

A peer-reviewed version of this preprint was published in PeerJ on 9
March 2016.

View the peer-reviewed version (peerj.com/articles/cs-48), which is the
preferred citable publication unless you specifically need to cite this preprint.

Farup I. 2016. A computational framework for colour metrics and colour space
transforms. PeerJ Computer Science 2:e48 https://doi.org/10.7717/peerj-cs.48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195020998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.7717/peerj-cs.48
https://doi.org/10.7717/peerj-cs.48

A computational framework for colour metrics

and colour space transforms

Ivar Farup∗

1st February 2016

Abstract

An object-oriented computational framework for the transformation of

colour data and colour metric tensors is presented. The main idea of the

design is to represent the transforms between spaces as compositions of

objects from a class hierarchy providing the methods for both the trans-

forms themselves and the corresponding Jacobian matrices. In this way,

new colour spaces can be implemented on the fly by transforming from

any existing colour space, and colour data in various formats as well as col-

our metric tensors and colour difference data can easily be transformed

between the colour spaces. This reduces what normally requires several

days of coding to a few lines of code without introducing a significant com-

putational overhead. The framework is implemented in the Python pro-

gramming language.

1 Introduction

Colour data such as measured colours, specified colours or pixels of colour im-

ages are most commonly described as sets of points in a three-dimensional space

– a so-called colour space. Many different colour spaces are currently in use

in various settings. For many applications, selecting the best colour space for

processing the data can be crucial [1]. Converting between all the different col-

our spaces can be challenging. Different conventions for scaling and normal-

isation is used, and many of the colour spaces commonly in use are inaccur-

ately defined. The complexity of conversion is particularly present for computa-

tions involving colour metric data, which, by nature, is tensorial [2], giving rise

to the need for not only the direct transformations, but also the corresponding

Jacobian matrices – a tedious and error-prone process [3]. So far, no common

framework for such transformations of colour data and metrics including the

automated computation of Jacobian matrices has been constructed.

∗The Norwegian Colour and Visual Computing Laboratory, Faculty of Computer Science and

Media Technology, Gjøvik Univeristy College, Gjøvik, Norway, email: ivar.farup@hig.no, phone:

+47 61 13 52 27

1

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1700v1 | CC-BY 4.0 Open Access | rec: 2 Feb 2016, publ: 2 Feb 2016

From other fields of computational science, it is well established that object-

oriented frameworks can be useful for simplifying such matters [4]. With the ad-

vent of modern high-level interpreted languages, the computational overhead is

not nearly as high as before, and the ease of use has increased significantly [5].

Thus, in order to simplify the matters for colour science and engineering, an

object-oriented framework for colour space construction, and conversion of col-

our data and colour metric tensor data is designed. The framework is currently

limited to three-dimensional colour spaces.

Following the background material on the principles of transforming colour

data and related tensorial data in the following section, the principles and ideas

underlying the framework are presented. To demonstrate to which degree the

framework simplifies the implementation of colour data and metric transform-

ations, an implementation of the framework using the high-level programming

language Python [6] is applied to some standard example problems.

2 Background

2.1 Transformation of colour data

Transformations between different colour spaces can in general take the shape

of a function, x̄ = x̄(x), where x = (x1, x2, x3)T represents a colour, i.e., a point in

a colour space. Fortunately, most common colour space conversions are made

up of a small set of relatively simple mathematical operations. The linear trans-

formation is a very common ingredient in the transforms. Some colour spaces,

such as, e.g., the CIECAT02 colour adaptation space [7], are even defined simply

by a linear transformation from some other colour space:

x̄ = Ax, (1)

Where A is a 3×3 constant matrix. Combined with the so-called gamma correc-

tion, which is applied channel-wise, most RGB type colour spaces, and also, e.g.,

the IPT [8] colour space can be construced

x̄i = sgn(xi)|xi |
γ, (2)

where γ> 0 is the constant exponent.

For many perceptual colour spaces such as CIELAB, both Cartesian and cyl-

indrical coordinates are commonly used for describing the chromatic plane. The

transformation from Cartesian to polar is

x̄1 = x1,

x̄2 =

√

x2
2 +x2

3 ,

x̄3 = atan2(x3, x2),

(3)

2

with the corresponding inverse transform

x̄1 = x1,

x̄2 = x2 cos(x3),

x̄3 = x2 sin(x3).

