobic thickness

approaches that of the ordered phase. In the case of zero mismatch (i.e., ‘ ¼ Do) the value of the

order parameter in the vicinity of the protein is consistent with that of a pure bilayer in the ordered

state. Therefore, the model proteins with zero mismatch do not induce a disordered region, and the

orderphobic effect vanishes. See Figure 5B and D.

Figure 4 also shows that the orderphobic effect produces excess mobility, by proteins melting

order in a surrounding microscopic layer and by facilitating the motions of neighboring proteins.

This finding explains how protein mobility and reorganization can be relatively facile in the so-called

’gel’ phases of membranes. Further information on this phenomenon is provided in Appendix. Our

prediction of enhanced lipid mobility surrounding orderphobic proteins may be amenable to experi-

mental tests by single molecule tracking techniques (Eggeling et al., 2009).

Implications of the orderphobic effect and related phenomena in
biological membranes
Biological membranes and transmembrane proteins are far more complicated than the models con-

sidered in this paper. Part of the complexity is associated with multiple components, which allow for

more than one order–disorder transition. For example, with a membrane composed of three compo-

nents, coexistence can be established between liquid-ordered and liquid-disordered phases

(Veatch and Keller, 2005), and both of these phases exist in bio-membranes (Swamy et al., 2006;

Owen et al., 2012; Polozov et al., 2008). The fact that liquid-ordered and liquid-disordered phases

can coexist with finite line tension (Veatch and Keller, 2005) implies the existence of a first-order

transition between them (Chandler, 1987) and thus the relevance of the orderphobic effect. This

effect is much wider in applicability than the Casimir effect (Machta et al., 2012), which applies only

within the much smaller range of conditions where the first-order transition reaches its limiting case

of criticality. A director density for hydrophobic chains serves as the order parameter distinguishing

liquid-ordered and liquid-disordered phases. The strength and range of orderphobic effects that will

arise from this order–disorder transition merit future investigation. Modeling might build from recent

numerical work on the liquid-ordered phase (Risselada and Marrink, 2008).

Video 2. Assembly of two orderphobic proteins. Also

uploaded to https://goo.gl/HXS0j7.

DOI: 10.7554/eLife.13150.008
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Bear in mind that the strength and range of the orderphobic effect depends upon the proximity

of the order–disorder transition. This proximity can be changed by changing temperature, as illus-

trated in Figure 5A. With many components in play, the proximity can also be changed by varying

membrane composition. One can therefore anticipate that the strength and range of orderphobic

effects will depend upon, for example, cholesterol concentrations. It will also depend upon the pres-

ence of additional proteins, and the domains formed with those proteins themselves depend upon

the orderphobic effect.

Another source of complexity is the side-chain structure of transmembrane proteins. These side

chains can affect the packing of lipid chains. To the extent that lipid packing is disrupted, even small

a-helix proteins can be orderphobic. Evidence for this assessment is provided in Appendix. Thus,

the orderphobic effect can lead to clustering of transmembrane a-helices. Moreover, just as the

strength and range of the orderphobic effect can be modified by changing the radius and mismatch

of our model proteins, the strength and range of the orderphobic effect will also be affected by the

structure of protein side chains. Further, an obvious consequence of the orderphobic effect is the

existence of a driving force that will move orderphobic proteins from an ordered phase to a disor-

dered phase, and the creation of large disordered domains as a result of clustering orderphobic pro-

teins. Both of these effects have been noted in simulations of disordering a-helix proteins in a

membrane exhibiting coexisting liquid-ordered and liquid disordered domains (Schäfer et al., 2011;

Domański et al., 1818).

Further, there is a dual to the orderphobic effect: a transmembrane protein in the disordered

phase that favors the ordered phase can nucleate an ordered region and order–disorder interface.

For example, one of our model proteins with a positive mismatch (‘ ¼ Do) would induce order in its

vicinity. This effect is illustrated in the Appendix. Interfaces separating the ordered and disordered

regions will again provide a force for assembly. This case corresponds to the situation of lipid rafts

(Simons and Ikonen, 1997), which consists of ordered domains floating in otherwise disordered

membranes. The stable interface separating domains then serves as a concrete geometrical defini-

tion of the raft. This orderphilic effect will depend upon the extent to which the surface of the trans-

membrane protein is commensurate with the ordered phase structure. Hydrophobic mismatch is but

one possibility. b-sheets that align neighboring lipids are others. The fact that the orderphilic effect

Figure 5. Strength of the orderphobic force. (A) Radial variation of the order parameter showing the extent of the

disordered region as a function of temperature, for a protein of radius 1.9 nm and hydrophobic thickness

2.3 nm. The extent of the disordered region increases as the melting temperature is approached, at zero surface

tension. (B) Comparison of the radial variation of the order parameter for different hydrophobic mismatches.

