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Incredible rapid growth in the nanoparticles applications and development increases the daily human exposure to them but humans
are exposed to many other pollutants in addition to nanoparticles that forced us to evaluate the effect of heavy metal cadmium
chloride (CdCl,) coinjection on silver nanoparticles induced genotoxic risk in this study. Mice were injected into the abdominal
cavity with single dose of Ag nanoparticles (20, 41, and 82 mg/kg) or CdCl, (1.5 mg/kg) either separately or together simultaneously
and sacrificed 24 hours later. CdCl, cotreatment enhanced the induced dose-dependent sperm abnormality by Ag nanoparticles
different doses as shown by the statistical significant decreases in both sperm concentration and motility and increases in the
frequency of abnormal sperms and also potentiated the Ag nanoparticles induced chromosomal and DNA damage indicated
by the statistical significant elevations in the frequencies of micronucleated polychromatic erythrocytes (MNPCEs) and DNA
damage levels. Moreover, statistical elevations in malondialdehyde level and reductions in catalase activity were observed after
CdCl, coinjection with Ag nanoparticles compared with Ag nanoparticles treated groups’ values. Ag nanoparticles induced sperm
abnormality, clastogenicity, and genotoxicity were potentiated by heavy metal cadmium coinjection that threatens the human life

and increases silver nanoparticles genotoxic risks.

1. Background

The last few years have seen an incredibly rapid growth in
the use of nanomaterials such as metal nanomaterials in
food, medicine, and industry, resulting in increasing human
exposure to them. Silver (Ag) nanoparticles are one of the
most commonly used metal nanoparticles in many consumer,
medical, and industrial products such as water, toothpaste,
shampoo, cosmetics, filters, kitchen utensils, toys, and food
because of their characteristic antibacterial activity [1-4].
However, the extensive uses of Ag nanoparticles caused
several negative health effects including hepatotoxicity, neu-
rotoxicity, nephrotoxicity, and genotoxicity [5-7]. Genotox-
icity and cytotoxicity of Ag nanoparticles have been evi-
denced in both in vitro and in vivo experimental systems.
The inductions of chromosomal and DNA damage by Ag
nanoparticles have been evidenced in several mammalian
and fish cell [8-12]. Inductions of apoptosis and necrosis by

these nanoparticles were also shown in the cultured HeLa
cells and intestinal epithelial cells [13, 14].

The in vivo induced genetic damage by Ag nanoparti-
cles has been shown in different experimental systems. Ag
nanoparticles have been shown to induce chromosomal aber-
rations and micronuclei in rat bone marrow cells [15]. Using
comet assay DNA damage induction by Ag nanoparticles
was indicated by the significant elevations in both single and
double strand DNA breaks in rats and mice [16, 17]. High
levels of y-H2AX (a marker for double DNA strand breaks)
also evidenced DNA damage inductions in zebra fish orally
given Ag nanoparticles [18]. Moreover, polysaccharide coated
Agnanoparticles elevated the DNA damage markers (p53 and
P38 proteins) in Drosophila melanogaster [19].

The embryo-toxicity of Ag nanoparticles also has been
shown by the reported congenital malformations, reductions
in mice fetus viability, apoptosis in mouse embryos at the
blastocyst stage, reduction of implantation frequency, and



delay in postimplantation development of embryos [20-23].
Additionally, Ag nanoparticles have been shown to signifi-
cantly reduce sperm counts and elevate the sperm abnormal-
ities in mice and rats [24, 25].

In addition to these nanoparticles, there are many other
substances to which humans are exposed directly or indi-
rectly such as heavy metals. Cadmium (Cd) is one of the
most important toxic environmental pollutants to which
humans and animals are exposed because industrial and
agricultural practices increase its level continuously in the
environment [26]. Cd has been shown to induce micronuclei
in polychromatic erythrocytes in both tibia bone marrow and
peripheral blood in rats [27]. Also, the clastogenicity of Cd
has been demonstrated by the development of chromosomal
aberrations and sister chromatids exchanges [28, 29].

As previously shown the genotoxicity of either Ag
nanoparticles or Cd was studied separately but the genotoxi-
city behavior of Ag nanoparticles combined with Cd was not
studied until now in spite of human exposure to both Ag
nanoparticles and Cd via contaminated air, drinking water,
and even food. Therefore, the present study was designed to
study the clastogenicity and genotoxicity of Ag nanoparticles
in the presence of Cd in mice bone marrow, testes, and
sperms. Micronucleus and comet assay were done to assess
chromosomal and DNA damage, respectively. Sperm count,
abnormality, and motility were also estimated to study the
effect of Ag nanoparticles on sperm and thus on fertility.

