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We prove that every connected claw-free graph 𝐺 contains a spanning 𝑘-ended system if and only if cl(𝐺) contains a spanning
𝑘-ended system, where cl(𝐺) denotes Ryjáček closure of 𝐺.

1. Introduction

Graph theory focuses on graphs composed of vertices and
edges. The vertices in a graph are considered as discrete
points usually discussed in control problems. Then there are
a lot of results using graph theory to solve control and other
application problems [1–13].

We consider only finite and simple graphs. For notation
and terminology not defined here we refer to [14]. For a
subgraph𝐻 of a graph𝐺,𝐺−𝐻 denotes the induced subgraph
by𝑉(𝐺)−𝑉(𝐻), and𝐺[𝑆] denotes the induced subgraph by 𝑆
for 𝑆 ⊆ 𝑉(𝐺). For V ∈ 𝑉(𝐺), let𝑁(V) denote the set of vertices
adjacent to V, and 𝑁[V] = 𝑁(V) ∪ {V}. 𝑃[𝑎, 𝑏] denotes a path
with end vertices 𝑎, 𝑏 and a positive orientation from 𝑎 to 𝑏.
For a path 𝑃[𝑎, 𝑏], 𝑥, 𝑦 ∈ 𝑉(𝑃), let 𝑥𝑃𝑦 denote the subpath
from 𝑥 to 𝑦 with positive orientation and 𝑦𝑃−𝑥 denote the
subpath from 𝑦 to 𝑥with negative orientation. Similarly, for a
cycle 𝐶 with a given direction, we can define 𝐶[𝑎, 𝑏], 𝐶−[𝑎, 𝑏]
with 𝑎, 𝑏 ∈ 𝑉(𝐶). In the paper, we define clockwise as the
positive direction of a cycle. We use𝐾

𝑚

to denote a complete
graph with order 𝑚, and if 𝑚 = 1, then it is trivial vertex. A
tree with at most 𝑘 leaves is called 𝑘-ended tree.

A graph is called claw-free if it does not contain 𝐾
1,3

induced subgraph. For a vertex 𝑥 ∈ 𝑉(𝐺), let 𝐺
𝑥

denote the
graph with 𝑉(𝐺

𝑥

) = 𝑉(𝐺) and 𝐸(𝐺
𝑥

) = 𝐸(𝐺) ∪ {𝑢V : 𝑢, V ∈
𝑁(𝑥)}, and then 𝐺

𝑥

is called the local completion of 𝐺 at 𝑥.
For a graph 𝐺, 𝑥 ∈ 𝑉(𝐺), if 𝐺[𝑁(𝑥)] is connected, then 𝑥 is
locally connected; if 𝐺[𝑁(𝑥)] is a complete induced subgraph
of 𝐺, then 𝑥 is simplicial; if 𝑥 is locally connected, but not
simplicial, then 𝑥 is eligible.

Ryjáček [15] proposed a closure operation on a claw-free
graph 𝐺 by joining all nonadjacent pairs of vertices in the
neighbourhood of every eligible vertex till there is no eligible
vertex, and thenwe get the closure cl(𝐺).Ryjáček also gave the
following result, which is considered a useful tool to research
on the Hamiltonian properties of claw-free graphs.

Theorem 1 (Ryjáček [15]). If 𝐺 is a connected claw-free graph,
then cl(𝐺) is Hamiltonian if and only if 𝐺 is Hamiltonian.

Actually, there are a lot of results which present that cl(𝐺)
and 𝐺 have many common properties.

Theorem 2 (Brandt et al. [13]). A claw-free graph 𝐺 is trace-
able if and only if cl(𝐺) is traceable.

Theorem 3 (Ryjáček et al. [16]). Let 𝐺 be a claw-free graph. If
cl(𝐺) contains 2 factors with 𝑘 components, then 𝐺 contains 2
factors with at most 𝑘 components.