(4)

Chromaticities and luminances are often represented in projective spaces such

as xyY,

x̄1 =
x1

x1 +x2 +x3
,

x̄2 =
x2

x1 +x2 +x3
,

x̄3 = x2.

(5)

Colour spaces used for colour metrics such as ∆EE [9] and the various DIN99

metrics [10] often include a logarithmic compression of some or all of the chan-

nels such as lightness and chroma (radius in polar coordinates):

x̄i = ai ln(1+bi xi), (6)

where ai and bi are the parameters of the transform. Recently, the Poincaré disk

representation of the hyperbolic plane has been used for representing the chro-

matic plane [11, 12]. The chroma-preserving mapping to the Poincaré disk can

be written as a mapping of the radius in polar coordinates as

x̄2 = tanh
(x2

2R

)

, (7)

where R > 0 is the radius of curvature. Besides these more generic transforma-

tions, various non-linear transformation functions specific to individual colour

spaces are used in such cases as sRGB, CIELAB, CIELUV, the underlying colour

space of the CIEDE2000 metric, etc.

2.2 Transformation of tensorial data

Most colour metrics can be represented in the form of a line element, or a dif-

ferential quadratic form [13, Chapter 8.4], as

d s2
= d xT Gd x. (8)

Here, G is the metric tensor – a function of the coordinates. For metrics defined

as Euclidean distances in a given colour space, the metric tensor is the identity

tensor, I , in the given space. Some colour metrics, like, e.g., CIEDE2000, can-

not be written in this form, but can be linearised – or Riemannised – to a good

approximation [3].

Under a coordinate transformation, x̄ = x̄(x), this metric transforms accord-

ing to

d s2
= d xT Gd x = d x̄T ∂x

∂x̄

T

G
∂x

∂x̄
d x̄ = d x̄T Ḡd x̄, (9)

3

where ∂x/∂x̄ is the Jacobian matrix of the coordinate transform with compon-

entns ∂xi /∂x̄ j . In other words, the metric tensor transforms according to

Ḡ =
∂x

∂x̄

T

G
∂x

∂x̄
. (10)

Under composition of several coordinate transformations, x̃ = x̃(x̄) = x̃(x̄(x)),

the process is nested,

d s2
= d x̃T ∂x̄

∂x̃

T ∂x

∂x̄

T

G
∂x

∂x̄

∂x̄

∂x̃
d x̃, (11)

G̃ =
∂x̄

∂x̃

T ∂x

∂x̄

T

G
∂x

∂x̄

∂x̄

∂x̃
, (12)

which can also be seen directly from the chain rule for the Jacobian matrices,

∂x

∂x̃
=

∂x

∂x̄

∂x̄

∂x̃
. (13)

All the points with unit distance from a given central point – a unit ball –

constitute an ellipsoid

∆xT G∆x = 1. (14)

The cross section of this ellipsoid with a principal plane in a given coordinate

is obtained by setting the corresponding ∆xi = 0, reducing the ellipsoid to an

ellipsis [3],
(

∆x1 ∆x2

)

(

g11 g12

g21 g22

)(

∆x1

∆x2

)

= 1, (15)

with angle θ and semi-axes a and b given by

tan(2θ) =
2g12

g11 − g22
, (16)

a =
1

√

g22 + g12 cotθ
, (17)

b =
1

√

g11 − g12 cotθ
. (18)

3 System architecture

Since the computation of generic colour space transforms and, in partiular the

composition of their Jacobian matrices can be a tedious and error-prone pro-

cess (see, e.g., [3]), an object-oriented framework for transforming colour and

metric data between colour spaces has been implemented as a Python package

❝♦❧♦✉r. The package consists of six partially interdependent modules s♣❛❝❡,

❞❛t❛, ♠❡tr✐❝, t❡♥s♦r, st❛t✐st✐❝s and ♠✐s❝. The relationship between the

modules is shown in Figure 1. In the figure, the arrows indicate dependencies

between the modules in the form of Python imports. Each of the modules con-

tain functions, classes and predefined objects with the purpose of simplifying

the implementation of new colour spaces and metrics.

