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A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsin-
gular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which
is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of
target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the
guidance law.The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time
theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy
at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast
terminal sliding mode guidance laws, which shows the superiority of this method.

1. Introduction

In the traditional sense, themain objective of guidedmissile is
to intercept targets with minimummiss distance [1]. In order
to further enhance the missile’s effectiveness against target,
striking the target at a desired intercept angle would be
required. Therefore, impact angle guidance law (IAGL) has
become an attractive research topic recently.

Due to their high efficiency and easy implementation, the
proportional navigation guidance law (PNGL) and its vari-
ants [2–5] have been widely used as the homing guidance law
while intercepting nonmaneuvering or weekly maneuvering
target. Taken for granted, they are also used to intercept
targets with impact angle constraints. Kim et al. [6] pro-
posed a modified PNGL which includes a supplementary
time-varying bias to compensate for target acceleration as
well as achieve a desired attitude angle at impact. Similarly,
Erer and Merttopçuoglu [7] stated an impact angle guidance
law biased pure proportional navigation. An alternative way
of constructing IAGL is to vary the PN gains over time.
However, as discussed by [8, 9], these guidance laws can only
deal with the stationary target or nonmaneuvering targets.
When intercepting a target with maneuverability close to

that of the missile, the performance of PNGL cannot be
guaranteed [10].

Afterwards, the optimal controls (OC) [11–13], 𝐻
∞

con-
trols (𝐻

∞
C) [14, 15], and the sidling mode controls (SMC)

[16–19] were exploited to construct IAGL. Reference [11]
proposed impact angle guidance law for intercepting a
nonmaneuvering target, which seems to be the first attempt
to derive the IAGL using OC. In [12] another OC guidance
law with interception angle control was derived for weekly
maneuvering target. As discussed elsewhere [13], Schwarz
inequality was employed to derive the OC guidance law. The
above OC guidance laws are derived from the linearized
engagement dynamics which leads to the degradation of
their performance while the initial heading error is larger.
In addition these guidance laws require the time-to-go (𝑡go)
information which is usually a formidable challenge. Due to
the strong robustness against disturbance, the 𝐻

∞
control

based IAGLswere proposed in [14, 15].However, the difficulty
of finding the analytic solution to associatedHamilton-Jacobi
partial differential inequality makes them unrealizable.

So far, the SMC has been widely used to design IAGLs
because of its good robustness to external disturbance and
model uncertainty. At the early stage, the linear sliding
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manifold [16] was employed to deal with the nonlinear
interception problems. As described in [17, 18], this kind of
sliding manifold can only concern the exponential stability
during the sliding phase; as a result the interception accu-
racy is difficult to ensure. To overcome this disadvantage,
the terminal sliding mode control (TSMC) [19, 20] with
nonlinear sliding manifold was proposed and exploited to
construct IAGLs [1, 21, 22]. To improve the convergence rate
of TSMC when the system states are far from the origin,
fast terminal sliding mode control (FTSMC) combining the
TSMC and the SMC was given in [23], based on which the
IAGLs were proposed in [24, 25]; these IAGLs can not only
assure the convergence rate away from the origin but also
acquire the properties of finite time convergence. However,
the expressions of the above guidance laws contain negative
exponential term of the system state, which leads to the
singularity problem when error being controlled becomes
very small; it is almost a disaster for the attitude control
system to track. To this end, the nonsingular terminal sliding
mode control scheme (NTSMC) and nonsingular fast termi-
nal sliding mode control scheme (NFTSMC) were proposed
in [26–28] and had been successfully used to design IAGLs
[29–34]. Within the above articles, the target acceleration
is considered as the unknown model disturbance. From the
point of view of control theory, to make sure that the sliding
mode possesses invariance property to external disturbance,
usually the signum term is employed with its switching gain
larger than the disturbance bound. As a result, almost all of
the aforementioned IAGLs have to face one or several of the
following limitations.

(1) Some guidance laws are noncontinuous due to the
usage of the signum function [1, 18, 24, 25, 29, 31–
33], which would pose great challenges to the system
stability and deduce the control quality of the system.

(2) To determine the switching gain of the signum func-
tion, the information of the target maneuvering is
required [1, 18, 21, 22, 24, 26, 28, 29, 32, 33], such as
the target acceleration bound, which is an unreality
condition for noncooperative target. Another idea is
to ignore the target acceleration [22], which is only
suitable for the scenario that the maneuverability of
the target (such as tanks or large ships) is far weaker
than the missile.

(3) To obtain the target information, different adaptive
methods [29, 32] for estimating the target acceleration
bound are integrated with IAGLs. However, these
guidance laws still contain discontinuous term about
the estimated value, which also brings the problem of
nonsmoothness and chattering.

(4) As discussed in [1, 17, 24–27, 29, 31, 32, 34], to avoid
the chattering problems caused by the signum func-
tion, some continuous functions such as the sigmoid
function and the saturation function are employed.
However, these guidance laws are still nonsmooth,
which would lower down the quality of the control
system.

In this paper, we proposed a novel adaptive law to
estimate the square of the target acceleration bound, based on
which the smooth adaptive nonsingular fast terminal sliding
mode guidance (SANFTSMG) law was derived. To the
author’s best knowledge, based on the existing adaptive laws,
the smooth feature and finite time convergence property of
the guidance laws cannot be guaranteed at the same time.The
main contributions of this paper are stated as follows.

(1) With the new adaptive law, the square of the target
acceleration bound is estimated, based on which not
only does the proposed guidance law not exhibit sin-
gularity problem, but also the nonsmooth problem
is fundamentally solved, and the chattering phe-
nomenon is alleviated.

(2) The proposed guidance law is reliable in practice, as
no prior information of target acceleration profile is
required and the time to go is also needless.

(3) The finite time convergence of the system is proved
both for the sliding mode reaching stage and the
motion on the sliding manifold, which indicates the
system states can converge fast to the small neighbor-
hood of the origin.

(4) Faster convergence speed is achieved compared with
other fast terminal slidingmode based guidance laws,
as the new guidance law need not avoid chattering
by using the continuous but nondifferential function,
which would reduce the control precision as well as
slow down the convergence speed.

This paper is organized as follows. Some important pre-
liminaries are stated in Section 2. In Section 3, the nonlinear
homing engagement geometry is stated. The main result of
this paper, the SANFTSMG, is derived in Section 4, and the
numerical simulations with multiple sceneries are provided
in Section 5. Finally, the conclusions are offered in Section 6.