A treewith atmost 𝑘 leaves is called 𝑘-ended tree.Win [17]
provided sufficient conditions for a graph to contain spanning
𝑘-ended trees by spanning 𝑘-ended system. A system of a
graph which contains paths, cycles, and trivial vertices is
defined by a function 𝑓(𝛼) as follows:

𝑓 (𝛼) =
{

{

{

1 if 𝛼 is 𝐾
1

, 𝐾
2

, or a cycle,

2 if 𝛼 is a path of order at least 3.
(1)

A system S is called 𝑘-ended system if ∑
𝛼∈S 𝑓(𝛼) ≤ 𝑘.

Moreover, if 𝑉(S) = 𝑉(𝐺), then S is called a spanning
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𝑘-ended system of 𝐺. Obviously, if 𝐺 contains a spanning 𝑘-
ended system, then 𝐺 contains a spanning 𝑘-ended tree. It
follows that if a graph contains no spanning 𝑘-ended tree,
then it contains no spanning 𝑘-ended systems.

In this paper, we prove that cl(𝐺) can preserve the
existence of spanning 𝑘-ended system of 𝐺.

Theorem 4. A claw-free graph𝐺 contains a spanning 𝑘-ended
system if and only if cl(𝐺) contains a spanning 𝑘-ended system.

2. Proof of Theorem 4

We divide a 𝑘-ended system S of a graph 𝐺 into two sets S
1

and S
2

and let

S
1

= {𝛼 ∈ S : 𝑓 (𝛼) = 1} ,

S
2

= {𝛼 ∈ S : 𝑓 (𝛼) = 2} .
(2)

For every component 𝐶 ∈ S
1

, we take one vertex 𝑥
𝐶

∈

𝑉(𝐶). For every path 𝑃 ∈ S
2

, let 𝑥
𝑃

and 𝑦
𝑃

denote the two
end vertices of 𝑃.We define

End (S
1

) = ⋃

𝐶∈S
1

{𝑥
𝐶

} ,

End (S
2

) = ⋃

𝑃∈S
2

{𝑥
𝑃

, 𝑦
𝑃

} ,

End (S) = End (S
1

) ∪ End (S
2

) .

(3)

For a spanning 𝑡-ended system S of a graph 𝐺, if there
is no spanning 𝑠-ended system with 𝑠 < 𝑡, then we call the
system minimum spanning 𝑡-ended system. Obviously, for a
minimum spanning 𝑡-ended system S of 𝐺, End(S) is an
independent set of 𝐺 with |End(S)| = 𝑡.

In order to prove Theorem 4, we only need to prove that
the following result holds.

Theorem5. Let𝐺 be a claw-free graphwith 𝛿(𝐺) ≥ 2.Then𝐺
𝑥

contains a spanning 𝑘-ended system for any vertex 𝑥 ∈ 𝑉(𝐺) if
and only if 𝐺 contains a spanning 𝑘-ended system.

Proof. Obviously, the sufficiency holds and we only need to
prove the necessity. Assume 𝐺

𝑥

contains a spanning 𝑘-ended
system S which satisfies the following properties.

(T1) S is a minimum spanning 𝑘-ended system of 𝐺
𝑥

.
(T2) 𝐸(𝐺

𝑥

) − 𝐸(𝐺) is minimum, subject to (T1).
(T3) |S

2

| is minimum, subject to (T1) and (T2).
(T4) If 𝑃 contains 𝑥, then 𝑃 contains as many vertices in

𝑁(𝑥) as possible, where 𝑃 ∈ S
2

subject to (T1), (T2),
and (T3).

(T5) If 𝐶 contains 𝑥, then 𝐶 contains as many vertices in
𝑁(𝑥) as possible, where 𝐶 ∈ S

1

subject to (T1), (T2),
and (T3).

If 𝐸(S) − 𝐸(𝐺) = 0, then S is a spanning 𝑘-ended system in
𝐺, and we are done. Thus we assume |𝐸(S) − 𝐸(𝐺)| ≥ 1.

Claim 1. For 𝑃 ∈ S
2

, if 𝐸(𝑃) − 𝐸(𝐺) ̸= 0, then 𝑥 ∈ 𝑉(𝑃).