2. Materials and Methods

2.1. Animals. Male Swiss Webster mice weighting 30-35
grams were obtained from the animal house of National
Organization for Drug Control and Research (NODCAR).
They were left in lab for one week under standard dark/light
cycle to be acclimatized with the laboratory conditions and
supplied with standard diet pellets and water that were given
ad libitum. All experiments on animals were performed in
accordance with The Institutional Animal Care and Use
Committee (IACUC), Faculty of Science, Cairo University.

2.2. Chemicals. All chemicals were purchased from Sigma
Aldrich Chemical Company. Cd was obtained in the form
of white CdCl, powder and dissolved in deionized water to
prepare the selected injected dose (1.5 mg/kg) that represents
25% of the computed 24-hour LD50 (5.98 mg/kg) in mice by
the study of Ali [30]. While Ag nanoparticles were purchased
in the form of grey nanopowder with size <100 nm, its purity
was 99.5% and contains polyvinylpyrrolidone (PVP) as a
dispersant. Ag nanoparticles were suspended in deionized
distilled water to prepare the doses required to inject mice in
both preliminary tests to detect their LD50 and the remaining
experiments.

2.3. Characterization of Ag Nanoparticles

2.3.1. X-Ray Diffraction (XRD). Nano-Ag particles XRD pat-
terns were measured using a charge coupled device diffrac-
tometer (XPERT-PRO, PANalytical, Netherlands). Using
Scherrer’s relationship (D = 0.9 k/Bcosh) particle size

Journal of Nanomaterials

was calculated, where k is the wavelength of X-ray, B is
the broadening of diffraction line measured as half of its
maximum intensity in radians, and h is Bragg’s diffraction
angle. The particle size of sample has been estimated from the
line width of XRD peak.

2.3.2. Dynamics Laser Scattering (DLS). Agglomeration size
and zeta potential of Ag nanoparticles were detected by
the routine work using Malvern Instrument Zetasizer Nano
Series (Malvern Instruments, Westborough, MA) equipped
with a He-Ne laser (A = 633 nm, max 5 mW).

2.3.3. Transmission Electron Spectroscopy (TEM). After son-
ication of Ag nanoparticles suspensions in Milli-Q water at
40 W for 25 min, drops of Ag suspensions were coated on
carbon-coated copper TEM grids and dried, and finally TEM
(a Tecnai G20, Super twin, double tilt) was operated at an
accelerating voltage of 200kV to Ag nanoparticles and to
detect their morphology and particle average size.

2.4. Determination of Ag LD50. The lethal dose of Ag
nanoparticles that causes the death of 50% of the animals
(LD50) was determined by injecting mice intraperitoneally
(i.p.) with each of the six dose levels of Ag nanoparticles 500,
1500, 2500, 3500, 4000, or 5000 mg/kg b.w., five mice per each
group. Each group was observed for mortality, body weight
effects, and the clinical signs of toxicity and the number of
dead mice was monitored during the first 24 hours. After that,
the LD50 was calculated using the computer software EPA
probit analysis by aid of NCSS package software, version 10,
and the three fractions (1/100, 1/50, and 1/25) of LD50 dose of
Ag nanoparticles were tested in this study.

2.5. Treatment Schedule. Animals were divided randomly
into eight groups of five animals each and injected i.p. First
two groups were injected with distilled water (dist. H,O)
(negative control group) or CdCl, at 1.5 mg/kg b.w. while the
remaining six groups were injected with each of the three
dose levels of Ag nanoparticles (20, 41, and 82 mg/kg b.w.)
either alone (groups 3, 4, and 5) or simultaneously with CdCl,
(groups 6, 7, and 8) and all groups were sacrificed 24 hours
later.

2.6. Sperm Abnormality. Sperm abnormality was investigated
by removing the cauda epididymides and cutting them
into small pieces in Petri dish containing 2mL saline. A
small amount of sperm suspension was added to the cell
counting hemocytometer plates and the total sperm number
and motile sperm number were counted using a high-
magnification microscope as described by Watanabe and
Endo [31]. The sperm concentration and motility rate were
calculated using the following equations:

Sperm concentration = the total sperm number + (4

x 10% x 2)
(1)

Sperm motility rate = (the motile sperm number

+ the total sperm number) x 100.
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Indeed, a small amount of sperm suspension was drawn
and smeared on a slide, fixed for 10 min with methanol,
stained for 1 hour with 1% eosin, and then washed with
water. A total of 1000 sperms were counted to determine the
proportion of malformed sperm using a high-magnification
microscope:

The sperm malformation rate

2)
= (the malformed sperm number + 1000) x 100.