Proteins with no mismatch do not create any disordered region. (C) Arrangement of lipids around a protein with

negative mismatch. (D) Arrangement of lipids around a protein with zero mismatch.

DOI: 10.7554/eLife.13150.009
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is a pre-transition effect for the first-order transition between ordered and disordered phases implies

it should occur in disordered membranes that are thermodynamically close to coexistence between

liquid-ordered and liquid-disordered phases.

The orderphobic effect may also be of direct relevance in understanding the behavior of lung-sur-

factant monolayers. The primary component of these monolayers is the lipid DPPC, with melting

temperature higher than physiological temperature (41˚C), and a small proportion of cholesterol,

and proteins. These monolayers undergo cyclic surface tension mediated phase transitions between

the ordered and disordered phases (Nag et al., 1998). The results of this paper are also applicable

to lipid monolayers and could govern the diffusion and assembly of proteins embedded within the

relatively rigid ordered phases.

Finally, we speculate that the orderphobic effect plays important roles in membrane fusion, bud-

ding, and cell signaling (Fratti et al., 2004; Zick et al., 2014; Qi et al., 2001; James and Vale,

2012; Różycki et al., 2012). In the case of fusion, it would appear that one important role is to pro-

mote fluctuations in an otherwise stable membrane. Otherwise, it is difficult to conceive of a mecha-

nism by which thermal agitation would be sufficient to destabilize microscopic sections of

membranes. Such destabilization seems necessary for initiating and facilitating membrane fusion.

Many proteins are involved in such processes (Fratti et al., 2004; Fasshauer et al., 1998;

Wickner and Schekman, 2008), but it may not be a coincidence that the hydrophobic thicknesses of

SNARE proteins are 25% smaller than that of the ordered membrane states (Milovanovic et al.,

2015; Stein et al., 2015).

Materials and methods

Molecular simulations
We simulate the MARTINI coarse-grained force field using the GROMACS molecular dynamics pack-

age (Marrink et al., 2007; Pronk et al., 2013). ‘Antifreeze’ particles are added to the solvent to

ensure that the solvent does not freeze over the temperature range considered in the simulations as

in Marrink et al. (2007). Thermostats and barostats control temperature and pressure, and checks

were performed to assure that different thermostats and barostats yielded similar results

(Frenkel and Smit, 2001). The hydrophobic cores of our idealized proteins are constructed using

the same coarse-grained beads as the lipid tails (particle C1 in the MARTINI topology Marrink et al.

(2007)). Similarly, the hydrophilic caps are constructed using the first bead of the DPPC head group

(Q0, in the MARTINI topology). The protein beads also have bonded interactions where the bond

length is 0.45 nm and the bond angle is set to 180˚. The associated harmonic force constants for the

bond lengths and angles are 1250 kJmol�1nm�2 and 25 kJmol�1rad�2. Based on the hydrophobic

mismatch with the bilayers, the proteins are classified into three categories: (i) positive mismatch

(‘>Do) (ii) negative mismatch (‘ � Dd) and (iii) no mismatch (‘ »Do). To create different mismatches,

we alter the number of beads in the protein core. These idealized proteins do not contain charges.

Proteins are embedded in the equilibrated bilayer at 279 K. The resulting system is then heated

to the required temperature and equilibrated for another 1.2 ms. All the subsequent averages are

performed using 10 independent trajectories each 600 ns long. The assembly of proteins is also per-

formed using the same DPPC bilayer system with 3200 lipids and 50000 water beads. In this case,

two proteins are inserted in this bilayer with centers at a distance of 14 nm and the simulation is car-

ried out at 309 K.