Proof. To the contrary, suppose 𝑥 ∉ 𝑉(𝑃), 𝑃 = 𝑎𝑃𝑏, and 𝑢V ∈
𝐸(𝑃)−𝐸(𝐺)with V = 𝑢+.Then 𝑢, V ∈ 𝑁(𝑥). Suppose𝑥 ∈ 𝑐𝑃

1

𝑑,
𝑃
1

∈ S
2

. Since 𝐺[𝑥, 𝑢, V, 𝑥+(𝑥−)] ̸= 𝐾
1,3

, 𝑢𝑥+(𝑢𝑥−) ∈ 𝐸(𝐺) or
V𝑥+(V𝑥−) ∈ 𝐸(𝐺).Without loss of generality, suppose 𝑥 ̸= 𝑑
and 𝑢𝑥+ ∈ 𝐸(𝐺).Then 𝐺

𝑥

contains two paths 𝑃
2

= 𝑐𝑃
1

𝑥V𝑃𝑏
and 𝑃

3

= 𝑎𝑃𝑢𝑥
+

𝑃
1

𝑑. Replacing 𝑃 and 𝑃
1

by 𝑃
2

and 𝑃
3

, then
𝐺
𝑥

contains a spanning 𝑘-ended system with less edge than
𝐸(𝐺
𝑥

) − 𝐸(𝐺), a contradiction to (T2).
Suppose 𝑥 ∈ 𝑉(𝐶), 𝐶 ∈ S

1

. If 𝐶 = {𝑢}, then 𝐺
𝑥

contains a path 𝑃󸀠 = 𝑎𝑃𝑢𝑥V𝑃𝑏 with 𝑉(𝑃󸀠) = 𝑉(𝐶) ∪ 𝑉(𝑃).
Replacing 𝑃 and 𝐶 by 𝑃󸀠, 𝐺

𝑥

contains a spanning (𝑘 − 1)-
ended system, a contradiction to (T1).Thus |𝑉(𝐶)| ≥ 2. Since
𝐺[𝑥, 𝑢, V, 𝑥+] ̸= 𝐾

1,3

, 𝑢𝑥+ ∈ 𝐸(𝐺) or V𝑥+ ∈ 𝐸(𝐺).Without loss
of generality, suppose 𝑢𝑥+ ∈ 𝐸(𝐺).Then 𝐺

𝑥

contains a path
𝑃
󸀠

= 𝑎𝑃𝑢𝐶[𝑥
+

, 𝑥]V𝑃𝑏 with 𝑉(𝑃󸀠) = 𝑉(𝑃) ∪ 𝑉(𝐶). Replacing
𝑃 and 𝐶 by 𝑃󸀠, then 𝐺

𝑥

contains a spanning (𝑘 − 1)-ended
system, a contradiction to (T1).

Claim 2. For 𝐶 ∈ S
1

, if 𝐸(𝐶) − 𝐸(𝐺) ̸= 0, then 𝑥 ∈ 𝑉(𝐶).

Proof. Since 𝐸(𝐶) − 𝐸(𝐺) ̸= 0, |𝑉(𝐶)| ≥ 2. Suppose 𝑢V ∈
𝐸(𝐶) − 𝐸(𝐺), V = 𝑢+. Assume to the contrary 𝑥 ∉ 𝑉(𝐶).
Suppose 𝑥 ∈ 𝑎𝑃𝑏, 𝑃 ∈ S

2

. Since 𝐺[𝑥, 𝑥+(𝑥−), 𝑢, V] ̸= 𝐾
1,3

,
𝑥
+

𝑢(𝑥
−

𝑢) ∈ 𝐸(𝐺) or 𝑥+V(𝑥−V) ∈ 𝐸(𝐺). Without loss of
generality, assume 𝑥 ̸= 𝑏 and 𝑥+𝑢 ∈ 𝐸(𝐺).Then 𝐺

𝑥

contains
a path 𝑃󸀠 = 𝑏𝑃−𝑥+𝐶−[𝑢, V]𝑥𝑃−𝑎 with 𝑉(𝑃󸀠) = 𝑉(𝑃) ∪ 𝑉(𝐶).
Replacing 𝑃, 𝐶 by 𝑃󸀠, then 𝐺

𝑥

contains a spanning (𝑘 − 1)-
ended system, a contradiction.