2.7 Micronucleus Assay. To detect the chromosomal damage,
micronucleus assay was performed on bone marrow accord-
ing to the method described by Schmid [32]: femur bone mar-
row cells are flushed down, spread on clean slide, air-dried,
fixed, and finally stained for 5 min in May-Grunwald-Giemsa
stain mixture and then mounted with Distrene 80, Dibutyl
Phthalate Xylene (DPX). Two thousand polychromatic ery-
throcytes per animal were scored to determine the number
of micronucleated polychromatic erythrocytes (MNPCE:s).
Also, polychromatic to normochromatic erythrocytes ratio
(PCEs/NCEs) was determined per 1000 cells.

2.8. Comet Assay. The alkaline comet assay was done to
detect both single and double strand breaks in sperms, testes,
and bone marrow cells. Bone marrow cells and sperms
obtained from epididymis were suspended into mincing
solution, while small piece of testis, about 50 mg, was homog-
enized gently into mincing solution. According to Tice et
al. [33] method, about 10,000 cells were mixed with 75 uL
of 0.5% low melting point agarose (Sigma) and spread on
a fully frosted slide predipped in normal melting agarose
(1%). After solidification, cells were lysed in cold lysis buffer
(2.5M NaCl, 100 mM EDTA, and 10 mM Tris, pH 10) with
freshly added 10% DMSO and 1% Triton X-100 for 24 h at
4°C in dark. Subsequently, the slides were incubated in fresh
alkaline buffer (300 mM NaOH and 1mM EDTA, pH 13) for
20 min. The unwinding DNA was electrophoresed for 20 min
at 300 mA and 25V (0.90 V/cm) and neutralized in 0.4 M
Trizma base (pH 7.5) and, finally, fixed in 100% cold ethanol,
air-dried, and stored at room temperature until cells were
scored. The extent of DNA migration for each sample was
determined by simultaneous image capture and scoring of 100
cells stained with ethidium bromide at x400 magnification
using Komet 5 image analysis software developed by Kinetic
Imaging, Ltd. (Liverpool, UK). The extent of DNA damage
was evaluated using tail length, % tail DNA, and tail moment
as DNA damage endpoints.

2.9. Malondialdehyde Level and Catalase Activity Measure-
ment. In this study biochemical evaluation of malondialde-
hyde (MDA) level (marker of lipid peroxidation) and the
antioxidant catalase (CAT) activity was done in bone marrow,
testis, and epididymal sperms of all groups. According to
the method described by Ohkawa et al. [34], the MDA level
was determined by reacting the thiobarbituric acid (TBA)
substance with MDA in acidic medium at temperature of
95°C for 30 min to form TBA reactive product and the
absorbance of the resultant pink product was measured

spectrophotometrically at 534 nm. Results were expressed
as nmol/g tissue used for bone marrow and testis and as
nmol/10® sperms for epididymal sperms.

On the other hand, CAT activity was measured using
the method described by Aebi [35] that showed that CAT
reacts with a known quantity of H,O,. The reaction is stopped
after exactly 1min with CAT inhibitor. In the presence of
peroxidase, the remaining H,O, reacts with 3,5-dichloro-
2-hydroxybenzene sulfonic acid and 4-aminophenazone to
form a chromophore with color intensity inversely propor-
tional to the amount of CAT in the original sample. Results
were expressed as U/g tissue used for bone marrow and testis
and as U/10° sperms for epididymal sperms.

2.10. Statistical Analysis. Using the statistical software pack-
age SPSS 21 all data were analyzed at the significant level <0.05
by the independent sample t-test to test differences between
each of the treated groups and the negative control group.
One way analysis of variance (ANOVA) and regressions anal-
ysis curves were also used to test effect of Ag nanoparticles
dose on the tested parameters.

