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Drought identification and assessment are essential for regional water resources management. In this paper, the spatiotemporal
characteristics of drought were evaluated based on monthly precipitation data from 33 synoptic stations during the period of
1960-2010. The percent of normal precipitation was applied to illustrate the driest years in Beijing-Tianjin-Hebei metropolitan
areas (BTHMA) (1965, 1997, and 2002). The modified Reconnaissance Drought Index (RDI) was applied to capture the drought
patterns and to estimate the drought severity at 33 meteorological stations. Agglomerative hierarchical cluster analysis (AHCA) and
principal component analysis (PCA) were used to identify three different drought subregions R1, R2, and R3 based on the monthly
precipitation values in BTHMA, which is located in southeast, north, and south of BTHMA, respectively. The year 1965 was the
driest and 1964 was the wettest during the observed period. The characteristics of drought were analyzed in terms of the temporal
evolution of the RDI-12 values and the frequency of drought for the three identified regions. The percentage of years characterized
by drought was 13.73% for R1, 16.50% for R2, and 15.53% for R3. 66.91% of drought belongs to the near normal drought category.

The obtained results can aid to improve water resources management in the area.

1. Introduction

In recent years, climate change and the growing global warm-
ing trend have aroused people’s concern, which frequently
caused the extreme events [1-3]. As one of the most serious
disasters in the large of extreme weather events, drought has
devastating impacts on water resources, the environment,
and the human health in some regions, even all over the
world [4, 5]. Drought is not only a complex natural hazard
but a disaster [6], which is defined by the lack of precipitation
[7]. Besides, regional drought has become one of the vital
researches on regional studies of global change [8]. And
it becomes important to study the drought distribution
characteristics on the time and space of a region and what
caused the drought [9, 10].

Drought is often represented in terms of drought variables
[11], which include drought intensity, drought frequency, and
duration. A large number of drought indices with various

complexities have been used in many areas all over the world
for various purposes. Some of the most popular indices used
in the past include the Palmer Drought Severity Index (PDSI)
[12], the Rainfall Anomaly Index (RAI), the Soil Moisture
Drought Index (SMDI), the Standardized Precipitation Index
(SPI) [13], the Deciles, the Percent of Normal, the Crop Mois-
ture Index (CMI), the Palmer Hydrological Drought Index
(PHDI), the Surface Water Supply Index (SWSI) [11, 14], the
Standardized Anomaly Index (SAI), and indices based on the
Normalized Difference Vegetation Index (NDVI) [15]. Heim
[16] summarized a comprehensive review of drought indices
used in the United States for 20th century.

During the first decade of the 2lIst century, the Stan-
dardized Precipitation Index (SPI) was widely utilized, which
involves only precipitation data and can be detected nearly
everywhere. Recently a new index, the Reconnaissance
Drought Index (RDI), was advanced [17, 18].



The percent of normal precipitation was applied to
illustrate the driest years and the modified RDI was used
to capture the drought patterns and estimate the drought
severity. RDI is widely used and is gaining ground, mainly
owing to its wicked data condition s and its high sensitivity
and elasticity [19-23]. And it is based both on accumulative
precipitation (P) and on potential evapotranspiration (PET).
In addition, previous studies have detected that the use of dif-
ferent PET methods has no significant influence on RDI. This
also supports the perspective that RDI is a vigorous drought
index, not dependent on the PET calculation methods, which
simplifies the process of calculation [15].

Numerous studies worldwide have been conducted to
analyze the spatial and temporal characteristics of drought.
Rossi et al. [24] focused on spatial aspects of drought by
examining all drought characteristics. For this goal, the study
quantified droughts at different locations using several types
of hydrologic data from all the observation sites within the
study area. To obtain the better understanding of spatial
patterns, a predicting model was developed and applied.
Clausen and Pearson [25] analyzed the relationship between
duration and severity of the largest annual droughts at various
locations by applying linear regression analysis. Moreover,
the regional drought frequency analysis was performed to
achieve more reliable results for study areas with limited
or inadequate data available. Estrela et al. [26] studied
the impact and the frequency of drought, as well as its
pressures on water resources. They highlighted that pre-
cipitation across Europe has been reducing during the last
three decades of the 20th century. As a result, the number
of extreme dry periods was increased over the last decade
of the 20th century. Besides, a lot of researches have been
conducted to better estimate spatial patterns on drought
intensity and duration. Yoo and Kim [27] investigated the
vulnerability of an environment to drought based on soil
moisture. The spatial-temporal patterns of drought were
characterized by applying the empirical orthogonal function
(EOF), which enables us to identify major styles of spatial
variability. Gocic and Trajkovic [7] analyzed the evaluation of
spatiotemporal characteristics of drought based on monthly
precipitation data from meteorological stations. The percent
of normal precipitation was applied to illustrate the driest
years in Serbia and the Standardized Precipitation Index
(SPI) and principal component analysis (PCA) were used to
capture the drought patterns. Cluster analysis was applied to
identify different drought subregions. The characteristics of
drought were analyzed in terms of the temporal evolution
of the SPI-12 values and the frequency of drought for the
identified subregions.