2. Preliminary Concepts

To begin with, several important definitions and lemmas are
presented, serving as a basis for this study.

Definition 1. Thenonsingular terminal slidingmode (NTSM)
[26] and nonsingular fast terminal sliding mode (NFTSM)
[28] can be described by the following nonlinear differential
equation:

𝑠 = 𝑥 + 𝛼 sig𝛽 (�̇�) , 𝛼 > 0, 1 < 𝛽 < 2, (1)

𝑠 = 𝑥 + 𝛼
1
sig𝛽1 (𝑥) + 𝛼

2
sig𝛽2 (�̇�) ,

𝛼
1
, 𝛼
2
> 0, 𝛽

1
> 𝛽
2
, 1 < 𝛽

2
< 2,

(2)

respectively, where 𝑥 ∈ 𝑅, sig𝛽(𝑥) = |𝑥|
𝛽 sign(𝑥) and 𝑠 is the

sliding manifold.
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Remark 2. Equations (1) and (2) are not only continuous but
also differentiable. Their first derivatives can be expressed as
[26, 28]

̇𝑠 = �̇� + 𝛼𝛽 |�̇�|
𝛽−1

�̈�,

̇𝑠 = �̇� + 𝛼
1
𝛽
1
|�̇�|
𝛽
1
−1

�̇� + 𝛼
2
𝛽
2
|�̇�|
𝛽
2
−1

�̈�.

(3)

Remark 3. Equations (1) and (2) indicate that when 𝑠 = 0, the
system states 𝑥 and �̇� would converge to zero simultaneously
in finite time, which shows their characteristic of being non-
singular.

Lemma 4 (see [27]). Suppose the continuous positive definite
function 𝑉(𝑡) satisfies the inequality

�̇� (𝑡) + 𝑎𝑉 (𝑡) + 𝑏𝑉
𝛾

(𝑡) < 0,

𝑡 > 𝑡
0
, 𝑎 > 0, 𝑏 > 0, 0 < 𝛾 < 1,

(4)

where 𝑡
0
is the initial time. Then, the system converges to the

equilibrium point in finite time, and the settling time can be
given by

𝑡
𝑓
≤ 𝑡
0
+

1

𝑎 (1 − 𝛾)
ln

𝑎𝑉
1−𝛾

(𝑡
0
) + 𝑏

𝑏
. (5)

Lemma 5 (see [35]). Assume that 𝑚 ≥ 0, 𝑛 ≥ 0, 𝑝 > 1, 𝑞 > 1

with (1/𝑝) + (1/𝑞) = 1; then the following inequality holds:

𝑚𝑛 ≤
1

𝑝
𝑚
𝑝

+
1

𝑞
𝑛
𝑞

. (6)

3. Problem Formulation

3.1. Model Derivation. Consider two-dimensional engage-
ment geometry as shown in Figure 1, where the missile
(marked as 𝑚) and the target (marked as 𝑡) are regarded
as point mass; the engagement dynamics equations can be
described by [29, 32]

̇𝑟 = 𝑉
𝑡
cos (𝑞 − 𝛾

𝑡
) − 𝑉
𝑚
cos (𝑞 − 𝛾

𝑚
) , (7)

𝑟�̇� = −𝑉
𝑡
sin (𝑞 − 𝛾

𝑡
) + 𝑉
𝑚
sin (𝑞 − 𝛾

𝑚
) , (8)

�̇�
𝑡
=
𝐴
𝑡

𝑉
𝑡

, (9)

�̇�
𝑚
=
𝐴
𝑚

𝑉
𝑚

, (10)

where 𝑞, �̇� denote the line of sight (LOS) angle and LOS
angular rate between the missile and the target; 𝑟, ̇𝑟 denote
the relative distance and relative velocity from the missile to
the target; 𝛾

𝑚
, 𝛾
𝑡
denote the flight path angle of the missile

and the target; 𝐴
𝑚
, 𝐴
𝑡
denote the acceleration of the missile

and the target; and 𝑉
𝑚
, 𝑉
𝑡
denote the velocity of the missile

and target, respectively.

Assumption 6. The autopilots and the seeker dynamics of the
missile are perfect.
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Figure 1: Two-dimensional engagement geometry.

Assumption 7. Suppose that |𝐴
𝑡
| ≤ 𝑑
𝑡
, where 𝑑

𝑡
is unknown

positive constant characterizing the upper bound of the target
acceleration.

Assumption 8. Usually, the terminal guidance stage has a very
short interval, especially for the engagement scenario with
high speed, so we can assume the velocity of the missile 𝑉

𝑚

and the target 𝑉
𝑡
are constant.

Differentiating (8) with respect to time yields

�̈� =
−2�̇� ̇𝑟

𝑟
+
𝐴
𝑡
cos (𝛾

𝑡
− 𝑞)

𝑟
−
𝐴
𝑚
cos (𝛾

𝑚
− 𝑞)

𝑟
. (11)

As discussed in [29, 31], the terminal LOS angle 𝑞(𝑡
𝑓
) and

the required impact angle 𝜃imp have one-to-one correspon-
dence; as a result, the problem of designing IAGL is converted
to the control problem of terminal LOS 𝑞(𝑡

𝑒
) = 𝑞

𝑑
, where

constant 𝑞
𝑑
denotes the desired terminal LOS angle and 𝑡

𝑒
is

the end of the terminal guidance.
Defining 𝑥

1
= 𝑞 − 𝑞

𝑑
, 𝑥
2
= �̇� and substituting them into

(11) yield the state equation as follows:
�̇�
1
= 𝑥
2
,

�̇�
2
= −

2 ̇𝑟

𝑟
𝑥
2
−
𝑢

𝑟
+
𝑓

𝑟
,

(12)

where 𝑢 = 𝐴
𝑚
cos(𝛾
𝑚
− 𝑞) is the guidance command which

should be designed to drive 𝑥
1
→ 0, 𝑥

2
→ 0 in finite time;

𝑓 = 𝐴
𝑡
cos(𝛾
𝑡
−𝑞) represents the unknown target disturbance;

from Assumption 7 we can obtain |𝑓| ≤ 𝑑
𝑚
, where 𝑑

𝑡
is

unknown positive constant.The starting time of the guidance
process is taken to be zero (i.e., 𝑡 = 0), the initial values of
the state variables of (12) are denoted as 𝑟(0), ̇𝑟(0) and 𝑥

1
(0),

𝑥
2
(0), and the state variables of the end are denoted as 𝑟(𝑡

𝑒
),

̇𝑟(𝑡
𝑒
) and 𝑥

1
(𝑡
𝑒
), 𝑥
2
(𝑡
𝑒
).