3. Results

3.1 Characteristic of Ag Nanoparticles. Results of Ag nano-
particles characterization were summarized in Figure 1. The
appearance of peaks at 44°, 64.4°, and 77° in XRD analysis
curve confirmed the purchased form of Ag nanoparticles
(Figure 1(a)) and by using Debye Scherrer’s formula their
nanocrystal size was confirmed and found to range from 20.8
to 277 nm. The zeta potential mean was 9.35mV and the
polydispersity index (PdI) as synonym to agglomeration size
was 1 that indicated the high aggregation and agglomeration
capacity of Ag nanoparticles in dist. deionized H,O (Figures
1(b) and 1(c)). Indeed, TEM imaging of the ultrasonicated
Ag nanoparticles showed their cubic structure increasing its
surface area and its activity and confirmed the nanosize of Ag
nanoparticles (56.67 + 9.77 nm) in spite of presence of small
agglomerates (Figure 1(d)).

3.2. LD50 of Ag Nanoparticles. Signs of mortality were
observed on mice injected i.p. by the different doses of Ag
nanoparticles (500, 1500, 2500, 3500, 4000, or 5000 mg/kg
b.w.) including weakness, decreased motor activity, convul-
sions, abdominal swelling, and hind limbs paralysis. Using
the probit analysis software, the 24 hours’ lethality doses
(from LD1 to LD99) of Ag nanoparticles were calculated and
summarized in Table 1. As LD50 were found to be about
2056 mg/kg b.w., the tested three fractions of (1/100, 1/50,
and 1/25) LD50 in this study were 20, 41, and 82 mg/kg b.w.,
respectively.

3.3. Sperm Abnormality. As shown in Table 2, groups treated
with either CdCl, (1.5mg/kg) or Ag nanoparticles (20, 41,
and 82 mg/kg) alone induced sperm abnormality as shown by
the statistical significant increases (p < 0.001) in frequency
of abnormal sperms and decreases (p < 0.001) in both
sperm concentrations and sperm motility compared with the
negative control group. On the other hand, simultaneous
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FIGURE 1: Characterization of Ag nanoparticles.

TABLE 1: The computed 24-hour lethality doses of Ag nanoparticles
injected i.p. in male mice.

Percentile Probit Dose (mg/kg)
Mean + SE

1 2.6737 377.31 + 266.47
5 3.3551 620.03 + 335.51
10 3.7184 808.01 + 368.37
20 4.1584 1113.45 + 398.48
25 4.3255 1257.69 + 406.39
30 4.4756 1403.09 + 412.11
40 4.7467 1709.56 + 422.15
50 5.0000 2056.26 + 441.17
60 5.2533 2473.28 + 491.44
70 5.5244 3013.51 + 615.91
75 5.6745 3361.88 + 730.21
80 5.8416 3797.40 + 903.93
90 6.2816 5232.89 +1647.36
95 6.6449 6819.33 + 2669.52
929 7.3263 11206.31 + 6152.05

injection of CdCl, with Ag nanoparticles different doses
enhanced the Ag nanoparticles induced sperm abnormality
by the statistical significant increases in frequency in abnor-
mal sperm and decreases in sperm concentrations and sperm
motility (groups 6, 7, and 8) compared with those in groups
treated with Ag nanoparticles alone (groups 3, 4, and 5).
Representative photo for the observed abnormal sperms was
shown in Figure 2.

One way ANOVA analysis showed that the dose of Ag nano-
particles caused statistical significant changes (p < 0.001) in

FIGURE 2: Representative photo for the observed abnormal sperms.

sperm concentration, sperm motility, and abnormal sperms
frequency. Moreover, regression analysis curves indicated
strong negative and positive correlations between both sperm
concentration and motility and abnormal sperm frequency,
respectively, and the different doses of Ag nanoparticles in
both groups received Ag nanoparticles either alone or with
Cd (Table 2, Figure 3).

3.4. Results of Micronucleus Assay. Chromosomal damage
induction was estimated in this study by the frequency of
micronucleated polychromatic erythrocytes (MNPCEs/1000
PCEs). Statistical significant elevations in the MNPCEs fre-
quencies (p < 0.001) were induced in groups treated with
either CdCl, (1.5mg/kg) or Ag nanoparticles (20, 41, and
82mg/kg) compared with the negative control (Table 3).
Moreover, CdCl, cotreatment with the different doses of Ag
nanoparticles resulted in statistical significant elevations in
the MNPCEs frequencies compared with Ag nanoparticles
treated groups (Table 3).

Also, administration of either Cd or Ag nanoparticles
alone resulted in statistical significant decreases (p < 0.001)
in the percentage of polychromatic erythrocytes (% PCEs)



Journal of Nanomaterials

TABLE 2: Sperm concentrations, sperm motility, and abnormal sperms frequency in mice injected i.p. with Ag nanoparticles or/and CaCl,.