Furthermore, there are some studies on evaluating the
characteristics of drought for different periods and sites
in China. For instance, Yuan and Wu [28] introduced the
agricultural drought index (CSDI) and analyzed space and
temporal changes of agricultural drought in the study area.
By analyzing the CSDI values of 18 representative stations
distributed in BTHMA from during the period of 1961-1990,
four types of agricultural drought in this area were identified.
Risk analysis on agricultural drought further showed the
possibility of drought afflicted in agricultural production in
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the area. Yan et al. [29] applied standardized precipitation
index (SPI) as drought index and used precipitation from
meteorological stations of China in the years of 1958 to 2007
to calculate the indices in each of seasons. Through applying
Kriging interpolation to SPI values for each station all the
values could be spatially and temporally comparable. Based
on raster data of seasonal SPI, drought rate and drought
probability were computed to demonstrate the spatial and
temporal distribution characteristics of drought in Hebei
province from the years 0of 1958 to 2007. Liu et al. [30] studied
the spatial anomaly and temporal evolution characteristics
of annual standard drought index by using EOF, the rotated
empirical orthogonal function (REOF), wavelet analysis, and
Mann-Kendall test based on the data of monthly precipitation
and monthly average temperature of 589 meteorological
stations over China from 1961 to 2009. The results showed
that abnormality of the annual standard drought index over
China was significant in ten areas. Among them, the climate
became significantly dryer in seven regions and it became
significantly wetter in 3 regions. There existed multiple time
scale features over China for arid-wet change according to
wavelet energy spectrum. However, a comprehensive analysis
considering both precipitation and evapotranspiration in
precipitation series and drought in regions as presented here
is still lacking.

In this study, two drought indices—the percentage of
normal precipitation and the Reconnaissance Drought Index
(RDI)—were used. The percentage of normal precipitation
was preliminarily applied to illustrate the driest years in
Beijing-Tianjin-Hebei metropolitan areas, which is an effec-
tive index when applied to a single region [31]. The Recon-
naissance Drought Index (RDI) was used as an input for a
principal component analysis (PCA) to identify the drought
patterns. It is reliable, since it calculates the aggregated
difference between precipitation and the evapotranspiration.
It is available under “climate instability” conditions, for
checking the significance of various alterations of climatic
factors related to water scarcity. For better reflecting the
spatial heterogeneity of regional drought, the Reconnaissance
Drought Index (RDI) was modified based on the climatic
characteristics of the study area. In China, neither has the
Reconnaissance Drought Index (RDI) been used in former
researches nor have the cluster analysis and principal com-
ponent analysis (PCA). Thus, the evaluation results based
on modified RDI and PCA will provide some scientific
assistance for decision makers when devising drought and
water resources management policies to mitigate the adverse
influence of drought.

The main objective of this study was (1) to calculate the
percent of normal precipitation to illustrate the driest years
in Beijing-Tianjin-Hebei metropolitan areas; (2) to estimate
drought severity using RDI at the 12-month timescales at 33
meteorological stations; (3) to consider spatial and temporal
variability of drought in Beijing-Tianjin-Hebei metropolitan
areas during the period 1960-2010; (4) to identify subregions
using PCA and cluster analysis and accomplish the character-
ization of the drought in the identified subregions.
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2. Materials and Methods

2.1. Study Area and Data. Beijing-Tianjin-Hebei metropoli-
tan areas (BTHMA), Chinas northernmost metropolitan
region with its major cities, Beijing and Tianjin, are located
in Hebei province and stretch from the municipalities of
Beijing and Tianjin to the Bohai Sea. The study area comprises
roughly 185,000 km®. Southeast of BTHMA is mainly flat,
while its northern areas consist of plateaus and mountains.
The largest part of the area has the continental precipitation
regime. The geographic features affecting the climate of
BTHMA are the Inner Mongolia Plateau, the Hubei Plains,
and the Bohai Sea. On average the maximum precipitation
occurs in July and August and the minimum in February.