Suppose 𝑥 ∈ 𝑉(𝐶󸀠), 𝐶󸀠 ∈ S
1

− {𝐶}. If 𝑉(𝐶󸀠) = {𝑥}, then
𝐺
𝑥

contains a cycle 𝐶󸀠󸀠 = 𝐶[V, 𝑢]𝑥V with 𝑉(𝐶󸀠󸀠) = 𝑉(𝐶) ∪
𝑉(𝐶
󸀠

). Replacing 𝐶, 𝐶󸀠 by 𝐶󸀠󸀠, then 𝐺
𝑥

contains a spanning
(𝑘 − 1)-ended system, a contradiction. If |𝑉(𝐶󸀠)| ≥ 2, then
by the preceding proof 𝑥+𝑢 ∈ 𝐸(𝐺) or 𝑥+V ∈ 𝐸(𝐺).Without
loss of generality, assume 𝑥+𝑢 ∈ 𝐸(𝐺).Then 𝐺

𝑥

contains a
cycle 𝐶󸀠󸀠 = 𝑥𝐶[V, 𝑢]𝐶󸀠[𝑥+, 𝑥] with 𝑉(𝐶󸀠󸀠) = 𝑉(𝐶) ∪ 𝑉(𝐶󸀠).
Replacing 𝐶, 𝐶󸀠 by 𝐶󸀠󸀠, then 𝐺

𝑥

contains a spanning (𝑘 − 1)-
ended system, a contradiction.

Since S is a disjoint system, we can get the following two
results by Claims 1 and 2.

Claim 3. For 𝑃 ∈ S
2

, if 𝐸(𝑃) −𝐸(𝐺) ̸= 0, then 𝐸(S) −𝐸(𝐺) ⊆
𝐸(𝑃).

Claim 4. For𝐶 ∈ S
1

, if 𝐸(𝐶)−𝐸(𝐺) ̸= 0, then 𝐸(S) −𝐸(𝐺) ⊆
𝐸(𝐶).

Now we prove the case that 𝐸(𝑃) − 𝐸(𝐺) ̸= 0, for 𝑃 ∈ S
2

.

Then, by Claim 3, 𝐸(S) − 𝐸(𝐺) ⊆ 𝐸(𝑃). Suppose 𝑃 = 𝑎𝑃𝑏,
and then we can get the following results.

Claim 5. Consider the following: |𝐸(𝑃) − 𝐸(𝐺)| ≤ 2.

Proof. Suppose, to the contrary, 𝑢
1

V
1

, 𝑢
2

V
2

, 𝑢
3

V
3

∈ 𝐸(𝑃) −

𝐸(𝐺), where 𝑢
1

, V
1

, 𝑢
2

, V
2

, 𝑢
3

, and V
3

are labeled in order
along the positive orientation of 𝑃. Since 𝐺[𝑥, 𝑢

1

, V
1

, V
2

] ̸=

𝐾
1,3

, 𝑢
1

V
2

∈ 𝐸(𝐺) or V
1

V
2

∈ 𝐸(𝐺). Without loss of
generality, assume 𝑢

1

V
2

∈ 𝐸(𝐺). Then 𝐺
𝑥

contains a path
𝑃
󸀠

= 𝑎𝑃𝑢
1

V
2

𝑃𝑢
3

V
1

𝑃𝑢
2

V
3

𝑃𝑏 with 𝑉(𝑃󸀠) = 𝑉(𝑃) and |𝐸(𝑃󸀠) −
𝐸(𝐺)| < |𝐸(𝑃) − 𝐸(𝐺)|, a contradiction to (T2).
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Claim 6. Consider the following: |𝐸(𝑃) − 𝐸(𝐺)| = 1.