Group ( drlgse:tr?:girll{;) Sperm(lc(())ér;fsil;ratlon Sperm motility (%) Abnormal sperms (%)

1 Negative control 1.44 £ 0.04 77.04 +1.68 520 +1.30

2 Cde) 0.58 + 0.15° 29.63 +3.26" 58.20 + 4.66"

3 Ago) 1.18 + 0.06 55.09 + 3.55 18.40 +3.21°

4 Agu 0.92 +0.07° 30.44 + 2.48° 376 + 2.30°

5 Agsz) 0.45 + 0.05" 21.92 +2.05" 59.00 + 2.24°

6 Agyy +Cd 0.98 + 0.05*"** 35.47 £2.63*""" 31.20 + 238"

7 Agyy, +Cd 0.70 + 0.08"*** 23.86 + 2.96*" 52.20 + 2.59%**

8 Aggsy +Cd 0.36 + 0.04%>** 10.71 +1.72%0*** 74.60 + 456>
Groups 3, 4, and 5 F =194, p <0.001 F =193, p <0.001 F =300, p <0.001

Groups 6,7, and 8

F =137, p < 0.001

F =124, p < 0.001 F =216, p < 0.001

Results were expressed as mean + SD. *Statistically significantly different from the negative control group at p < 0.001 and bsta'[istically significantly different

from the comparable nano-Ag treated group at ** p < 0.01 and
of different doses of Ag nanoparticles on the tested parameters.

ok 3k

p < 0.001, respectively, using Student’s t-test. One way ANOVA was used to test the effect
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FIGURE 3: Regression lines and correlation coeflicients between sperm concentrations, sperm motility, or frequency of abnormal sperms and
the different doses of Ag nanoparticles in mice injected i.p. with Ag nanoparticles either alone or with CaCl,.
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TaBLE 3: The MNPCEs frequencies and PCEs percentage in mice injected i.p. with Ag nanoparticles or/and CaCl,.

Group Treatment (dose mg/kg) MNPCEs/1000 cells % PCEs

1 Negative control 520217 49.80 + 1.48

2 Cd, 6 47.60 + 3.36" 35.80 + 2.39*

3 Ago) 4720 217 41.80 +1.30°

4 Agu 73.60 + 6.02° 30.60 + 2.41°

5 Agesy) 94.40 + 5.94° 22.20 + 3.81°

6 Ag ) + Cd 73.60 + 6.65>*** 36.20 + 2.77°*

7 Aggy +Cd 104.60 + 5.73%*** 25.80 + 1.92%0***

8 Aggs +Cd 144.60 + 5.73%*** 17.40 + 1.14%>**

Groups 3, 4, and 5
Groups 6,7, and 8

F =105, p < 0.001
F =149, p < 0.001

F =173, p < 0.001
F =110, p < 0.001

Results were expressed as mean + SD. *Statistically significantly different from the negative control group at p < 0.001 and Pstatistically significantly different

EETY

from the comparable nano-Ag treated group at ** p < 0.01 and
of different doses of Ag nanoparticles on the tested parameters.
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FIGURE 4: Regression lines and correlation coefficients between frequency of MNPCEs or percentage of PCEs and the different doses of Ag
nanoparticles in mice injected i.p. with Ag nanoparticles either alone or with CaCl,.

compared with the negative control level and the cotreatment
of CdCl, with Ag nanoparticles different doses statistically
decreased (p < 0.001) % PCEs compared with Ag nanoparti-
cles treated groups as shown in Table 3.

Both of MNPCEs and % PCEs were statistically affected
(p < 0.001) by the Ag nanoparticles doses in groups treated
with either Ag alone (F = 149.53, F = 110.01) or CdCl,
(F = 104.76, F = 172.93), respectively. Strong positive and
negative correlations between the Ag nanoparticles doses and
MNPCEs and % PCEs, respectively, were indicated by the
regression analysis curves (Figure 4) in all Ag nanoparticles
treated groups.

3.5. Comet Assay Results. Results of comet assay are summa-
rized in Tables 4(a), 4(b), and 4(c) and Figure 5 that showed
representative photo for the observed various grades of DNA
damage regardless of organs and treatment. Groups which
received single injection of either CdCl, (1.5mg/kg) or Ag
nanoparticles in different doses showed statistical significant
increases (p < 0.001) in tail length, % DNA in tail, and tail

moment compared with the negative control group. However,
CdCl, cotreatment enhanced the Ag nanoparticles induced
DNA damage as shown by the statistical significant increases
in tail length, % DNA in tail, and tail moment in groups
injected with both CdCl, and Ag nanoparticles compared
with the Ag nanoparticles treated groups’ levels. This DNA
damage induction was statistically affected (p < 0.001) by
the Ag nanoparticles dose as shown by one way ANOVA
analysis (Tables 4(a), 4(b), and 4(c)) and regression analysis
curves evidenced the strong positive correlations between
DNA damage inductions and Ag nanoparticles doses in all
Ag treated groups either alone or with CdCl, (Figure 6).