Monthly precipitation sets from 33 meteorological
stations which have continuous record were acquired
from meteorological data sharing service system of China
(http://cdc.cma.gov.cn). The investigated time series were
selected according to the availability and reliability of the
data sets. Thus, a record length of 51 years (1960-2010)
was considered, which is the maximum time period of
precipitation data recorded covering all the 33 synoptic
stations. The main information about the stations is
presented in Table 1 and the geographical set of the stations
is shown in Figure 1.

2.2. Methods

2.2.1. Percent of Normal Precipitation. Percent of normal
precipitation is estimated by dividing actual precipitation
by normal precipitation (at least 30-year mean period) and
multiplying by 100%. Normal precipitation for a specific
location is considered to be 100%, while the value of the
indexless than 100% means that there are drought conditions.
As the simplest measure of precipitation, it is not useful for
making decisions when used alone [31].

2.2.2. Modified Reconnaissance Drought Index (RDI). Tsakiris
and Vangelis [32, 33] proposed the reconnaissance drought
index (RDI), utilizing the ratios of precipitation over PET
for different time scales, for representation over the region
of interest. For the annual time scale RDI index is derived by
first calculating of:

i 2112111
o = i=1()n, j=1(1)12, 1)
o 212 PET /

where P;; and PET;; are precipitation and potential evapo-
transpiration of the jth month of the ith year, respectively,
and n is number of years for investigated data set. Gen-
erally, the Penman-Monteith equation is used to calculate
PET; however, if required parameters are not available, it
is recommended to use the Hargreaves-Samani equation
[34]. Suitability of the Hargreaves-Samani equation has also
been recommended in recent research works, for example,
[15, 35]. Consequently, in the present research with limited
data (only temperature), the Hargreaves-Samani equation
[36] was applied to calculate PET. Considering that the use
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FIGURE I: Spatial distribution of the 33 meteorological stations in
Beijing-Tianjin-Hebei metropolitan areas map.

of different PET methods has no significant influence on
RDI, we select the simplest Thornthwaite method with min-
imum data requirements [37]. However, the temperature is
corrected using the effective temperature instead of the mean.
The effective temperature is defined as T, = 0.36(3T;
T, [38,39].
Normalized RDI (RDI,)) is calculated as

max

(1)
RDIV = 2> _ 1, (2)
“o

where «, is the arithmetic mean of «, values, computed for
the n years of data.

Then, the standardized RDI (RDI) is computed in the
way similar to SPI:

0) yk )’k
RDI,, = (3)

where y,((' is the ln(oco)) ¥ is the arithmetic mean, and
0, is the standard deviation of y,, assuming that the log-
normal distribution is appropriate for «[18]. Finally, the log-
normal probabilities are transformed into Z normal values
[40]. The standardized RDI behaves similar to the SPI and
so is the interpretation of results. Therefore, the RDI, can be
compared to the same thresholds as the SPI.
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TABLE 1: Geographical descriptions mean and standard deviation of annual precipitation time series of the synoptic stations used in the study.