The flat interface is stabilized by juxtaposing an ordered bilayer equilibrated at 285 K and zero

lateral pressure with a disordered bilayer equilibrated at the same conditions corresponding to the

cooling and heating curves of the hysteresis loop in Appendix 1—figure 1, respectively. The system

thus constructed is equilibrated in the ensemble with fixed temperature, volume, and numbers of

particles. This ensemble allows for maintaining an area per lipid intermediate between the two

phases, thus stabilizing the interface.

Instantaneous interface
For the purpose of obtaining a smooth and continuous interface, fðrÞ is coarse grained by replacing

Dirac’s delta function with a finite-width Gaussian, ð1=2p�2Þ exp �jrj2=2�2
� �

. The replacement
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changes fðrÞ to �fðrÞ. The coarse-graining width, �, is chosen to be the average separation between

tail-end particles l and j when hðfl � hfliÞðfj � hfjiÞi=hðfl � hfliÞ
2i in the ordered phase is 1/10. This

choice yields a value of � ¼ 1:5 nm. The instantaneous order–disorder interface is the set of points s

satisfying �fðs; tÞ ¼ ðfd þ foÞ=2. Here, fd and fo are hfðrÞi evaluated in the disordered and ordered

phases, respectively. At zero lateral pressure and 294 K, we find fd ¼ 0:4 � 0:02 nm�2 and

fo ¼ 2:15� 0:2 nm�2. For numerics, a square lattice tiles the average plane of the bilayer, and the

coarse-grained field �fðrÞ is evaluated at each lattice node. Values between are determined by inter-

polation. For convenience, the Gaussian function is truncated and shifted to zero at 3�. Any value of

� within the range, 1 nm < �< 2 nm gives nearly identical �fðrÞ. Outside that range, larger values

obscure detail by excessive smoothing, and smaller values obscure detail by capturing a high density

of short-lived bubbles of disorder.

Acknowledgements
It is a pleasure to thank Axel T Brunger, Jay Groves, John Kuriyan, and Sarah Keller for helpful con-

versations about this work, and Daan Frenkel, Tom Lubensky, and Siewert-Jan Marrink for helpful

comments on earlier drafts of this work.

Additional information

Funding

Funder Grant reference number Author

U.S. Department of Energy DE-AC02-05CH11231 Kranthi K Mandadapu
Suriyanarayanan Vaikuntanathan
David Chandler

Lawrence Berkeley National
Laboratory

Shachi Katira
Kranthi K Mandadapu
Suriyanarayanan Vaikuntanathan
Berend Smit
David Chandler

University of Chicago Suriyanarayanan Vaikuntanathan

U.S. Department of Energy FWP number SISGRKN Shachi Katira
Berend Smit

SV is currently supported by the University of Chicago. In the initial stages, he was supported by
Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and
Engineering Division, of the U.S. Department of Energy under contract No.\ DE AC02-
05CH11231. KKM, DC, SK and BS are supported by that same DOE funding source, the latter
two with FWP number SISGRKN. This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and
resources of the Midway-RCC computing cluster at University of Chicago. The funders had no
role in study design, data collection and interpretation, or the decision to submit the work for
publication.

Author contributions

SK, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article, Contributed unpublished essential data or reagents; KM, Conception and

design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article, Con-

tributed unpublished essential data or reagents; SV, Conception and design, Acquisition of data,

Analysis and interpretation of data, Drafting or revising the article, Contributed unpublished essen-

tial data or reagents; BS, Conception and design, Acquisition of data, Analysis and interpretation of

data, Drafting or revising the article, Contributed unpublished essential data or reagents; DC, Con-

ception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the

article, Contributed unpublished essential data or reagents

Katira et al. eLife 2016;5:e13150. DOI: 10.7554/eLife.13150 12 of 19

Research article Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.13150


References
Bernard EP, Krauth W. 2011. Two-step melting in two dimensions: first-order liquid-hexatic transition. Physical
Review Letters 107:155704. doi: 10.1103/PhysRevLett.107.155704, PMID: 22107304

Camley BA, Esposito C, Baumgart T, Brown FL. 2010. Lipid bilayer domain fluctuations as a probe of membrane
viscosity. Biophysical Journal 99:L44–L46. doi: 10.1016/j.bpj.2010.07.007, PMID: 20858410

Chandler D. 1987. Introduction to Modern Statistical Mechanics. Oxford University Press.
Chandler D. 2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647. doi: 10.1038/
nature04162, PMID: 16193038