3.6. MDA Level and CAT Activity. Single i.p. injection of
either CdCl, (1.5mg/kg) or Ag nanoparticles (20, 41, and
82 mg/kg) caused statistical significant (p < 0.001) elevations
in the MDA level and decreases in CAT activity compared
with the negative control level (Table 5). Furthermore, CdCl,
coinjected with the different doses of Ag nanoparticles
resulted in statistical significant (p < 0.001) increases in
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TABLE 4: (a) Tail length, % DNA in tail, and tail moment in bone marrow cells of mice injected i.p. with Ag nanoparticles or/and CaCl,. (b)
Tail length, % DNA in tail, and tail moment in testis of mice injected i.p. with Ag nanoparticles or/and CaCl,. (c) Tail length, % DNA in tail,
and tail moment in sperms of mice injected i.p. with Ag nanoparticles or/and CaCl,.

(a)

Group Treatment (dose mg/kg) Tail length (px) % DNA in tail Tail moment
1 Negative control 7.60 £ 0.98 16.57 +£1.33 1.29 £ 0.19
2 Cdy g 2530 + 2.54° 28.25+1.58° 7.47 +1.02°
3 Agi0) 1550 + L11° 23.03 +1.94° 3.82 +0.47°
4 Aguy 24.77 + 2.67° 31.85 + 3.74° 8.20 + 0.47°
5 Agsy 3162 + 1.80° 4358 + 2.44° 13.64 + 1.01°
6 Agp +Cd 26.67 + 2.34*" 34.59 + 2.98*° 917 + 0.72*°
7 Aggy +Cd 39.02 + 2.94* 46.62 + 1.67* 18.15 + 1.12*°
8 Aggsy +Cd 50.02 + 4.88% 54.74 £ 3.18* 2716 £ 2.74*"

Groups 3, 4, and 5 F =844, p <0.001 F =672, p <0.001 F =194.0, p < 0.001
Groups 6,7, and 8 F =539, p <0.001 F=70.7, p <0.001 F =130.7, p < 0.001

Results were expressed as mean * SD. *Statistically significantly different from the negative control group and bstatistically significantly different from the
comparable nano-Ag treated group at p < 0.001 using Student’s t-test. One way ANOVA was used to test the effect of different doses of Ag nanoparticles on

the tested parameters.

(b)

Group Treatment (dose mg/kg) Tail length (px) % DNA in tail Tail moment
1 Negative control 6.23 £0.51 14.14 + 1.06 0.88 £ 0.11
2 Cdg) 16.60 + 2.20° 2511 + 2.46" 473 +0.96"
3 Ag ) 21.29 +2.41° 2211+ 1.72* 4.85 £ 0.99°
4 Ay 31.27 + 316" 32.99 + 1.18° 10.42 + 1.30°
5 Agsy) 4531+ 0.75" 4479 + 2.64° 20.14 £ 1.47*
6 Agp) +Cd 29.29 +2.04* 33.68 + 2.64*" 971+ 0.57*°
7 Agy, +Cd 45.70 + 3.56™ 48.45 +3.50%° 22.45 + 3.16*
8 Aggsy +Cd 63.47 + 3.48* 7139 + 4.25*° 4514 +3.03*

Groups 3, 4, and 5 F=133.4, p <0.001 F=170.4, p <0.001 F=185.2, p <0.001
Groups 6,7, and 8 F =151.5, p < 0.001 F=145.2, p <0.001 F =248.38, p <0.001

Results were expressed as mean + SD. *Statistically significantly different from the negative control group and bstatistically significantly different from the
comparable nano-Ag treated group at p < 0.001 using Student’s t-test. One way ANOVA was used to test the effect of different doses of Ag nanoparticles on
the tested parameters.