4

Figure 1: Structure of the modules within the ❝♦❧♦✉r package. The arrows indic-

ate dependencies in the form of Python imports.

3.1 Representing colour spaces

The core functionality of the colour space and colour metric transforms is found

in the s♣❛❝❡ module. The basic idea in designing the object oriented frame-

work is to realise a colour space as an object, and to facilitate the construction of

new such objects by providing classes for transforming new colour spaces from

already existing ones. The class hierarchy which constistutes the core of the of

the module, is shown in Figure 2. All boxes represent classes, and the arrows de-

note class inheritance. Italicized method names indicate methods that should

be overridden in a subclass. Details about attributes and auxiliary methods etc.

have been left out for readability.

All colour space objects must derive from the abstract ❙♣❛❝❡ class, and as

such implement the methods t♦❴❳❨❩ and ❢r♦♠❴❳❨❩ for converting colour data

between the XYZ colour space and the colour space represented by the object,

and the methods ❥❛❝♦❜✐❛♥❴❳❨❩ and ✐♥✈❴❥❛❝♦❜✐❛♥❴❳❨❩ for computing the cor-

responding Jacobian matrix and its inverse. The two latter methods are imple-

mented in ❙♣❛❝❡ as inverses of each other, so the subclasses only need to im-

plement one of them – the other one can be inherited. The colour data is rep-

resented as N ×3 NumPy [14] ♥❞❛rr❛②s, and the Jacobian matrices as N ×3×3

♥❞❛rr❛②s.

All transformations between colour spaces must go through XYZ, which thus

serves a special role, and has a separate class of its own. Here, the transforma-

tions are simply the identity transform, and the Jacobian matrices are identity

matrices. All other colour spaces will be built by transforming colour data from

an already existing colour space, starting from XYZ. To facilitate making the spe-

cific transforms, an abstract class ❚r❛♥s❢♦r♠ is provided. During instantiation

of a transformed colour space object, the base space of the transformation has to

5

Figure 2: Structure of the classes within the s♣❛❝❡ module. Data types and para-

meters are not shown for the derived methods.

be set. The virtual methods t♦❴❜❛s❡ and ❢r♦♠❴❜❛s❡ for converting colour data

to and from the base base, and ❥❛❝♦❜✐❛♥❴❜❛s❡ and ✐♥✈❴❥❛❝♦❜✐❛♥❴❜❛s❡ for

computing the Jacobian matrix and its inverse between the current space and

the base space must be provided in the derived classes. The methods t♦❴❳❨❩,

❢r♦♠❴❳❨❩, ❥❛❝♦❜✐❛♥❴❳❨❩, and ✐♥✈❴❥❛❝♦❜✐❛♥❴❳❨❩ are implemented in the base

class ❚r❛♥s❢♦r♠ using the transformation between the current space and the

base space (provided by derived classes) and the corresponding transforma-

tions in the base class, see Equation (12). Hence, there is no need to reimple-

ment these in the derived classes. Finally, the concrete colour space tranforms

are implemented as classes ❚r❛♥s❢♦r♠❳❳❳ derived from ❚r❛♥s❢♦r♠. They must

all implement the methods t♦❴❜❛s❡, ❢r♦♠❴❜❛s❡ and either ❥❛❝♦❜✐❛♥❴❜❛s❡ or

✐♥✈❴❥❛❝♦❜✐❛♥❴❜❛s❡. The remaining methods will be inferred by inheritance. In

some cases, though, it is more efficient to provide more methods in order to re-

duce the computational cost. For example, in ❚r❛♥s❢♦r♠▲✐♥❡❛r, both methods

❥❛❝♦❜✐❛♥❴❜❛s❡ and ✐♥✈❴❥❛❝♦❜✐❛♥❴❜❛s❡ are provided in order to avoid invert-

ing every single Jacobian matrix for large data sets.