Assumption 9. During the time horizon of the terminal guid-
ance process, assume that

̇𝑟 (𝑡) < 0,

𝑟 (𝑡
𝑒
) < 𝑟 (𝑡) < 𝑟 (0) ,

0 ≤ 𝑡 ≤ 𝑡
𝑒
.

(13)
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3.2. Design Objective. As discussed above, the main prob-
lem of the existing adaptive nonsingular terminal sliding
mode guidance laws can be summarized as nonsmooth or
noncontinuous. For example, in [32], the authors use the
continuous nonsingular terminal sliding manifold; however,
the employment of signum function makes the guidance
law discontinuous. Similarly, in [29], the continuous sigmoid
function is used to replace the signum function based on
which the continuous guidance law can be obtained; however
it is still nondifferential and thus nonsmooth. In this paper,
the main guidelines for designing the smooth adaptive finite
time guidance laws with impact angle constraints are given as
follows.

(1) The guidance law is smooth as the nonsmooth signum
function is no longer used.

(2) The guidance law can not only intercept the maneu-
vering target with small miss distance, but also
achieve the desired impact angle.

(3) The LOS angle error and LOS angular rate can con-
verge to zero in finite time.

(4) The proposed guidance law should be robust with
respect to the unknown target maneuvering. That is
to say, the above guidelines can also be satisfied when
there exists unknown target maneuvering.

4. Smooth Adaptive Nonsingular
Fast Terminal Sliding Mode Guidance
(SANFTSMG) Law

In this section, the IAGL with target acceleration as known
prior knowledge is developed first. Then the SANFTSMG
based on a novel adaptive law to estimate the square of target
acceleration bound is proposed, the characteristic of finite
time convergence is proved, and the convergence region of
the sliding manifold and the state variables are given.

4.1. SmoothNonsingular Fast Terminal SlidingModeGuidance
(SNFTSMG) Law

Theorem 10. For the guidance system described by (12), if the
NFTSM manifold is provided by

𝑠 = 𝑥
1
+ 𝛼
1
sig𝛽1 (𝑥

1
) + 𝛼
2
sig𝛽2 (𝑥

2
) ,

𝛼
1
, 𝛼
2
> 0, 1 < 𝛽

2
< 2, 𝛽

1
> 𝛽
2

(14)

and the SNFTSMG is designed as

𝑢 = 𝑟(−
2 ̇𝑟

𝑟
𝑥
2
+
sig2−𝛽2 (𝑥

2
)

𝛼
2
𝛽
2

(1 + 𝛼
1
𝛽
1

𝑥1


𝛽
1
−1

)

+ 𝑘
1
𝑠 + 𝑘
2
|𝑠|
𝜇 sign (𝑠) +

𝑓

𝑟
) ,

(15)

where 𝑘
1
, 𝑘
2
> 0, 0 < 𝜇 < 1, then the LOS angular rate con-

verges to zero in finite time and the terminal LOS angle also
converges to 𝑞

𝑑
in finite time.

Proof. Differentiating (14) and combining (12) and (15) prod-
ucts,

̇𝑠 = −𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(𝑘
1
𝑠 + 𝑘
2
|𝑠|
𝜇 sign (𝑠)) . (16)

Let 𝑉
1
= 1/2𝑠

2 be a Lyapunov candidate; considering (16) the
derivative of 𝑉

1
with respect to time yields

�̇�
1
= 𝑠 ̇𝑠 = −𝛼

2
𝛽
2

𝑥2


𝛽
2
−1

(𝑘
1
𝑠
2

+ 𝑘
2
|𝑠|
𝜇+1

)

= −𝛼𝑉
1
− 𝛽𝑉
𝛾

1
,

(17)

where 𝛼 = 2𝛼
2
𝛽
2
𝑘
1
|𝑥
2
|
𝛽
2
−1, 𝛽 = 2

(𝜇+1)/2

𝛼
2
𝛽
2
𝑘
2
|𝑥
2
|
𝛽
2
−1, 𝛾 =

(𝜇 + 1)/2.

Case 1 (𝑥
2

̸= 0). Since 𝛼
2
> 0, 1 < 𝛽

2
< 2 and 𝑘

1
, 𝑘
2
> 0,

0 < 𝜇 < 1, then 𝛼, 𝛽 > 0, 0 < 𝛾 < 1; as a result (17) has a
similar form to (4); accordingly, the sliding manifold can be
reached in finite time and the convergent time is given by

𝑇
1
≤

1

𝛼 (1 − 𝛾)
ln

𝛼𝑉
1−𝛾

1
(𝑠 (0)) + 𝛽

𝛽

, (18)

where 𝑠(0) is the initial value of the sliding variable.

Case 2 (𝑥
2
= 0, 𝑠 ̸= 0). Substituting (15) into (12) yields

�̇�
2
= −𝑘
1
𝑠 − 𝑘
2
|𝑠|
𝜇 sign (𝑠) ̸= 0. (19)

Since 𝑠 ̸= 0, then the system sate variable 𝑥
2
will not

always stay 𝑥
2
= 0, 𝑠 ̸= 0; thus 𝑥

2
= 0 is not an attractor in

the reaching phase.The finite time convergence of the sliding
surface can still be guaranteed. This completes the proof of
Theorem 10.

4.2. Smooth Adaptive Nonsingular Fast Terminal SlidingMode
Guidance (SANFTSMG) Law. As indicated in SNTSMG (15),
required input information such as 𝑥

1
, 𝑥
2
, 𝑟, and ̇𝑟 is usually

available from the seeker excepting 𝑓 which represents the
unknown target maneuvering. In this part, an adaptive law
for estimating the square of target acceleration bound is
proposed based on which the SANFTSMG is derived.

Theorem 11. Consider guidance system (12) and NFTSM
manifold (14), if the SANFTSMG is given by

𝑢 = 𝑟(−
2 ̇𝑟

𝑟
𝑥
2
+
sig2−𝛽2 (𝑥

2
)

𝛼
2
𝛽
2

(1 + 𝛼
1
𝛽
1

𝑥1


𝛽
1
−1

)

+ 𝑘
1
𝑠 + 𝑘
2
|𝑠|
𝜇 sign (𝑠) + �̂�𝑘

3
𝑠) ,

(20)

where 𝑘
1
, 𝑘
2
, 𝑘
3
> 0, 0 < 𝜇 < 1 and �̂� denotes the estimation of

𝑘 = 𝑑
2

𝑚
, which is governed by the adaptive law

̇̂
𝑘 = 𝛼
2
𝛽
2

𝑥2


𝛽−1

(𝑘
3
𝑠
2

− 𝑘
4
�̂�) , 𝑘

4
> 0. (21)

Then, the following conclusions can be obtained.
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(1) The system will converge to the region |𝑠| ≤ Δ
1
in finite

time.
(2) The LOS angular rate will converge to the bounded

domain |𝑥
2
| ≤ Δ
3
in finite time.