Station name Longitude (E) Latitude (N) Elevation (m) Mean (mm) Standard deviation (mm)
Beijing 116.47 39.80 31.30 536.32 172.07
Zhangbei 114.70 41.15 1393.30 386.94 68.47
Weixian 114.57 39.83 909.50 398.88 88.09
Shijiazhuang 114.42 38.03 81.00 525.89 172.28
Xingtai 114.50 37.07 77.30 515.19 176.86
Fengning 116.63 41.22 661.20 458.04 89.55
Weichang 117.75 41.93 842.80 433.49 88.21
Zhangjiakou 114.88 40.78 724.20 399.00 91.85
Huailai 115.50 40.40 536.80 378.98 80.58
Chengde 117.95 40.98 385.90 518.28 108.71
Zunhua 117.95 40.20 54.90 711.88 201.17
Qinglong 118.95 40.40 22750 691.79 190.63
Qinhuangdao 119.52 39.85 2.40 634.01 179.22
Bazhou 116.38 39.12 9.00 511.18 184.55
Tangshan 118.15 39.67 27.80 605.37 160.43
Laoting 118.88 39.43 10.50 600.22 176.73
Baoding 115.52 38.85 17.20 517.57 195.07
Raoyang 115.73 38.23 19.00 519.99 153.49
Cangzhou 116.83 38.33 9.60 610.09 194.76
Huanghua 117.35 38.37 6.60 589.70 196.37
Nangong 115.38 37.37 27.40 478.54 142.07
Anyang 114.40 36.05 62.90 561.60 169.20
Jianpingxian 119.70 41.38 422.00 459.86 107.01
Huade 114.00 41.90 1482.70 307.79 66.02
Duolun 116.47 42.18 1245.40 375.24 70.05
Dezhou 116.32 37.43 21.20 567.40 182.87
Huimin 117.53 3748 11.70 572.64 172.16
Shenxian 115.67 36.23 37.80 539.63 158.65
Datong 113.33 40.10 1067.20 370.24 84.31
Wutaishan 113.52 38.95 2208.30 748.29 183.55
Yangquan 113.55 37.85 741.90 541.07 148.24
Tianjin 117.07 39.08 2.50 536.45 147.41
Tanggu 117.72 39.05 4.80 575.59 183.33

The choice of the lognormal distribution is not constrain-
ing but it assists in devising a unique procedure instead of
various procedures depending on the probability distribution
function, which best fits the data. However, the hypothesis
that the data of the RDI,, follow a lognormal distribution
seems to be the most appropriate. In all examples analyzed
during the establishment of the RDI, the goodness-of-fit
tests confirmed that the lognormal distribution fits the data
satisfactorily.

It should be emphasized that the RDI is based both on
precipitation and on potential evapotranspiration. The mean
initial index (e,) represents the normal climatic conditions of
the area and is equal to the Aridity Index as was proposed by
the FAO.

Among others, some of the advantages of the RDI are as
follows.

It is physically sound, since it calculates the aggregated
deficit between precipitation and the evaporative demand

of the atmosphere. It can be calculated for any period of
time. The calculation always leads to a meaningful figure. It
can be effectively associated with agricultural drought. It is
directly linked to the climatic conditions of the region, since
for the yearly value it can be compared with the FAO Aridity
Index. It can be used under “climate instability” conditions,
for examining the significance of various changes of climatic
factors related to water scarcity.

With advantages given above, it can be concluded that
the RDI is an ideal index for the reconnaissance assessment
of drought severity for general use giving comparable results
within a large geographical area, such as the BTHMA.

It should be mentioned that usually droughts in the
BTHMA are accompanied by high temperatures, which lead
to higher evapotranspiration rates. Evidence for this has been
produced from simultaneous monthly data of precipitation
and evapotranspiration in BTHMA. From the cases analyzed
it seems that about 90% of them comply with the previous
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FIGURE 2: (a) Time series of total annual precipitation averaged over whole Beijing-Tianjin-Hebei metropolitan areas and (b) percent of
normal precipitation index computed with respect to 1961-1990 climate normal.

TABLE 2: Drought classification of RDL

Drought class RDI value
Extremely wet RDI > 2.0
Very wet 1.5<RDI<2.0
Moderately wet 1.0 <RDI< 1.5
Near normal -1.0<RDI< 1.0
Moderate drought -1.5<RDI< -1.0
Severe drought -20<RDI<-1.5
Extreme drought RDI < -2.0

statement [41]. Therefore, the RDI is expected to be a more
sensitive index than those related only to precipitation, such
as the SPL

According to Tigkas et al. [42], we divided the RDI
into moderate, severe, and extreme classes for both dry and
wet RDI as shown in Table 2. In this study, the 12-month
timescales were used to monitor hydrological conditions and
the impact of drought on the available water resources.

2.2.3. Principal Component and Cluster Analysis. Combina-
tion of techniques such as principal component analysis
(PCA) [43] and cluster analysis (CA) [44, 45] can be applied
to climate or drought regionalization [46-51]. PCA is a
multivariate technique that reduces the dimensionality in
a dataset and computes a set of new orthogonal variables
with the decreasing order of importance named principal
components (PCs) [52-54]. It is based on the estimation
of the eigenvalues and eigenvectors from the characteristic
equation. For this purpose, either the correlation or the
covariance matrix of the observed variables can be used.
Richman [55] defined six modes of PCA due to a different
combination of time, objects, and attributes. In this study,
the S-mode (data matrix with rows for the observations
and columns for the stations) with the varimax orthogonal
rotation method was applied to identify the spatial patterns of
drought. The patterns defined in this way are named rotated
loadings.