3.2 Representing colour and metric data

The colour space objects constructed by the method described above, will con-

vert colour data represented as N ×3 ♥❞❛rr❛②s (N colour data points). For real-

life applications, colours some times come as single data points (3-vectors), some

times as lists of colour data (N×3 matrices), and some times as images (M×N×3

arrays). In order for the user not having to deal with converting back and forth

between these formats, as well as remembering in which colour space all the

6

Figure 3: The ❉❛t❛ and ❚❡♥s♦r❉❛t❛ classes for keeping track of colour data and

metric data, respectively.

data is given, a separate class ❉❛t❛ for storing colour data has been implemen-

ted as part of the ❞❛t❛ module, cf. Figure 3. Again, the boxes denote classes. In

this module, there are no inheritance relationship between the classes, but they

are related by the ❚❡♥s♦r❉❛t❛ class having an attribute of the ❉❛t❛ type.

A colour ❉❛t❛ object can be instantiated with single colour data, lists of col-

our data, or colour images in any implemented colour space. The ❉❛t❛ object

takes the colour space (object) of the data as an argument, and keeps a diction-

ary of the colour spaces in which the data in question has been computed. When

the colour data in a given space is requested (using the ❣❡t method), it first

checks the dictionary whether it has already been computed. If not, it is com-

puted, stored in the dictionary and returned. All the actual computations are

taken care of by the hierarcy of colour space objects representing the transforms

necessary for building the colour space.

A similar approach is taken for colour metric data in the form of colour ten-

sors, see Figure 3. In this case, both the locations of the colour metrics (as colour

❉❛t❛), and the metrics themselves are represented in the class. Like for the col-

our data, a dictionary of the computed tensors is maintained. For the conversion

between the different colour spaces, the Jacobian matrices are applied accord-

ing to Equation (10). The nested tensor transforms, Equation (12), are implicitly

taken care of by the colour space class hierarchy without the user having to in-

terfere.

3.3 Colour metrics, tensors and statistics

The four remaining modules, ♠❡tr✐❝, t❡♥s♦r, st❛t✐st✐❝s, and ♠✐s❝ contain

separate functions (not part of the class hierarchy) for computing various prop-

erties of colour data, colour transforms, and sets of these. The ♠❡tr✐❝ mod-

ule has functions for computing the most common colour metrics, such as the

standard CIE ∆Eab and ∆Euv metrics, CIEDE2000 [15], the different versions of

the DIN99 metric as described by Cui [10], the log-compressed OSA-UCS metric

∆EE by Oleari et al. [9], as well as a general Euclidean distance and the Poincare

disk metric developed in Reference [12] in any colour space. All these functions

take two colour data objects of the same size as arguments, and return an N -

vector of colour differences.

7

The t❡♥s♦r module has functions for computing the metric tensors corres-

ponding to the metrics in the ♠❡tr✐❝ package. The functions take one colour

❉❛t❛ object as argument, and returns the corresponding ❚❡♥s♦r❉❛t❛ object.

The st❛t✐st✐❝s module contains functions for calculating various statistics of

colour metric data, such as the STRESS measure [16] and Pant’s R-values [3, 17].

The ♠✐s❝ module contains miscellaneous supporting functions.

3.4 Computational complexity

The framework has been implemented using NumPy [14] ♥❞❛rr❛②s, and all op-

erations for colour and metric conversion are vectorised. Thus, all the real com-

putations take place using the highly optimised underlying libraries for matrices,

such as LAPACK [18] etc. No loops over individual colour data are implemented

in the high-level language. Thus, there are only two sources of computational

overhead by using the framework.

First, there are the function calls associated with computing the transforma-

tions between a given colour space and its bases all the way back to the CIEXYZ

colour space. These function calls will only take place once per transformation

call. This can be a significant overhead when the data set consists of only one or

very few data points. But then the computation is very quick anyway. For bigger

colour data sets, such as images, this will represent only very few function calls

(given by the number of steps in the transformation from CIEXYZ to the given

space), and thus be negligible in comparison with the real computation, which

takes place at the highly optimised low-level code.

Secondly, all colour and metric conversions go through the CIEXYZ colour

space. When converting between two colour spaces based on a common basis

other than CIEXYZ, an unneccesary conversion back and forth between this com-

mon basis and CIEXYZ will inevitably take place. It would, in principle, be pos-

sible to eliminate this by advanced optimisation techniques, but since the com-

putations are already fast (fractions of a second even for quite large images), and

the goal of the framework has been ease of implementation rather than compu-

tational efficiency, this has not been prioritized.