(3) The LOS angle will converge to the bounded domain
|𝑥
1
| ≤ Δ

4
in finite time which implies the desired

impact angle constraint is held.

Thus

Δ
1
= (

1

4𝑘
2
𝑘
3
𝑟
2

𝑡
𝑒

)

1/(𝜇+1)

,

Δ
2
= (

Δ


1

𝛼
1

)

1/𝛽

,

Δ
3
= (

Δ


1

𝛼
2

)

1/𝛽

,

Δ
4
= min {3Δ

1
, Δ
2
} ,

(22)

where 𝑟
𝑡
𝑒

is the detonation distance of the warhead of the inter-
cept missile.

Proof. The proof process can be divided into three steps.

Step 1. Differentiating (14) and combining (12) and (20) yield

𝑠 ̇𝑠 = 𝛼
2
𝛽
2
|𝑥|
𝛽
2
−1

(−𝑘
1
𝑠
2

− 𝑘
2
|𝑠|
𝜇+1

+
𝑓𝑠

𝑟
− �̂�𝑘
3
𝑠
2

) . (23)

Define estimation error of the adaptive law as �̃� = 𝑘 − �̂�,
and let 𝑉

2
= 1/2𝑠

2

+ 1/2�̃�
2

be a Lyapunov candidate. Then
the derivative of 𝑉

2
with respect to time can be described as

follows by combining (21) and (23):

�̇�
2
= 𝑠 ̇𝑠 − �̃�

̇̂
𝑘 = 𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

⋅ (−𝑘
1
𝑠
2

− 𝑘
2
|𝑠|
𝜇+1

+
𝑓𝑠

𝑟
− 𝑘𝑘
3
𝑠
2

+ 𝑘
4
�̂��̃�) .

(24)

Since 𝛼
2
> 0, 1 < 𝛽

2
< 2, 𝑘

2
> 0, then 𝛼

2
𝛽
2
|𝑥
2
|
𝛽
2
−1

> 0,
𝑘
2
|𝑠|
𝜇+1

> 0; thus (24) can be zoomed as

�̇�
2
≤ 𝛼
2
𝛽
2

𝑥2


𝛽−1

⋅ (−𝑘
1
𝑠
2

+
𝑑
𝑚
|𝑠|

𝑟
− 𝑘𝑘
3
𝑠
2

+ 𝑘
4
𝑘�̃� − 𝑘

4
�̃�
2

) .

(25)

According to Lemma 5, let 𝑝 = 2, 𝑞 = 2; one can imply
that

𝑚 + 𝑛 ≥ 2√𝑚𝑛, 𝑚 ≥ 0, 𝑛 ≥ 0. (26)

Thus, we can obtain the following inequalities:

𝑘𝑘
3
𝑠
2

+
1

4𝑘
3
𝑟2

≥ 2√
𝑘𝑘
3
𝑠
2

4𝑘
3
𝑟2

=
𝑑
𝑚
|𝑠|

𝑟
, (27)

1

2
(𝑘
2

+ �̃�
2

) ≥

𝑘�̃�


≥ 𝑘�̃�. (28)

Substituting (27) and (28) into (25) yields

�̇�
2

≤ 𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(−𝑘
1
𝑠
2

−
1

2
𝑘
4
�̃�
2

+
1

4𝑘
3
𝑟2

+
1

2
𝑘
4
𝑘
2

)

≤ −𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(
𝜂
1

2
𝑠
2

+
𝜂
1

2
�̃�
2

)

+ 𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(
1

4𝑘
3
𝑟2

+
1

2
𝑘
4
𝑘
2

) = −𝜂𝑉
2
+ 𝛿,

(29)

where 𝜂
1

= min{2𝑘
1
, 𝑘
4
}, 𝜂 = 𝛼

2
𝛽
2
|𝑥
2
|
𝛽
2
−1

𝜂
1
, 𝛿 =

𝛼
2
𝛽
2
|𝑥
2
|
𝛽
2
−1

(1/4𝑘
3
𝑟
2

+ (1/2)𝑘
4
𝑘
2

) and 𝜂
1
, 𝜂 > 0.

It can be seen that when 𝑉
2
> 𝛿/𝜂, �̇�

2
≤ 0 holds, which

implies that 𝑉
2
is bounded. Hence, it can be concluded that

the sliding mode variable 𝑠 and the estimation error �̃� are
all bounded. Let |�̃�| ≤ 𝜉 with 𝜉 being an unknown positive
constant. This conclusion will be used in the next step.

Step 2. Consider guidance system (12) and SANFTSMG (20),
redefine Lyapunov function 𝑉

3
= 1/2𝑠

2. Differentiating 𝑉
3

with respect to time and substituting (23) and (27) into the
equation give

�̇�
3
= 𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(−𝑘
1
𝑠
2

− 𝑘
2
|𝑠|
𝜇+1

+
𝑓𝑠

𝑟
− �̂�𝑘
3
𝑠
2

)

≤ 𝛼
2
𝛽
2

𝑥2


𝛽
2
−1

(−𝑘
1
𝑠
2

− 𝑘
2
|𝑠|
𝜇+1

+ 𝜉𝑘
3
𝑠
2

+
1

4𝑘
3
𝑟2
)

= − (𝑘


1
− 𝜉


1
) 𝑠
2

− (𝑘


2
− 𝜉


2
) |𝑠|
𝜇+1

= −𝛼
2
𝑉
3
− 𝛽
2
𝑉
𝛾


3
,

(30)

where 𝑘


1
= 𝛼
2
𝛽
2
𝑘
1
|𝑥
2
|
𝛽
2
−1, 𝑘


2
= 𝛼
2
𝛽
2
𝑘
2
|𝑥
2
|
𝛽
2
−1, 𝜉


1
=

𝛼
2
𝛽
2
𝜉𝑘
3
|𝑥
2
|
𝛽
2
−1, and 𝜉



2
= 𝛼
2
𝛽
2
|𝑥
2
|
𝛽
2
−1

/4𝑘
3
𝑟
2

|𝑠|
𝜇+1

𝛼
2
= 2 (𝑘



1
− 𝜉


1
) ,

𝛽
2
= 2
𝛾

(𝑘


2
− 𝜉


2
) ,

𝛾


=
𝜇 + 1

2
.