Proof. Suppose, to the contrary, |𝐸(𝑃)−𝐸(𝐺)| = 2 by Claim 5
and 𝑢

1

V
1

, 𝑢
2

V
2

∈ 𝐸(𝑃) − 𝐸(𝐺), where 𝑢
1

, V
1

, 𝑢
2

, and V
2

are labeled in order along the positive orientation of 𝑃. By
the proof of Claim 5, 𝑢

1

V
2

, V
1

𝑢
2

∈ 𝐸(𝐺), V
1

V
2

∉ 𝐸(𝐺). By
Claim 1, 𝑥 ∈ 𝑉(𝑃). Assume 𝑥 ∈ 𝑃[𝑎, 𝑢

1

].Then 𝑥+V
1

∉ 𝐸(𝐺);
otherwise 𝐺

𝑥

contains a path 𝑃󸀠 = 𝑎𝑃𝑥𝑢
2

𝑃
−V
1

𝑥
+

𝑃𝑢
1

V
2

𝑃𝑏

with 𝑉(𝑃) = 𝑉(𝑃󸀠) and |𝐸(𝑃󸀠) − 𝐸(𝐺)| = 1, a contradiction
to (T2) by Claim 3. If 𝑥+V

2

∈ 𝐸(𝐺), then 𝐺
𝑥

contains a path
𝑃
󸀠

= 𝑎𝑃𝑥𝑢
2

𝑃
−V
1

𝑢
1

𝑃
−

𝑥
+V
2

𝑃𝑏with𝑉(𝑃) = 𝑉(𝑃󸀠) and |𝐸(𝑃󸀠)−
𝐸(𝐺)| < |𝐸(𝑃) − 𝐸(𝐺)|, a contradiction to (T2) by Claim 3.
Thus𝐺[𝑥, 𝑥+, V

1

, V
2

] = 𝐾
1,3

, a contradiction. By similar proof,
we can prove that Claim 6 holds if 𝑥 ∈ 𝑃[V

1

, 𝑢
2

] ∪ 𝑃[V
2

, 𝑏].

By Claim 6, we assume that 𝐸(𝑃) − 𝐸(𝐺) = {𝑢
1

V
1

}, where
𝑢
1

, V
1

are labeled in order along the positive orientation of 𝑃,
and without loss of generality assume 𝑥 ∈ 𝑃[𝑎, 𝑢

1

]. Since 𝑥
is eligible, there exists at least one path in 𝑁(𝑥) connecting
𝑢
1

and V
1

. Suppose 𝑃
0

is the shortest path in𝑁(𝑥) connecting
𝑢
1

and V
1

. Since 𝐺 is claw-free, 3 ≤ |𝑉(𝑃
0

)| ≤ 4. Assume
𝑦 ∈ 𝑉(𝑃

0

), 𝑢
1

𝑦 ∈ 𝐸(𝐺).

Claim 7. Consider the following: 𝑦 ∈ 𝑉(𝑃).

Proof. To the contrary, suppose 𝑦 ∈ 𝑉(𝑃󸀠), where 𝑃󸀠 =
𝑃
󸀠

[𝑐, 𝑑] ∈ S
2

− {𝑃}. If 𝑦 = 𝑐, then 𝐺
𝑥

contains a path
𝑃
1

= 𝑎𝑃𝑢
1

𝑦𝑃
󸀠

𝑑 and a path 𝑃
2

= V
1

𝑃𝑏. Replacing 𝑃 and 𝑃󸀠 by
𝑃
1

and 𝑃
2

, then 𝐺
𝑥

contains a spanning 𝑘-ended system with
no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction to (T2). Similarly,
𝑦 ̸= 𝑑.Thus 𝑦 ∉ {𝑐, 𝑑}. If 𝑦−V