Not all of the operations in the st❛t✐st✐❝s module are vectorised, althoug

this would in principle also be possible. The reason for this is that they are mainly

meant for colour research applications, and as such, they are not expected to be

used in production. For the relevant use in research, data collection etc. will be

much more time consuming than the actual computations, so computational

efficiency has not been emphasized in this part of the framework.

4 Example application

In order to demonstrate the power of the proposed approach, a simple demo

application is shown in Figure 4. In this short code (less than a page), (i) a new

colour space is implemented, (ii) individual colours, lists of colours and a colour

8

image is converted to the new colour space, (iii) the tensorial data correspond-

ing to the MacAdam ellipses is converted by the help of the Jacobian matrices

of the transformation to the new space, and (iv) the colour difference between

two images is computed as a Eucildean distance in the newly constructed colour

space. These operations would normally require days of programming, but with

the use of the proposed framework it is all achieved by a few lines of code.

In lines 3–6, the library is imported. In a real application, one would nor-

mally only import the ❝♦❧♦✉r package (✐♠♣♦rt ❝♦❧♦✉r), and refer to the ele-

ments as, e.g., ❝♦❧♦✉r✳s♣❛❝❡✳❚r❛♥s❢♦r♠▲✐♥❡❛r etc., but here the specific classes,

objects and functions needed are imported specifically, simply in order to re-

duce the size and improve the readability of the remaining code.

The transformation to the IPT colour space [8] is composed of a linear trans-

form from XYZ followed by a gamma correction, followed by final linear trans-

form. The code for constructing this colour space is given in lines 9–16 of Fig-

ure 4. It should be noted that the programmer does not need to specify anything

about the computation of the corresponding Jacobian matrices – everyting is

taken care of by the constructors of the ❚r❛♥s❢♦r♠❛t✐♦♥ classes.

Once the colour space is constructed, the ❉❛t❛ class can use it for converting

colours in various formats such as single data points – lines 19–20 – giving

❬✾✳✾✾✾✽✼✽✼✶❡✲✵✶ ✶✳✶✻✷✻✹✾✽✻❡✲✵✸ ✶✳✻✾✵✷✵✻✽✹❡✲✵✻❪,

lists of colour points – lines 22-23 – giving

❬❬✾✳✾✾✾✽✼✽✼✶❡✲✵✶ ✶✳✶✻✷✻✹✾✽✻❡✲✵✸ ✶✳✻✾✵✷✵✻✽✹❡✲✵✻❪

❬✹✳✽✸✶✷✵✻✺✸❡✲✵✶ ✺✳✻✶✼✵✻✾✼✸❡✲✵✹ ✽✳✶✻✺✽✸✼✸✽❡✲✵✼❪

❬✵✳✵✵✵✵✵✵✵✵❡✰✵✵ ✵✳✵✵✵✵✵✵✵✵❡✰✵✵ ✵✳✵✵✵✵✵✵✵✵❡✰✵✵❪❪,

and even colour images (lines 25–26). The individual IPT colour planes of the

image shown in Figure 5A resulting from this (lines 27–29) are shown in Figure 6.

In order to demonstrate also the transformation of tensorial colour data, the

code in lines 32–37 loads, transforms, and plots the MacAdam ellipses [19] in the

PT-plane of the IPT space. The latter includes the tedious process of comput-

ing the transformation of the corresponding metric tensors according to Equa-

tion (10). The resulting plot is shown in Figure 7.

Similarly, the ❝♦❧♦✉r✳♠❡tr✐❝ module can compute colour differences of

colour data in any format, including images. For example, the code in lines 41–

43 of Figure 4 computes the difference maps of the two images shown in Figure 5

for∆Eab ,∆E00 and the Euclidean distance in the newly implemented IPT colour

space. The results are shown in Figure 8.

Please note that the entire code used to generate Figures 5–8 is shown in

Figure 4.