The rule of thumb [56] and scree plot [57] were applied
to make the decision on how many principal components
to retain for rotation. Bartlett’s test of sphericity [58] and
the Kaiser-Meyer-Olkin test [59] were performed to test the
quality of the principal components. Then, the agglomerative
hierarchical cluster analysis was applied on obtained rotated
PC scores (RPC) using Ward’s method [60] and Euclidean
distance as the distance or similarity measure. According to
Jolliffe [52], the CA is available when there is no clear group
structure in the dataset. In this study, the CA is used to
identify different drought subregions. This is in an agreement
with the methodology applied by Raziei et al. [61], Santos et
al. [62], and Martins et al. [51].

2.2.4. Inverse Distance Weighting. One of the most widely
used deterministic methods in spatial interpolation is the
inverse distance weighting (IDW) [63] method, because of
its relatively fast and easy computation and interpretation
[64]. IDW sums the values of nearby points multiplied by
a weighting factor. The weights are a decreasing function of
distance. For this purpose, the Arc GIS 10.1 software was used
to make spatial distribution maps.

3. Results and Discussion

3.1. Annual Departure from Normal. The time series of total
annual precipitation averaged over whole Beijing-Tianjin-
Hebei metropolitan areas and the corresponding percent
of normal precipitation index computed with respect to
1961-1990 climate normal are presented in Figure 2. The
results showed that the year 1965 was the driest year during
the observed period with 70.8% of normal precipitation.
All of the stations had the precipitation below the annual
mean precipitation, while the annual mean precipitation was
371.56 mm. The average precipitation for the observed period
was 519.19 mm. In addition, it is necessary to emphasize
another two years, which were severe and extremely dry
across most of the area, compared to 1961-1990 climate
normal: (1) 1965 with 70.8% of normal precipitation and (2)
1997 with 71.57% of normal precipitation.
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FIGURE 3: Spatial distribution of percentage of annual mean precipitation relative to 1961-1990 climate normal over the course of the years

(2) 1965; (b) 1997; (c) 2000; and (d) 2002.

Further analysis showed that the year of 2000 had the
summer that was extremely warm and extremely dry. And
the summer of the year of 2000 was the warmest one during
the last 50 years since the meteorological measurements have
been conducted in BTHMA [65].

Spatial distribution of percentage of annual mean precip-
itation relative to 1961-1990 climate normal over the course
of the three driest years (1965, 1997, and 2002) and the 2000
year is shown in Figure 3.

The average value at the region level was 68.54% during
the 1965 year and 69.25% during the year 1997. In the course
of the year 2002, most of the area had the percent of normal
precipitation between 52.50% and 121.56%. At the same time,
the RDI value of the whole area in 2002 was —0.95, which
was only above —1.00 for the 1997 year and —1.02 for the 1965
year. In addition, the year 2000 had the highest values, which
varied between 45.12% and 148.95% with the highest average
value 87.02%.

3.2. Analysis of Drought Indices

3.2.1. Analysis of RDI. Percentage of years affected by various
drought severity levels in Beijing-Tianjin-Hebei metropolitan
areas during the period 1960-2010 is illustrated in Figure 4(a).
66.91% of the frequency of drought belongs to the near nor-
mal drought category. The frequency of drought was 15.30%,
while the frequency of wet periods was 17.79%. Percentage of
Beijing-Tianjin-Hebei metropolitan areas affected by drought
during the period 2000-2010 is presented in Figure 4(b). The
frequency of drought was 20.35% during the period 2000-
2010, which was above 15.30%. Therefore, the results reveal
that drought condition during the years 2000 and 2010 was
more severe than that during the years 1960-2010.

Spatial distribution of RDI-12 during the three driest
years (1965, 1997, and 2002) and the 2000 year as the year
with the warmest summer and the topmost PET is shown
in Figure 5. The extreme drought occurred in some areas
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FIGURE 4: (a) Percentage of years affected by various drought
severity levels, 1960-2010, and (b) percentage of BTHMA affected
by drought, 2000-2010.

during the year 2000, 2001, 2002, 2005, 2006, and 2009, while
drought of varying degrees occurred except the years 2003
and 2004. Furthermore, the majority of the area had severe
and extreme droughts during the years 1965 and 1972.