1

∈ 𝐸(𝐺), then 𝐺
𝑥

contains a
path 𝑃

1

= 𝑎𝑃𝑢
1

𝑦𝑃
󸀠

𝑑 and a path 𝑃
2

= 𝑐𝑃
󸀠

𝑦
−V
1

𝑃𝑏. Replacing
𝑃 and 𝑃󸀠 by 𝑃

1

and 𝑃
2

, 𝐺
𝑥

contains a spanning 𝑘-ended
system S󸀠 with 𝐸(𝐺

𝑥

) − 𝐸(𝐺) = 0, a contradiction to (T2).
Thus 𝑦−V

1

∉ 𝐸(𝐺). Similarly, V
1

𝑦
+

∉ 𝐸(𝐺). If 𝑦−𝑦+ ∈
𝐸(𝐺), then 𝐺

𝑥

contains a path 𝑃
1

= 𝑎𝑃𝑢
1

𝑦V
1

𝑃𝑏 and a path
𝑃
2

= 𝑐𝑃
󸀠

𝑦
−

𝑦
+

𝑃
󸀠

𝑑. Replacing 𝑃 and 𝑃󸀠 by 𝑃
1

and 𝑃
2

, 𝐺
𝑥

contains a spanning 𝑘-ended systemS󸀠 with 𝐸(𝐺
𝑥

) − 𝐸(𝐺) ⊆

𝐸(𝑃
1

) such that 𝑃
1

contains more vertices in 𝑁(𝑥) than 𝑃,
a contradiction to (T4). Thus 𝑦−𝑦+ ∉ 𝐸(𝐺). 𝑦V

1

∉ 𝐸(𝐺);
otherwise 𝐺[𝑦, V

1

, 𝑦
−

, 𝑦
+

] = 𝐾
1,3

, a contradiction. 𝑥+V
1

∉

𝐸(𝐺); otherwise 𝐺
𝑥

contains a path 𝑃
1

= 𝑎𝑃𝑥𝑢
1

𝑃
−

𝑥
+V
1

𝑃𝑏

with 𝑉(𝑃) = 𝑉(𝑃
1

) and 𝐸(𝑃
1

) − 𝐸(𝐺) = 0, a contradiction to
(T2). Then 𝑥+𝑦 ∈ 𝐸(𝐺) by 𝐺[𝑥, 𝑥+, 𝑦, V

1

] ̸= 𝐾
1,3

. 𝑦−𝑥+ ∈
𝐸(𝐺) or 𝑦+𝑥+ ∈ 𝐸(𝐺) by 𝐺[𝑦, 𝑦−, 𝑦+, 𝑥+] ̸= 𝐾

1,3

and
𝑦
−

𝑦
+

∉ 𝐸(𝐺). If 𝑥+𝑦− ∈ 𝐸(𝐺), then 𝐺
𝑥

contains two paths
𝑃
1

= 𝑎𝑃𝑥V
1

𝑃𝑏 and 𝑃
2

= 𝑐𝑃
󸀠

𝑦
−

𝑥
+

𝑃𝑢
1

𝑦𝑃
󸀠

𝑑. Replacing 𝑃
and 𝑃󸀠 by 𝑃

1

and 𝑃
2

, 𝐺
𝑥

contains a spanning 𝑘-ended system
with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction to (T2). If
𝑥
+

𝑦
+

∈ 𝐸(𝐺), 𝐺
𝑥

contains two paths 𝑃
1

= 𝑎𝑃𝑥V
1

𝑃𝑏 and 𝑃
2

=

𝑐𝑃
󸀠

𝑦𝑢
1

𝑃
−

𝑥
+

𝑦
+

𝑃
󸀠

𝑑. Replacing 𝑃 and 𝑃󸀠 by 𝑃
1

and 𝑃
2

, then𝐺
𝑥

contains a spanning (𝑘 − 1)-ended system, a contradiction.
Using a similar proof, we can get a contradiction if 𝑦

1

∈ 𝑉(𝐶)

with 𝐶 ∈ S
1

.Thus 𝑦 ∈ 𝑉(𝑃).
By Claim 1 without loss of generality, in the following

proof, assume 𝑥 ∈ 𝑃[𝑎, 𝑢
1

). Then 𝑥+𝑢
1

, 𝑥
−V
1

∈ 𝐸(𝐺),
𝑥
−

𝑥
+

, 𝑥
−

𝑢
1

, 𝑥
+V
1

∉ 𝐸(𝐺) since𝐺 is claw-free and by (T2).

Claim 8. Consider the following: V
1

𝑦 ∉ 𝐸(𝐺).