(31)

Case 1 (𝑥
2

̸= 0). Choose 𝑘
1
> 𝜉𝑘
3
, and 𝑘

2
> 1/4𝑘

3
𝑟
2

|𝑠|
𝜇+1;

then 𝛼
2
, 𝛽
2
> 0, 0 < 𝛾



< 1, as a result (30) has a similar
form to (4); accordingly, the sliding manifold can be reached
in finite time and the convergent time is given by

𝑇
3
≤

1

𝛼
2
(1 − 𝛾



)

ln
𝛼
2
𝑉
1−𝛾


4
(𝑠 (0)) + 𝛽

2

𝛽
2

(32)

and the sliding mode variable will converge to

|𝑠| ≤ (
1

4𝑘
2
𝑘
3
𝑟2
)

1/(𝜇+1)

≤ (
1

4𝑘
2
𝑘
3
𝑟
2

𝑡
𝑒

)

1/(𝜇+1)

= Δ
1
. (33)
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Figure 2: Trajectories of missile and target (Case 1).
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Figure 3: LOS angle (Case 1).

Case 2 (𝑥
2
= 0, 𝑠 ̸= 0). Substituting (20) into (12) yields

�̇�
2
= −𝑘
1
𝑠 − 𝑘
2
|𝑠|
𝜇 sign (𝑠) − �̂�𝑘

3
𝑠 +

𝑓

𝑟
. (34)

Similarly to expression (19), 𝑥
2
= 0 is not an attractor in

the reaching phase.The finite time convergence of the sliding
surface can still be guaranteed.

Step 3. Equation (14) can be rewritten as the following two
forms:

𝑥
1
+
𝑥1



𝛽
1 sign (𝑥

1
)(𝛼
1
−

𝑠

𝑥1


𝛽
1 sign (𝑥

1
)

)

+ 𝛼
2

𝑥2


𝛽
2 sign (𝑥

2
) = 0,

(35)
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Figure 4: LOS angular rate (Case 1).
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Figure 5: Sliding mode manifold (Case 1).

𝑥
1
+ 𝛼
1

𝑥1


𝛽
1 sign (𝑥

1
)

+
𝑥2



𝛽
2 sign (𝑥

2
)(𝛼
2
−

𝑠

𝑥2


𝛽
2 sign (𝑥

2
)

) = 0.

(36)

For (35), when 𝛼
1
−𝑠/|𝑥

1
|
𝛽
1sign(𝑥

1
) > 0, (35) has a similar

form to NFTSM (2); thus we can get that the system state 𝑥
1

will converge to the region

𝑥1
 ≤ (

Δ
1

𝛼
1

)

1/𝛽
1

= Δ
2
. (37)

In a similar way, from (36) we can obtain

𝑥2
 ≤ (

Δ
1

𝛼
2

)

1/𝛽
2

= Δ
3
. (38)
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Figure 6: Missile acceleration (Case 1).
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Figure 7: Trajectories of missile and target (Case 2).

Based on (33), (37), and (38), the convergence region of
LOS angle can also be given by

𝑥1
 ≤


𝑠 − 𝛼
1

𝑥1


𝛽
1 sign (𝑥

1
) − 𝛼
2

𝑥2


𝛽
2 sign (𝑥

2
)


≤ 3Δ
1
.

(39)

Combining (37) and (39), we can get the following con-
clusion:

𝑞 − 𝑞
𝑑

 =
𝑥1

 ≤ min {3Δ
1
, Δ
2
} = Δ

4
. (40)

This completes the proof of Theorem 11.
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Figure 8: LOS angle (Case 2).
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Figure 9: LOS angular rate (Case 2).

Remark 12. From (20), it can be observed that the SAN-
FTSMG does not contain the negative exponent term about
the system states, so it is a nonsingular guidance law.

Remark 13. The new adaptive law avoids the employment
of the nonsmooth signum function, so the SANFTSMG is
inherent smooth guidance law.

Remark 14. There do exist nonsingular terminal slidingmode
guidance laws [29, 32]; because they are nonsmooth inherent,
usually the accuracy of the sliding manifold is sacrificed
for solving the chattering problem. From this point of view,
convergent speed of the SANFTSMG is faster; as a result the
trajectory of the missile under SANFTSMG is shorter and its
average acceleration command is smaller.
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Figure 11: Missile acceleration (Case 2).

Remark 15. The expression (20) can be rewritten as

𝑢 = 𝑟 (−𝑁
̇𝑟

𝑟
𝑥
2
+ 𝐿) , (41)

where 𝑁 = 2 − (|𝑥
2
|
2−𝛽
2/𝛼
2
𝛽
2
𝑡go)(1 + 𝛼

1
𝛽
1
|𝑥
1
|
𝛽
1
−1

), 𝐿 =

𝑘
1
𝑠
2
+ 𝑘
2
|𝑠|
𝜇 sign(𝑠) + �̂�𝑘

3
𝑠, 𝑡go = 𝑟/ ̇𝑟, which implies the

SANFTSMGcan be regarded as amodified PN guidance with
a time-varying navigation ratio 𝑁 and a compensation term
𝐿.
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Figure 12: Trajectories of missile and target (Case 3).
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Figure 13: LOS angle (Case 3).

5. Numerical Simulation

To show the good performance of the SANFTSMG, the sim-
ulation results are compared with three existing TSMC based
methods presented in this section.

In [32], the guidance law (NFTSMG) is designed as

𝑠 = 𝑥
2
+ 𝛼
1
𝑥
1
+ 𝛼
2
𝛽 (𝑥
1
) ,

𝑎
𝑚
=

𝑟

cos (𝑞 − 𝛾
𝑚
)
(−

2 ̇𝑟

𝑟
𝑥
2
+ 𝛼
1
𝑥
2
+ 𝛼
2
𝛽 (𝑥
1
)

+ Δ̂𝜎 sign (𝑠) + 𝑘
1
sig𝛾1 (𝑠) + 𝑘

2
𝑠) ,
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Figure 15: Sliding mode manifold (Case 3).