3.3. Drought Patterns. The RDI-12 was used to identify
drought patterns for the period 1960-2010. First, the Kaiser-
Meyer-Olkin (KMO) and Bartlett’s tests were applied to these
indices. The KMO measure of sampling adequacy was 0.786
for the RDI. High values of the KMO test (>0.50) suggest that
the selected indices are adequate for the PCA. Bartlett’s test of
sphericity has the P value < 0.0001 for a = 0.05, which is good
and it is an indication we can continue with the PCA. The
first seven eigenvalues for the RDI-12 with the corresponding
error bars at 5% significance level are shown in Figure 6.
According to North’s rule of thumb and the scree plot of the
eigenvalues, the first two principal components (PCs) were
selected for varimax rotation to achieve more stable spatial

TABLE 3: Explained variance (%) by the loadings with and without
rotation for the RDI-12 during 1960-2010.

L RDI-12
Principal component
Unrotated (%) Varimax rotated
PC-1 43.391 26.877
PC-2 10.080 26.594
Cumulative percentage 53.471 53.471

of total variation

TABLE 4: Variance decomposition for the optimal classification.

RDI-12
Absolute Percent (%)
Between-classes 0.131 57.25
Within-class 0.067 42.75
Total 0.198 100.00

patterns. Table 3 summarizes the variances of unrotated and
rotated components. The first unrotated component had the
biggest variance value 43.391% for the RDI-12. The percentage
of the cumulative variance for the RDI-12 was 53.471%. The
results also show that the cumulative variance of the varimax
rotated components remains unaltered with respect to the
unrotated cases.

Scatter plot of the correlations between variables and PCs
after varimax rotation for the RDI-12 is shown in Figure 7.
Each variable is a point whose coordinates are given by the
loadings on the PCs. The correlation for the RDI indices is
positive. In particular, the station of Tianjin is located by
the Bohai Sea, of which the time series of precipitation and
evaporation were extremely different from the other stations.
Therefore, the station of Tianjin was apart from the group in
Figure 7.

In Figure 8 the spatial patterns of varimax rotated load-
ings (R-Loading 1 and R-Loading 2) of the RDI-12 for the
period 1960-2010 are shown. Further, the time variability
of the RPCs of the RDI-12 and the corresponding linear
trend are presented too. The quite small linear trends are
identified. The remarkable dry events of different magnitudes
are identified during the following periods: 1965-1967, 1971-
1975, 1978-1982, 1989-1993, 1997-2002, and 2005-2007. Both
the RPC-1 and the RPC-2 showed that the worst drought
event occurred in the year 1965.

The R-Loadings seem to localize well in space three
distinct subregions, the northern, southern, and northeastern
part of BTHMA. The identified subregions are characterized
by different drought variability that depends on the different
precipitation regimes in these areas.

The agglomerative hierarchical cluster analysis (AHCA)
was used to investigate drought patterns by grouping obser-
vations into clusters. It was applied to the RPCs using Ward’s
method and Euclidean distance. The goal was to search
an optimal grouping for which the observed values within
each cluster were similar, while the clusters were dissimilar
to each other. The obtained variance decomposition for
the optimal classification is summarized in Table 4. Since
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sponding error bars at 5% significance level resulting from the S-
mode PCA applied to (a) the RDI.

between-cluster variation is much larger than within cluster
variation, thus, obtained PCs successfully reflect the cluster
structure. Applying the AHCA, three distinct subregions (R1
with 3 stations; R2 with 12 stations; and R3 with 18 stations)
were identified (Figure 9).

3.3.1. Drought Characteristics of the Identified Subregions.
Detected subregions are defined as follows: (1) region Rl is
located in southeast part of BTHMA; (2) region R2 is located
in the north of BTHMA; and (3) region R3 is located in the
southern part of BTHMA.

The Rl is mostly forested with the average annual
precipitation to 800 mm, while the R2 is characterized by
a moderate-precipitation regime with the average annual
precipitation to 650 mm. The R3 is characterized by the lowest
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FIGURE 7: Scatter plot of the correlations between variables and principal components after varimax rotation for the RDI-12 series.

amount of precipitation in the area and mostly intensive
agriculture. The RI and R2 had the monthly precipitation
values above average, while R3 had the precipitation values
under average of BTHMA.