Dan N, Pincus P, Safran SA. 1993. Membrane-induced interactions between inclusions. Langmuir 9:2768–2771.
doi: 10.1021/la00035a005

de Meyer FJ, Venturoli M, Smit B. 2008. Molecular simulations of lipid-mediated protein-protein interactions.
Biophysical Journal 95:1851–1865. doi: 10.1529/biophysj.107.124164, PMID: 18487292
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Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D,
Hess B, Lindahl E. 2013. GROMACS 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics 29:845–854. doi: 10.1093/bioinformatics/btt055, PMID: 23407358

Qi SY, Groves JT, Chakraborty AK. 2001. Synaptic pattern formation during cellular recognition. Proceedings of
the National Academy of Sciences of the United States of America 98:6548–6553. doi: 10.1073/pnas.
111536798, PMID: 11371622

Risselada HJ, Marrink SJ. 2008. The molecular face of lipid rafts in model membranes. Proceedings of the
National Academy of Sciences of the United States of America 105:17367–17372. doi: 10.1073/pnas.
0807527105

Rodgers JM, Sørensen J, de Meyer FJ, Schiøtt B, Smit B. 2012. Understanding the phase behavior of coarse-
grained model lipid bilayers through computational calorimetry. The Journal of Physical Chemistry. B 116:
1551–1569. doi: 10.1021/jp207837v, PMID: 22276963

Rowlinson JS, Widom B. 1982. Molecular Theory of Capillarity. Oxford: Clarendon Press.
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Appendix

In this Appendix, we examine hysteresis in the bilayer system, show results for mean-square

displacements as functions of time, and provide evidence that a small transmembrane a-

helix protein can be orderphobic if the side chains of the protein disrupt the packing of lipid

tails.

The lipid bilayer system exhibits hysteresis
Appendix 1—figure 1 shows the change in area per lipid with temperature while heating and

cooling a bilayer. There are finite jumps in area per lipid as the system transitions between

the two phases, suggesting a first-order phase transition. Hysteresis occurs because

ordering from the metastable disordered phase is much slower than disordering from the

metastable ordered phase. Due to the difference in time scales, when contrasting melting

and freezing from heating and cooling runs, the melting points from heating runs as shown

in Appendix 1—figure 1A provide the more accurate estimates of the actual phase

boundaries. Systematic errors due to small system size and heating rate have not been

estimated.

Appendix 1—figure 1. Structural measures of different phases as a function of temperature, T.

(A) Variation in area per lipid with temperature during heating and cooling shows finite

jumps and hysteresis. (B) Average local orientational order, hfli, also shows finite jumps as a

function of temperature while heating and cooling. Magnitudes of heating and cooling rates

are 3 K/ms.

DOI: 10.7554/eLife.13150.010

The pre-melting layer has a higher mobility than the
ordered phase
In Appendix 1—figure 2 we show the mean squared displacements of lipids in the bulk

ordered phase, bulk disordered phase, and the pre-melting layer induced by an orderphobic

protein. As discussed in the main text, an orderphobic protein increases the mobility of the

lipids in its vicinity. Note that the center of mass of the membrane fluctuates in time. These

fluctuations affect the absolute positions of lipid molecules, but they are irrelevant to the

issue of lipid mobility. Therefore, the mean-square displacements considered in

Appendix 1—figure 2 are for tail-end particle positions relative to the instantaneous
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position of the membrane’s center of mass. That is to say, for hj�rlðtÞ � �rlð0Þj
2i, where �rlðtÞ is

the position at time t of the lth tail-end particle less that of the membrane’s center of mass.

Appendix 1—figure 2. Mean-square displacements as functions of time, t, for lipids in the disor-

dered phase, the protein-induced disordered domain, and the ordered phase. The functions are

shown on log–log scale (main graphs) and linear scales (inset).

DOI: 10.7554/eLife.13150.011

For large enough times, t, the mean-square displacements are asymptotic to 4Dt, where D is

the self-diffusion constant. For the disordered liquid phase, we see from Appendix 1—

figure 2 that the asymptotic region is reached within 102 ns, and that D » 4� 10
�7 cm2/s. In

contrast, for the ordered phase, the diffusive asymptotic limit is not reached until 104 ns,

and D » 2� 10
�9 cm2/s. The mobility of lipids within the disordered layer surrounding the

orderphobic protein is an order of magnitude larger than that of lipids beyond that region

and in the ordered phase.