𝛽 (𝑥
1
) =

{{

{{

{

𝛾
𝑥1



𝛾−1

𝑥
2

𝑥1
 > 𝜂

𝑟
1
𝑥
2
+ 2𝑟
2
𝑥
1
𝑥
2
sign (𝑥

1
)

𝑥1
 ≤ 𝜂,

̇̂
Δ = 𝜎 |𝑠| , Δ̂ (0) > 0,

(42)

where 𝛼
1

= 0.5, 𝛼
2

= 0.5, 𝛾 = 2/3, 𝜎 = 1.1, 𝑘
1

= 6,
𝑘
2
= 2, 𝛾
1
= 9/10, 𝜂 = 0.001. To overcome the disadvantage of

chattering due to the discontinuous signum function sign(𝑠),
the authors of [32] use a continuous sigmoid function to
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Figure 16: Missile acceleration (Case 3).
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Figure 17: Trajectories of missile and target (Case 3).

improve its performance; we denote the modified NFTSMG
as MNFTSMG, which is described as

𝑎
𝑚
=

𝑟

cos (𝑞 − 𝛾
𝑚
)
(−

2 ̇𝑟

𝑟
𝑥
2
+ 𝛼
1
𝑥
2
+ 𝛼
2
𝛽 (𝑥
1
)

+ Δ̂𝜎 sgm (𝑠) + 𝑘
1
sig𝛾1 (𝑠) + 𝑘

2
𝑠) ,
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sgm (𝑠) =

{{

{{

{

sign (𝑠) |𝑠| > 𝛿

2 (
1

1 + exp−𝑎𝑠
−
1

2
) |𝑠| ≤ 𝛿,

(43)

where 𝑎 = 1/𝛿, 𝛿 = 0.002.
In [29], the guidance law (NTSMG) is proposed as

𝑠 = 𝑥
1
+ 𝛼

𝑥2


𝛽 sign (𝑥
2
) , 𝛼 > 0, 1 < 𝛽 < 2,

𝑎
𝑚
=

𝑟

cos (𝑞 − 𝛾
𝑚
)
(−

2 ̇𝑟

𝑟
𝑥
2
+
sig2−𝛽 (𝑥

2
)

𝛼𝛽

+
�̂�𝑘
1
sign (𝑠)
𝑟

+
𝑘
2
sign (𝑠)
𝑟

) ,

̇̂
𝑘 =

𝛼𝛽𝑘
1

𝑟

𝑥2


𝛽−1

|𝑠| ,

(44)

where 𝛼 = 1, 𝛽 = 7/5, 𝑘
1
= 2, 𝑘

2
= 1800, 𝛿 = 0.01. In similar

way, the discontinuous signum function sign(𝑠) is replaced
with the continuous saturation function, and a modified
adaptive law is used; then the modified NTSMG (denoted as
MNTSMG) can be described as

𝑎
𝑚
=

𝑟

cos (𝑞 − 𝛾
𝑚
)
(−

2 ̇𝑟

𝑟
𝑥
2
+
sig2−𝛽 (𝑥

2
)

𝛼𝛽

+
�̂�𝑘
1
sat (𝑠)
𝑟

+
𝑘
2
sat (𝑠)
𝑟

) ,

̇̂
𝑘 =

{

{

{

𝛼𝛽𝑘
1

𝑟

𝑥2


𝛽−1

|𝑠| |𝑠| > 𝜐

0 |𝑠| ≤ 𝜐,

�̂� (0) = 100, 𝜐 = 0.05,

sat (𝑠) =
{

{

{

sign (𝑠) |𝑠| > 𝛿

𝑠

𝛿
|𝑠| ≤ 𝛿.

(45)

In [33], the extended state observer based guidance law
(ETSMG) is given as

𝑠 = 𝑥
1
+ 𝑘
1

𝑥1


𝛼
1 sign (𝑥

1
) + 𝑘
2

𝑥2


𝛼
2 sign (𝑥

2
) ,

𝑎
𝑚
=

𝑟

cos (𝑞 − 𝛾
𝑚
)
(

1

𝑘
2
𝑎
2

𝑥2


2−𝑎
2 sign (𝑥

2
)

⋅ (1 + 𝑘
1
𝑎
1

𝑥1


𝑎
1
−1

) −
2 ̇𝑟

𝑟
𝑥
2
+
𝑧
2

𝑟

+
𝛼𝑠 + 𝛽 |𝑠|

𝛾 sign (𝑠)
𝑟

) ,

�̇�
1
= 𝑧
2
− 𝛽
01
𝑒
1
− ̇𝑟�̇�
1
− 𝐴
𝑚
cos (𝑞 − 𝛾

𝑚
) ,

�̇�
2
= −𝛽
02
𝑒
1
,

(46)
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Figure 18: Trajectories of missile and target (Case 1).
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Figure 19: LOS angle (Case 1).

where 𝑘
1
= 1, 𝑘

2
= 2, 𝛼

1
= 3, 𝛼

2
= 1.5, 𝛼 = 𝛽 = 500, 𝛾 = 0.6,

𝛽
01

= 50, 𝛽
02

= 1800.
The design parameters of the SANFTSMG are chosen as

𝛼
1
= 30, 𝛼

2
= 2.65, 𝛽

1
= 60, 𝛽

2
= 1.48, 𝑘

1
= 4, 𝑘

2
= 0.5,

𝑘
3
= 118, 𝑘

4
= 0.01, and𝜇 = 0.68.Themaximumacceleration

of the missile is 40𝑔; 𝑔 is the acceleration of gravity (𝑔 =

9.8m/s2). For comparison of the simulation results, the initial
conditions and the simulation scenarios in literature [32]
are used here for all of the six guidance laws (SANFTSMG,
NFTSMG, MNFTSMG, NTSMG, MNTSMG, and ETSMG).
The initial condition is given in Table 1.

In order to verify the effectiveness of the proposed guid-
ance law, as described in [32], three different target accelera-
tion profiles are considered as given below.
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Figure 20: LOS angular rate (Case 1).
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Figure 21: Sliding mode manifold (Case 1).

Case 1. Consider the following: 𝑎
𝑡
= 7𝑔 cos(𝜋𝑡/4)m/s2.

Case 2. Consider the following: 𝑎
𝑡
= 7𝑔m/s2 for 𝑡 > 5 s and

𝑎
𝑡
= −7𝑔m/s2 for 𝑡 ≥ 5 s.

Case 3. Consider the following: 𝑎
𝑡
= 7𝑔m/s2.

On the other hand, to evaluate the efficiency of the above
five guidance laws, a concept of average absolute acceleration
(AAA) [33] of missile is employed as

𝑎ME =
1

𝑁

𝑁

∑

𝑘=1

𝑎𝑚 (𝑘)
 , (47)

Table 1: The initial condition for the missile and target.