The diversity of time variability of the regional RDI-12 for
the three subregions shown in Figure 10 was existed. Among
them, the value of regional RDI-12 for R2 was above that for
R3 and below that for R1.

In this respect, based on the RDI-12 values and defined
categories of dry and wet conditions (Table 2), the periods
of drought were 1965-1967, 1971-1975, 1978-1982, 1989-1993,
1997-2002, and 2005-2007, whereas the periods with wet
conditions were 1960-1964, 1968-1970, 1966-1977,1983-1988,
1994-1996, 2003-2004, and 2008-2010. The distributions of
the dry and wet years are as follows: R1-29 (4) dry (wet) years,
R2-25 (8) dry (wet) years, and R3-21 (11) dry (wet) years. The
year 1965 was the driest, while 1964 was the wettest during
the observed period. The evolution of drought in region R2 is
similar to region RI.

The obtained results are in line with conclusions reported
by Yuan and Wu (2000) [28], Yan et al. (2010) [29], and Liu
et al. (2012) [8].

3.3.2. Frequency of Drought. The drought occurrence is
analyzed based on Table 2 that defines drought classes related
to the RDI values. In this respect, the frequency distribution
of the RDI-12 values was divided in seven classes. The ratio
between the number of drought occurrences in each of RDI
classes and the total number of events counted for all stations
in a given region was represented as the frequency of drought.
The percentage of drought and wet occurrence expressed in
seven classes of RDI-12 drought categories for each individual
region for the period 1960-2010 is illustrated in Figure 11. It
should be noted that the frequency distribution of the RDI-12
values expressed in percent was closely similar for the three
identified regions.

Spatial distribution of the frequency of the RDI-12 values
expressed in percent related to the moderate, severe, and
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for the period 1960-2010 and the corresponding linear trend.

FIGURE 9: Drought-based regionalization in Beijing-Tianjin-Hebei
metropolitan areas.

extreme drought is shown in Figure 12. The distribution
is based on the station values of the RDI-12 values. The
frequency of moderate drought ranged between 1.96% and
17.65%. The majority of the area had the frequency between
7% and 9%. The highest frequency of severe drought occur-
rence was 7.84%, which was evenly located in the regions R2
and R3. The average at the area level was 4.69%. The frequency
of severe drought ranged between 0% and 7.84%. According
to the spatial distribution of the frequencies of the RDI-12
values, the highest frequency of extreme drought (7.84%) was
detected at Nangong station (in region R3). Region R1 had the
frequency of extreme drought ranged between 0% and 2.94%.

4. Conclusions

The drought was investigated in Beijing-Tianjin-Hebei
metropolitan areas using monthly precipitation time series
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from 33 stations during the period of 1960-2010. The tem-
poral and spatial patterns of drought were analyzed by
applying the S-mode PCA to the RDI estimated on 12-month
timescales. According to the error bars of the North rule
of thumb and scree plot, two principal components were

retained. These components were localized well in space
three distinct subregions, characterizing by different drought
variability. The AHCA confirmed the results from PCA
analysis and identified three different drought subregions R1,
R2, and R3, which are located in southeast, north, and south
of BTHMA, respectively. The results of both the PCA and the
AHCA analysis obtained a very similar time variability of the
regional RDI-12.

The characteristics of drought were analyzed in terms
of the temporal evolution of the RDI-12 values and the
frequency of drought at the area level and for three regions.
The linear regression method was used for time variability
analysis of drought in each identified subregion as well as
for the whole area. The frequency of drought was 9.10%,
while the distribution of wet periods was 27.27% in the given
regions. 66.91% of the frequency of drought belongs to the
near normal drought category. According to the RDI-12, the
average number of the dry years in the detected regions was
about 8 years during the period 1960-2010. The year 1965 was
the driest, while 1964 was the wettest during the observed
period. Three years (1965, 1997, and 2002) were detected as
the severe and extremely dry in the majority of the area
and analyzed by the percent of normal precipitation index
computed with respect to 1960-1990 climate normal.

The obtained results provide support information to
improve water resources management in the study area.
Further research should be performed to detect the trends
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FIGURE 12: Spatial distribution of the frequency (in percent) of the RDI-12 values related to the following categories: (a) moderate, (b) severe,

and (c) extreme drought.

of drought in Beijing-Tianjin-Hebei metropolitan areas and
comparative analysis of the drought indices based on precip-
itation and evapotranspiration and their impact on agricul-
tural production.
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