Proof. To the contrary, suppose V
1

𝑦 ∈ 𝐸(𝐺). By Claim 7,
without loss of generality, assume 𝑦 ∈ 𝑃[𝑎, 𝑢

1

]. If 𝑦 = 𝑎, then,
replacing 𝑃 by 𝑃

1

= 𝑢
1

𝑃
−

𝑦V
1

𝑃𝑏, 𝐺
𝑥

contains a spanning 𝑘-
ended system with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction
to (T2). Thus 𝑦 ̸= 𝑎. If 𝑦−𝑢

1

∈ 𝐸(𝐺), then, replacing 𝑃
by 𝑃
1

= 𝑎𝑃𝑦
−

𝑢
1

𝑃
−

𝑦V
1

𝑃𝑏, 𝐺
𝑥

contains a spanning 𝑘-ended
system with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction to
(T2). Similarly, 𝑦−𝑦+ ∉ 𝐸(𝐺). By 𝐺[𝑦, 𝑦−, 𝑦+, 𝑢

1

] ̸= 𝐾
1,3

,
𝑦
+

𝑢
1

∈ 𝐸(𝐺). By 𝐺[𝑦, 𝑦−, 𝑦+, 𝑥] ̸= 𝐾
1,3

, 𝑦−𝑥 ∈ 𝐸(𝐺)
or 𝑦+𝑥 ∈ 𝐸(𝐺). If 𝑦−𝑥 ∈ 𝐸(G), then, replacing 𝑃 by
𝑃
1

= 𝑎𝑃𝑥𝑦
−

𝑃
−

𝑥
+

𝑢
1

𝑃
−

𝑦V
1

𝑃𝑏, 𝐺
𝑥

contains a spanning 𝑘-
ended system with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction
to (T2). Thus 𝑦+𝑥 ∈ 𝐸(𝐺). Replacing 𝑃 by path 𝑃

1

=

𝑎𝑃𝑥𝑦
+

𝑃𝑢𝑥
+

𝑃𝑦V𝑃𝑏, 𝐺
𝑥

contains a spanning 𝑘-ended system
with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a contradiction to (T2).

Claim 9. 𝑃 can be transformed to a path 𝑃
1

such that𝑉(𝑃
1

) =

𝑉(𝑃), V
1

𝑦 ∈ 𝐸(𝑃
1

), and 𝐸(𝐺
𝑥

) − 𝐸(𝐺) = {V
1

𝑦}.

Proof. By Claim 7, without loss of generality, assume 𝑦 ∈
𝑃(𝑥, 𝑢

1

). Since 𝐺[𝑦, 𝑦−, 𝑦+, 𝑥] ̸= 𝐾
1,3

, 𝑦−𝑦+, 𝑦−𝑥, 𝑦+𝑥 ∈
𝐸(𝐺). If 𝑦−𝑦+ ∈ 𝐸(𝐺), then 𝑃

1

= 𝑎𝑃𝑦
−

𝑦
+

𝑃𝑢
1

𝑦V
1

𝑃𝑏. If 𝑦−𝑥 ∈
𝐸(𝐺), then 𝑃

1

= 𝑎𝑃𝑥𝑦
−

𝑃
−

𝑥
+

𝑢
1

𝑃
−

𝑦V
1

𝑃𝑏. If 𝑦+𝑥 ∈ 𝐸(𝐺), then
𝑃
1

= 𝑎𝑃𝑥𝑦
+

𝑃𝑢
1

𝑥
+

𝑃𝑦V
1

𝑃𝑏.

By Claim 8, V
1

𝑦 ∉ 𝐸(𝐺), and then |𝑉(𝑃
0

)| = 4. Suppose
𝑃
0

= 𝑢
1

𝑦𝑧V
1

. By Claim 9, replace 𝑃 by 𝑃
1

. By the proof of
Claim 7, 𝑧 ∈ 𝑃

1

. By the proof of Claim 9, 𝐺
𝑥

contains a
spanning 𝑘-ended system with no edge in 𝐸(𝐺

𝑥

) − 𝐸(𝐺), a
contradiction to (T2). It follows that Theorem 4 holds and
thenTheorem 5 holds.
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