𝑥
𝑚
(0) 0m 𝛾

𝑚
(0) 60∘ 𝑥

𝑡
(0) 2500√3m 𝛾

𝑡
(0) 0∘

𝑦
𝑚
(0) 0m 𝑉

𝑚
600m/s 𝑦

𝑡
(0) 2500m 𝑉

𝑡
300m/s

Table 2: Summary of simulation results in Case 1.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 16.697 0.112 20.146 89.8900
NFTSMG 17.815 0.077 20.064 372.4544
NTSMG 18.985 0.003 19.955 400.0000

Table 3: Summary of simulation results in Case 2.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 15.403 0.007 19.997 90.8752
NFTSMG 15.798 0.212 20.009 379.6671
NTSMG 16.147 0.180 20.034 400.0000

Table 4: Summary of simulation results in Case 3.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 11.840 0.012 19.798 89.6342
NFTSMG 12.105 0.013 19.832 381.7468
NTSMG 12.378 0.391 19.984 400.0000

where 𝑁 represents the total simulation steps and 𝑎
𝑚
(𝑘)

denotes the 𝑘th step value of 𝑎
𝑚
in simulation.

5.1. Simulation of SANFTSMG, NFTSMG, and NTSMG. In
this section, the simulations are carried out for the target
acceleration profiles of Case 1 to Case 3 for comparison of
the effectiveness of the SANFTSMG,NFTSMG, andNTSMG.
The initial condition for the missile and target is shown in
Table 1, the desired terminal LOS angle is selected as 20∘, and
the simulation results are shown in Figures 2–17 and Tables
2–4, respectively.

The trajectories of the missile and the target for Cases 1–3
are shown in Figures 2, 7, and 12, respectively, which imply
that the SANFTSMG, NFTSMG, and NTSMG can all ensure
that the missile intercepts the target in any of the three cases
successfully, and the trajectory under SANFTSMG is the
most gentle which implies that the missile can intercept the
target earliest using this kind of guidance law; this conclusion
is also summarized in the second column of Tables 2–4.

From Figures 3, 8, and 13, we can observe that these
three kinds of guidance laws can all guarantee that the LOS
angle converges to the neighborhood of the desired terminal
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Figure 22: Missile acceleration (Case 1).

LOS angle in finite time and then maintains the states until
the missile intercepts the target accurately. Furthermore, we
can also notice that the SANFTSMG is the earliest one that
ensures that the LOS angle converges to 20∘, followed by
the NFTSMG and NTSMG in order. Figures 4, 9, and 14
indicate that, for the target acceleration profiles of Case 1
to Case 3, the SANFTSMG, NFTSMG, and NTSMG can all
ensure the LOS angular rate converges to the neighborhood
of zero rapidly in finite time, and compared with other
two methods the convergent speed of the SANFTSMG is
the fastest. In addition, we can also see from Figures 4, 9,
and 14 that the curves of the LOS angular rate under the
NFTSMG and NTSMG both have peaks in the first 5 seconds
of the guidance process, which leads to the requirement of
a longer time of saturation of overload command than the
SANFTSMG during the first 5 seconds; this can be found
in Figures 6, 11, and 16. From Figures 5, 10, and 15, we
can find that all the three methods can ensure the sliding
manifold converges to the neighborhood of zero fast in finite
time for the target acceleration profiles of Case 1 to Case
3. The convergent speed of the SANFTSMG is the fastest,
followed by the NFTSMG and NTSMG in order. As shown
in Figures 6, 11, and 16, it can be observed that there are

acceleration saturation problems in all the three cases under
the SANFTSMG, NFTSMG, and NTSMG, among which the
saturation time of the acceleration command of SANFTSMG
is very short, while the acceleration commands of the other
two methods are almost saturated during the whole flight.
From Tables 2–4, we can clearly find that the interception
time taken by the SANFTSMG is shorter than the other two
methods, the miss distance obtained by the SANFTSMG is
least, the terminal LOS angel accuracy of the three methods
in this section is similar, and the average absolute acceleration
of the SANFTSMG is much smaller than the other two
methods. That is to say, under the SANFTSMG, the missile
can intercept the target earliest using the least actuator energy
and obtain the smallest miss distance. In addition, it can
be seen clearly from Figures 4, 5, 9, 10, 14, and 15 that
the SANFTSMG is completely smooth as the LOS angular
rate and sliding manifold converges smoothly using this
kind of guidance law. From Figure 17, we can see that the
adaptive estimation parameter �̂� (defined in adaptive law
(21)) representing the square of target acceleration bound
converges to the neighborhood of a constant fast in finite time
for the target acceleration profiles of Case 1 to Case 3, which
proves that �̃� is bounded.
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Figure 23: Trajectories of missile and target (Case 2).
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Figure 24: LOS angle (Case 2).

5.2. Simulation of SANFTSMG, MNFTSMG, and MNTSMG.
To overcome the shortcoming of chattering due to the
discontinuous signum function sign(𝑠), the NFTSMG and
NTSMG are modified by using continuous sigmoid function
and saturation function, respectively. In this section, the
simulations are carried out for the target acceleration profiles
of Case 1 to Case 3 for comparison of the effectiveness of
the SANFTSMG, MNFTSMG, MNTSMG, and ETSMG.The
initial condition and the desired terminal LOS angle are the
same as previous section; the simulation results are shown in
Figures 18–32 and Tables 5–7, respectively.

For Case 1, it can be seen from Figure 18 and Table 5 that
under the proposed SANGTSMG the trajectory of themissile
is most gentle; thus the missile intercepts the target earliest
(1.068 s, 1.8740 s, and 1.0360 s in advance compared with
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Figure 25: LOS angular rate (Case 2).
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Figure 26: Sliding mode manifold (Case 2).

Table 5: Summary of simulation results in Case 1.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 16.697 0.112 20.146 89.8900
NFTSMG 17.765 0.108 20.119 129.0139
NTSMG 18.571 0.065 19.913 158.7946
ETSMG 17.733 0.095 19.988 117.3914

the MNFTSMG, MNTSMG, and ETSMG, resp.). Figure 19
indicates that for all of the four guidance laws the LOS angle
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Figure 27: Trajectories of missile and target (Case 2).