Experimental results for lipid diffusion constants in disordered and ordered bilayers are

D » 3� 10
�8 cm2/s and D » 2� 10

�10 cm2/s, respectively (Korlach et al., 1999). The

simulation is in harmony with experiment for the two-order of magnitude difference

between the ordered- and disordered-phase values of D. Of course, absolute values of D are

beyond the scope of what can be predicted from our simulations because coarse graining

omits degrees of freedom that would increase friction and decrease D.

A model a-helix is orderphobic
Here, we consider the MARTINI model for KALP23—a polypeptide chain with 23 residues,

consisting of alanines and leucines flanked by lysines (Schäfer et al., 2011). This molecule

has a hydrophobic thickness of ‘ » 3:0 nm, which means that it has essentially no

hydrophobic-length mismatch with the ordered bilayer. Nevertheless, it is orderphobic

because its side chains perturb the ordered lipid phase to an extent that a pre-melting layer

is formed around the protein. This behavior is demonstrated with the aid of Appendix 1—

figure 3. The panels render configurations from a simulation in which we have placed this

model protein in the MARTINI model for the ordered DPPC bilayer system considered in the

main text. The pre-melting layer that forms around the protein causes the protein to tilt so

as to keep its full hydrophobic length in contact with hydrophobic tails of the lipids. The
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interface separating its disordered domain from the surrounding ordered phase remains

stable throughout a molecular dynamics trajectory running for more than 1 ms.

Appendix 1—figure 3. A model a-helix is orderphobic. (A) Cross section of ordered phase of a

hydrated DPPC membrane containing one transmembrane KALP23 protein. Solvent water is

not rendered for purpose of clarity. Configuration was obtained after running simulation for

roughly 1 ms at 294 K and zero lateral pressure. (B) Configuration of tail-end particles for the

top monolayer, with gray points locating the instantaneous interface.

DOI: 10.7554/eLife.13150.012

An orderphilic protein in the disordered phase nucleates
an ordered domain
In a disordered bilayer, we embed a model protein with a hydrophobic thickness approximately

equal to that of the ordered phase, ‘ ¼ 3:3 nm. This embedding illustrates the orderphilic

case. As a control, we also embed a model protein with a hydrophobic thickness

approximately equal to that of the disordered phase, ‘ ¼ 2:3 nm. For both cases, we then

calculate the average of the bond orientational order density hfðrÞi, and the number density

h�ðrÞi. We also compute the director density, huðrÞi as defined earlier, with

ul ¼ ð3=2Þ cos2ð�lÞ � ð1=2Þ. Here, �l is the angle between the membrane normal and the lth

chain’s orientation. The director density for ‘ ¼ 3:3 nm as seen in Appendix 1—figure 4

changes approximately sigmoidally, connecting its values of 0.92 and 0.62 in the ordered

and disordered phases, respectively. Further, we have computed the instantaneous

interfaces from the coarse graining of each of these three fields �ðrÞ, fðrÞ and uðrÞ. In the

orderphilic case, interfaces are apparent for all three fields. The director field provides the

clearest pictures, which are illustrated in Appendix 1—figures 4,5. In the control case,

interfaces do not appear.

Appendix 1—figure 4. Radial profile of the average director density surrounding orderphobic
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(‘ ¼ 2:3 nm) and orderphilic (‘ ¼ 3:3 nm) model proteins in the disordered membrane phase.

DOI: 10.7554/eLife.13150.013

Appendix 1—figure 5. Configurations of the disordered membrane in the presence of a model

orderphilic protein, ‘ ¼ 3:3 nm. The rendered particles are the ‘C2’ tail particles of the lipids,

and the gray line marks the boundary between ordered and disordered domains by

rendering the contour of the instantaneous interface for the director field, uðrÞ.

DOI: 10.7554/eLife.13150.014

Distinctions between interfaces for each of the fields are microscopic effects worthy of future

study. For the bulk interface between the ordered and disordered phases, the distinction

disappears because there is only one order–disorder transition for the membrane model we

have considered. In more complicated membrane models, those with mixtures of

components exhibiting both liquid-ordered and solid-ordered phases, the different fields

offer different information for both large and small length scales.
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