(c)

Group Treatment (dose mg/kg) Tail length (px) % DNA in tail Tail moment

1 Negative control 751+ 1.70 12.33 +£1.33 1.01 + 0.34

2 Cd ) 21.36 +3.95%** 2517 + 1.72*** 584 4 1300

3 Ag) 15.35 + 157°*** 22.44 £ 1.67** 433 4 125

4 Agu) 22.89 & 271 32.84 + 353" 737 + 0,45

5 Ag) 34.45 2,95 45.64 +3.09%** 1575 + 1.89%***

6 Agp) +Cd 23.65 + 4.21%F b+ 36.43 £ 9.79% b 758 4 1393 b**
7 Aguy +Cd 34.05 + 4.82° 0" 52.32 4 41570 1771 4 3.09%*+bees
8 Ags,) +Cd 54.92 + 4,630 73.00 + 4.48% "0 37.08 + 9.00***°**

Groups 3, 4, and 5 F =749, p <0.001 F =816, p<0.001 F =100.5, p <0.001
Groups 6,7, and 8 F =609, p <0.001 F=173.8, p < 0.001 F =3572, p <0.001

Results were expressed as mean * SD. *Statistically significantly different from the negative control group and bstatistically significantly different from the
comparable nano-Ag treated group at “p < 0.05, ** p < 0.01, and *** p < 0.001 using Student’s £-test. One way ANOVA was used to test the effect of different
doses of Ag nanoparticles on the tested parameters.

MDA level and decreases in CAT activity compared with Ag ~ of Ag nanoparticles (Table 5) and the regression analysis
nanoparticles groups’ values (Table 5). curves revealed the strong positive and negative correlations

One way ANOVA showed that both of MDA level  between Ag nanoparticles dose and MDA level and CAT
and CAT activity were significantly altered by the dose  activity in all Ag treated groups (Figure 7).
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TaBLE 5: The MDA level and CAT activity in bone marrow, testis, and sperms of mice injected i.p. with Ag nanoparticles or/and CaCl,.

Treatment Bone marrow Testis Sperms
Group (dose mg/kg) MDA level CAT activity MDA level CAT activity MDA level CAT activity
(nmol/g) (Ulg) (nmol/g) (Ulg) (nmol/10%) (U10°%)
1 Negative 2976 + 131 8.15 + 0.52 38.05 + 1.66 701 + 0.41 2,93 +0.16 46.83 +2.36
control
2 Cd 49.49 +1.80° 4.21+0.62° 57.77 + 4.27* 3.24 +0.29° 9.95 + 0.12* 36.09 + 2.33°
3 Ag ) 47.88 +1.71° 5.58 + 0.48° 59.17 + 4.75° 4.47 +0.38° 6.30 +0.22° 32.79 + 1.90°
4 Agun 60.52 +1.12* 410 +0.29° 78.04 + 5.72* 2.98 +0.29° 9.45 + 0.12* 26.50 + 2.45°
5 Agg 89.78 + 2.48" 2.88 +0.28" 107.03 + 7.72* 2.20 +0.25° 14.17 + 0.45" 1751 + 1.64°
6 Agoy +Cd  68.93£342°°  4.04:037°° 9262260 257049  8.64+030 2437 +182°
7 Agy, +Cd 8793 136"  295+032*° 11655 +3.44*  195+015° 1240 +0.44*° 13114219
8 Agey +Cd 11668 £5.82°° 1994008  13343+202*°  1122£016"° 21224279  6.86 + 0.74*°
Groups 3, 4, and 5 F=1088.7 F=697 F=6828, F=677, F=8791, F=718,
p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 p < 0.001
Groups 6,7, and 8 F=7323, F =642, F =2779, F=277, F =689.8, F=136.4,
p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 p <0.001

Results were expressed as mean + SD. *Statistically significantly different from the negative control group and bstatistically significantly different from the
comparable nano-Ag treated group at p < 0.001 using Student’s t-test. One way ANOVA was used to test the effect of different doses of Ag nanoparticles on

the tested parameters.

FIGURE 5: Representative photos for the observed various grades of DNA damage (b-d) and undamaged DNA (a).

4. Discussion

The incredible rapid growth in the uses and applications of
Ag nanoparticles because of their antimicrobial properties
increases human exposure to them. On the other hand, in-
creasing environmental pollution increases human exposure

to many other pollutants including heavy metals, for example,
Cd in addition to Ag nanoparticles via various ways including

contaminated water, fishes, and other sources. Therefore,

it is essential to investigate the effect of Cd on the Ag
nanoparticles induced genomic instability and DNA damage
in mice testis, sperms, and bone marrow cells in this study.
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FIGURE 6: Regression lines and correlation coeflicients between tail length, % DNA in tail, or tail moment and the different doses of Ag
nanoparticles in mice injected i.p. with Ag nanoparticles either alone or with CaCl,.