9

1 import numpy as np

2 import matplotlib . pyplot as p l t

3 from colour . space import TransformLinear , TransformGamma, xyz , cielab , srgb

4 from colour . data import Data , g_MacAdam

5 from colour . metric import dE_ab , dE_00 , euclidean

6 from colour . misc import p l o t _ e l l i p s e s

7

8 # Construct the IPT colour space

9 A = np . array ([[. 4 0 0 2 , .7075 , − .0807] , # parameters f o r the transform

10 [− .228 , 1.15 , . 0 6 1 2] , # from XYZ to IPT

11 [0 , 0 , . 9 1 8 4]]) #

12 B = np . array ([[. 4 , . 4 , . 2] , #

13 [4 . 4 5 5 , −4.850 , . 3 9 6 0] , #

14 [. 8 0 5 6 , .3572 , −1.1628]]) #

15 gamma = 0.43 #

16 i p t = TransformLinear (TransformGamma(TransformLinear (xyz , A) , . 4 3) , B)

17

18 # Convert colours in d i f f e r e n t formats

19 white = Data (cielab , [100 , 0 , 0]) # s i n g l e colour

20 print (white . get (i p t))

21

22 grays = Data (cielab , [[1 0 0 , 0 , 0] , [50 , 0 , 0] , [0 , 0 , 0]])

23 print (grays . get (i p t)) # l i s t of colours

24

25 im = Data (srgb , p l t . imread (’camera . png ’)) # colour image

26 im_ipt = im . get (i p t)

27 p l t . imsave (’ camera_i . png ’ , im_ipt [: , : , 0] , vmin=0 , vmax=1 , cmap= p l t .cm. gray)

28 p l t . imsave (’camera_p . png ’ , im_ipt [: , : , 1] , vmin=−1, vmax=1 , cmap= p l t .cm. gray)

29 p l t . imsave (’ camera_t . png ’ , im_ipt [: , : , 2] , vmin=−1, vmax=1 , cmap= p l t .cm. gray)

30

31 # Load the MacAdam e l l i p s e s and show them in the PT plane

32 mca = g_MacAdam()

33 mca_points_ipt = mca. points . get (i p t)

34 p l t . plot (mca_points_ipt [: , 1] , mca_points_ipt [: , 2] , ’ . ’)

35 p l o t _ e l l i p s e s (mca. g e t _ e l l i p s e s (ipt , mca. plane_12 , 10))

36 p l t . ax is (’ equal ’)

37 p l t . s a v e f i g (’ mca_ell ipses_ipt . pdf ’)

38

39 # Compute colour d i f f e r e n c e of images

40 im_clip = Data (srgb , p l t . imread (’ camera_clip . png ’))

41 p l t . imsave (’dE_ab . png ’ , dE_ab (im , im_clip) , cmap= p l t .cm. gray)

42 p l t . imsave (’ dE_00 . png ’ , dE_00 (im , im_clip) , cmap= p l t .cm. gray)

43 p l t . imsave (’ dE_ipt . png ’ , euclidean (ipt , im , im_clip) , cmap= p l t .cm. gray)

Figure 4: Small demo of the ❝♦❧♦✉r package.

10

Figure 5: An image (A) and its gamut clipped version (B).

Figure 6: The I (A), P (B), and T (C) planes of the image shown in Figure 5A.

11

1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

Figure 7: The MacAdam ellipses plotted in the PT-plane of the IPT colour space.

Figure 8: Difference maps of the two images shown in Figure 5 for∆Eab (A),∆E00

(B), and the Euclidean distance in the IPT colour space (C).

12

5 Conclusion

An object-oriented computational framework for colour metrics and colour has

been designed and implemented in Python. The framework strongly simplifies

the implementation of new colour spaces for transfroming colour data and as

well as tensorial colour metric data between the various colour spaces without

compromising too much on the computational complexity. The code is freely

available at GitHub1. Future extensions could include ICC support, computa-

tion geodesics based on the colour metrics [20], computation and represent-

ation of colour gamuts [21], as well as gamut mapping algorithms [22] in any

colour space, and under any colour metric.

References

[1] Konstantinos N. Plataniotis and Anastasios N. Venetsanopoulos. Color im-

age processing and applications. Springer, 2000.

[2] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer,

2009.