Table 6: Summary of simulation results in Case 2.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 15.403 0.007 19.997 90.8752
NFTSMG 15.770 0.038 20.014 140.8357
NTSMG 16.030 0.257 20.008 174.5899
ETSMG 15.639 0.192 20.001 129.5165

Table 7: Summary of simulation results in Case 3.

Guidance
law

Interception
time (s)

Miss
distance
(m)

LOS angel
(∘) AAA (m/s2)

SANFTSMG 11.840 0.012 19.798 89.6342
NFTSMG 12.092 0.033 19.890 156.7057
NTSMG 12.281 0.183 19.977 196.9550
ETSMG 12.001 0.128 19.988 141.0386

can converge to the desired impact angle in finite time, and by
contrast the convergent speed of SANFTSMG is the fastest.

As shown in Figures 20 and 21, the chattering of the LOS
angular rate and the sliding manifold is eliminated under
the MNFTSMG and MNTSMG; however the curves of the
LOS angular under the NFTSMG, NTSMG, and ETSMG still
have peaks near the fifth second which leads to much serious
saturation compared with the SANFTSMG; as a result, the
average absolute acceleration of the MNFTSMG, MNTSMG,
and ETSMG is still bigger than the SANFTSMG. In addition,
Figure 22 indicates that the guidance command 𝑎

𝑚
under the

MNFTSMG is still nonsmooth.That is to say, compared with
the MNFTSMG, MNTSMG, and ETSMG, the SANFTSMG
can still ensure that themissile can intercept the target earliest
using the least actuator energy and obtain the smallest miss
distance.The same conclusion can be found in the simulation
results in Case 2 and Case 3, which are shown in Figures 23–
32 and Tables 6 and 7, respectively.

5.3. Simulation with Different Initial Flight Path Angles. The
previous simulations are carried out only for a specific desired
terminal LOS angel (20∘) as well as the same initial flight path
angle as shown in Table 1. In order to validate the proposed
SANFTSMG, in this section simulations based on the same
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Figure 28: Trajectories of missile and target (Case 3).
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Figure 29: LOS angle (Case 3).

desired LOS angle and different initial flight path angles are
carried out.

The desired LOS angle is selected as 20∘, and let the initial
flight path angle of the missile be 40∘, 60∘, and 80∘, respec-
tively.The target acceleration is chosen asCase 2 and the other
initial simulation parameters remain the same as previous
simulations. With the implementation of SANFTSMG, the
trajectories of missile and target, the LOS angle, the sliding
manifold, and the missile acceleration are given in Figures
33–36; the miss distance, finial LOS angle, and the average
absolute acceleration are summarized in Table 8.
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Figure 30: LOS angular rate (Case 3).
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Figure 31: Sliding mode manifold (Case 3).

Table 8: Summary of simulation results with different initial flight
path angles.

Initial flight
path angle (∘)

Interception
time (s)

Miss
distance
(m)

LOS angle
(∘) AAA (m/s2)

40 15.316 0.152 19.989 93.6704
60 15.403 0.007 19.997 90.8752
80 15.553 0.082 20.009 97.5046

From Figure 33, it can be seen that the missile can inter-
cept precisely the target from different initial flight path
angles with impact angle constraint. Figures 34 and 35 show
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Figure 32: Trajectories of missile and target (Case 3).

Table 9: Summary of simulation results with different impact
angles.

Desired LOS
angle (∘)

Interception
time (s)

Miss
distance
(m)

LOS angle
(∘) AAA (m/s2)

20 15.332 0.225 19.990 92.2791
30 14.759 0.092 30.012 89.2257
40 15.317 0.002 40.041 169.7103

that the LOS angle and the sliding manifold can converge
to 20∘ and zero in finite time, respectively. The missile
acceleration command in Figure 36 is within the reasonable
bound. From Table 8, it can be observed that the miss
distance and terminal LOS angle error are satisfactory and the
average absolute acceleration is relatively small. By contrast,
when the initial flight path angle is selected as 40∘, the
missile intercepts the target earliest, while 60∘ produces the
least average absolute acceleration.

5.4. Simulation with Different Desired LOS Angles. The final
simulations for different desired LOS angles but from the
same initial flight path angle are performed in this section.
The initial flight path angle is selected as 45∘, and let the
desired LOS angle of the missile be 20∘, 30∘, and 40∘,
respectively. The target acceleration is chosen as Case 2 and
the other initial simulation parameters remain the same as
previous simulations. The simulation results are shown in
Figures 37–40 and Table 9, respectively.

From Figure 37, it can be seen that the missile can inter-
cept precisely the target with different impact angle constraint
from the same initial flight path angle. Figure 38 shows that
the LOS angle can converge to 20∘, 30∘, and 40∘ in finite
time, respectively, and the terminal LOS angle error is less
than 0.05∘ which is reflected in the fourth column of Table 9.
The sliding manifolds are shown in Figure 39, which indicate
that system state of (12) converges to zero in finite time with
all the three desired LOS angles, and by contrast when the
desired LOS angle is selected as 40∘, the convergent speed is
the slowest; this can be found from the trajectory of missile in
Figure 37 and the LOS angle curve in Figure 38. In addition,
Table 9 shows that the simulation for the desired LOS angles
of 40∘ needs the biggest average absolute acceleration.
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By contrast, when the initial flight path angle is selected
as 30∘, themissile intercepts the target earliest and it produces
the least average absolute acceleration.

6. Conclusion

In this paper, we have proposed a new smooth adaptive
nonsingular fast terminal sliding mode guidance law con-
sidering the terminal angle constraint for intercepting the
maneuvering targets on the nonsingular fast terminal sliding
mode control scheme and adaptive control scheme. Different
from the existing adaptive law for estimating the upper bound
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of the system uncertainty, the adaptive law employed in SAN-
FTSMG is designed to estimate the square of the upper bound
of the target maneuvering; in this way, not only is the prior
information of the target maneuvering unnecessary, but also
the nonsmooth signum function existing in the traditional
sliding mode guidance laws is eliminated, which ensures the
smooth property of the guidance law. On the other hand, due
to the usage of the nonsingular fast terminal slidingmanifold,
the SANFTSMG is nonsingular. Furthermore, the precise
convergent region of the sliding manifold, the LOS, and the
LOS angular rate are given based on Lyapunov method and
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finite time theory. It can be indicated from the simulation
results of different scenarios that with the described guidance
law the finite time convergence of the guidance system is
guaranteed, and comparedwith similar guidance law [29, 32],
under the SANFTSMG, the missile can intercept the target
earliest using the least actuator energy and obtain the smallest
miss distance, which shows the superiority of this method.
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