The observed significant elevations in sperm abnormality,
MNPCEs frequencies, and DNA damage inductions and
significant decreases in % PCEs compared with the negative
control group in this study confirmed the previously reported
cyto-, clasto-, and genotoxic effects of Cd [30, 36-38]. This
genotoxic effect of Cd could be attributed to its capacity to
stimulate oxidative stress by interacting with the thiol groups
of antioxidant enzyme and thus inhibiting them as revealed

in our study by the significant elevations in MDA level and
reduced CAT activity in Cd treated group.

First our results confirmed the dose-dependent geno-
toxicity of Ag nanoparticles alone on both chromosomal
and DNA levels by the significant elevations in micronuclei
frequencies and DNA damage parameters in agreement with
the previous studies [39-41]. Indeed, our finding of reproduc-
tive function deterioration in Ag nanoparticles treated male
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FIGURE 7: Regression lines and correlation coefficients between MDA level or CAT activity and the different doses of Ag nanoparticles in

mice injected i.p. with Ag nanoparticles either alone or with CaCl,.

mice by decreased sperm production and increased sperm
abnormalities is in consistence with the previously reported
impairment of sperm stability in Ag nanoparticles treated
mice [24]. Hence, sperm abnormalities could be attributed
to the observed nano-Ag induced chromosomal aberrations
and DNA damage occurring during the packaging of genetic
material in the sperms in addition to other possible genetic
causes such as small deletions, point mutations, and mistakes
in the spermatozoa-differentiating process during spermato-
genesis.

Recently, Ag nanoparticles have been shown to damage
DNA directly through the reaction of Ag+ ions released by
Ag nanoparticles leading to reactive oxygen species (ROS)
productions [41-43]. The ROS generation is considered as a
key role in nano-Ag induced genotoxicity as increased ROS
production decreases the cellular antioxidant defenses and
disrupts the mitochondrial function by reacting with critical
cellular molecules, such as lipids, proteins, nucleic acids,
and carbohydrates, and generating additional radicals in a
chain of reaction known as lipid peroxidation. In this study
the dose-dependent significant elevations in MDA level and
decreases in the antioxidant CAT activity revealed the ROS
productions by Ag nanoparticles in accordance with previous
studies that suggested oxidative stress induction as a possible
mechanism for Ag nanoparticles induced genotoxicity [41,
44, 45].

On the other hand, Cd coadministration with Ag
nanoparticles in different doses significantly increased the
sperm abnormality, chromosomal damage, and DNA damage
inductions levels compared with the Ag nanoparticles alone
treated groups. Potentiating Ag nanoparticles induced toxic-
ity could be attributed to the observed significant increases
in MDA level and decreases in CAT activity revealing
increased ROS generations and oxidative stress inductions
by Ag nanoparticles after Cd coadministration. The ability of
Cd ions to replace copper and iron in various cytoplasmic

and membrane proteins including ferritin and apoferritin
resulting in elevations in the amount of free copper and iron
ions that induces oxidative stress in addition to ROS mediated
oxidative stress inductions by Ag+ ions thereby enhanced and
potentiated the DNA damage inductions by Ag nanoparticles
[41, 46-48]. Indeed, the observed significant elevations in
MDA level and decreases in the CAT activity in Cd treated
group revealed the oxidative stress inductions by Cd via
inhibitions of the antioxidant defense system as previously
mentioned in various studies [49-53].

Consequently, the observed significant elevations in Ag
nanoparticles induced genotoxicity after Cd coadministra-
tion supported the previously reported cogenotoxic effects of
Cd when combined with other mutagenic agents including
UV-radiation, methyl methanesulfonate (MMS), and N-
methyl-N-nitrosourea (MNU) [54]. Based on our data the
presence of heavy metal cadmium chloride weakened cells,
decreased their resistance, and increased their sensitivity to
Ag nanoparticles induced chromosomal and DNA damage
and thereby potentiated nano-Ag particles induced genotox-
icity and increased their severity and risk.

5. Conclusion

The observed Ag nanoparticles induced dose-dependent
sperm abnormality, clastogenicity, and genotoxicity in this
study were potentiated by Cd coadministration. Indeed, Ag
nanoparticles induced toxicities were strongly correlated with
significant elevations in MDA level and decreases in CAT
activity confirmed the consideration of oxidative stress as a
possible mechanism for Ag nanoparticles induced genotoxi-
city.
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