[3] Dibakar R. Pant and Ivar Farup. Riemannian formulation and comparison

of color difference formulas. Color Res. Appl., 37(6):429–440, December

2012.

[4] Mark W. Beall and Mark S. Shephard. An object-oriented framework for

reliable numerical simulations. Eng. Comput., 15(1):61–72, 1999.

[5] Xing Cai, Hans Petter Langtangen, and Halvard Moe. On the performance

of the Python programming language for serial and parallel scientific com-

putations. Scientific Programming, 13(1):31–56, 2005.

[6] Guido van Rossum and Fred L Drake Jr. Python reference manual. Centrum

voor Wiskunde en Informatica Amsterdam, 1995.

[7] Nathan Moroney, Mark D. Fairchild, Robert W. G. Hunt, Changjun Li,

M. Ronnier Luo, and Todd Newman. The CIECAM02 color appearance

model. In Proceedings of IS&T and SID’s 10th Color Imaging Conference:

Color Science and Engineering: Systems, Technologies, Applications, pages

23–27, Springfield, VA, 2002. IS&T.

[8] Fritz Ebner and Mark D. Fairchild. Development and testing of a color

space (IPT) with improved hue uniformity. In The Sixth Color Imaging Con-

ference: Color Science, Systems and Applications, pages 8–13. IS&T, 1998.

1❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴✐❢❛r✉♣✴❝♦❧♦✉rs♣❛❝❡

13

[9] Claudio Oleari, Manuel Melgosa, and Rafael Huertas. Euclidean color-

difference formula for small–medium color differences in log-compressed

OSA-UCS space. J. Opt. Soc. Am. A, 26(1):121–134, 2009.

[10] G Cui, MR Luo, B Rigg, G Roesler, and K Witt. Uniform colour spaces based

on the DIN99 colour-difference formula. Color Res. Appl., 27(4):282–290,

2002.

[11] Reiner Lenz, Pedro Latorre Carmona, and Peter Meer. The hyperbolic geo-

metry of illumination-induced chromaticity changes. In Computer Vision

and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–6.

IEEE, 2007.

[12] Ivar Farup. Hyperbolic geometry for colour metrics. Optics Express,

22(10):12369–12378, 2014.

[13] Günter Wyszecki and W. S. Stiles. Color Science – Concepts and Methods,

Quantitative Data and Formulae. John Wiley & Sons, New York, 1982.

[14] Travis E Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing USA,

2006.

[15] M. Ronnier Luo, Guihua Cui, and B. Rigg. The development of the CIE

2000 colour-difference formula: CIEDE2000. Color Res. Appl., 26(5):340–

350, 2001.

[16] Pedro A García, Rafael Huertas, Manuel Melgosa, and Guihua Cui. Meas-

urement of the relationship between perceived and computed color differ-

ences. J. Opt. Soc. Am. A, 24(7):1823–1829, 2007.

[17] Dibakar R. Pant, Ivar Farup, and Manuel Melgosa. Analysis of three Eu-

clidean color-difference formulas for predicting the average RIT-DuPont

color-difference ellipsoids. In Proceedings of AIC2013 – 12th International

AIC Congress, pages 537–540, 2013.

[18] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Phil-

adelphia, PA, third edition, 1999.

[19] David L. MacAdam. Visual sensitivities to color differences in daylight. J.

Opt. Soc. Am., 32(5):247–274, May 1942.

[20] Dibakar R. Pant and Ivar Farup. Geodesic calculation of color difference

formulas and comparison with the Munsell color order system. Color Res.

Appl., 38(4):259–266, 2013.

14

[21] Arne M. Bakke, Ivar Farup, and Jon Y. Hardeberg. Evaluation of algorithms

for the determination of color gamut boundaries. J. Imaging. Sci. Techno-

logy, 54(5):050502–11, 2010.

[22] Ali Alsam and Ivar Farup. Colour gamut mapping as a constrained vari-

ational problem. In Arnt-Børre Salberg, Jon Yngve Hardeberg, and Robert

Jenssen, editors, Image Analysis, 16th Scandinavian Conference, SCIA 2009,

volume 5575 of Lecture Notes in Computer Science, pages 109–117, Oslo,

Norway, June 15-18 2009.

15

