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For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of
communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic
signals and the compression perception theory (CS) used in the transmission process. The algorithm will be collected as a number
of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment
to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to
achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring
(Q-CSDR) algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4

of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

1. Introduction

There are many compression algorithms in wireless sensor
networks such as distributed wavelet compression algorithm
[1, 2] (distributed wavelet compression, DWC); it is adopted
in the data compression algorithm and made for some
changes. DWC compression algorithm has the advantage
of good performance and small compression error, but the
drawback is the high complexity of the algorithm and the
energy cost of calculation is huge, and much communication
between the parity nodes will cause wireless sensor node
calculation of excessive power consumption and shorten
the life of the network. Swinging Door Trending (SDT)
[3, 4] has the advantage of a simple algorithm, low energy
consumption of calculation, and high calculation speed and
can be well applied to the wireless sensor network nodes
work, but the disadvantage is that the compression algorithm
is relatively small. Because of smaller data changes and slow
data changes, SDT in traditional cultural monitoring systems
has better performance. But linear compression algorithm
performance in cultural intrusion detection process has been
greatly affected by the big change in the signal amplitude and
fast rate of change.

Compressed sensing theory [5-7] is one of the hotspots
in recent years of data and signal processing, widely used
in wireless sensor networks. Compressed sensing theory
breaking the Nyquist sampling theorem and restriction Shan-
non theory can be less than the amount of data beyond
the classical sampling method to obtain high quality raw
response signal. Data reconstruction algorithm is an impor-
tant part of the process; the key question is how to recover
the high-dimensional data from known low-dimensional
data in the greatest degree. At present, compressed sensing
data reconstruction algorithm includes gradient projection
algorithm [8], orthogonal matching algorithm [9], regular-
ization orthogonal matching algorithm [10], tracking based
on method [11], and quantum chaos algorithm based on
immune clone data reconstruction algorithm Q-CSDR [12].

Current data signal reconstruction algorithm has good
performance at low sparsity. Reconstruction conditions, for
higher sparsity of signal reconstruction accuracy, algorithm
performance plummeted and other problems occur. To solve
these problems, the author proposed compression algorithm
based on compressed sensing theory of microseismic signals
segmentation algorithm by the analysis of data compressed
sensing reconstruction algorithm and microseismic signal



characteristics. This algorithm is simple segmentation and
the complexity of compression algorithm is low, which can
significantly improve the signal reconstruction accuracy at
high sparsity condition.

2. Algorithms

Sparse data obtained by using linear measurements recon-
struct the original information as much as possible to ensure
the accuracy of the reconstruction, which is one of the most
critical operations of perception frame compression. The
reconstruction process of the original signal can be obtained
by solving the inverse problem formula (1); then get the
original reconstructed signal Y by the formula

Y = Ox = O¥c = A 1)

Reconstruction of the existing method overall is divided into
three categories.

2.1. I,-Norm Minimization Reconstruction. l,-norm is actu-
ally the least squares program; data reconstruction is the most
classic way, with [,-norm method represented as shown in the
formula
C=argmin |cl,,
s 2)
st. Y=A"C=V¥c

Therein, for the vector x, [,-norm is defined as the formula

N
Il = (Z |xi|P> . (3)

i=1

Minimization reconstruction /,-norm analytical solution can
be easily made as shown in the formula

c=AT(AAT) Y. (4)

This approach theoretically only involves Defy matrix multi-
plication theory and is very simple, but it cannot be obtained
in the calculation process sparse solution; analytical solution
¢ obtains more nonzero elements. Therefore, this method is
not highly practicable.

2.2. l,-Norm Minimization Reconstruction. l,-norm has
solved the analytic solution for too many nonzero elements
in the l,-norm minimization problem. In solving the
underdetermined linear equations, there are a number of
nonzero elements in the minimization. [y-norm is different
from the conventional norm with its value equal to the
number of nonzero elements; for example, for n-sparse
signal C, its [j-norm is #n. So the I, norm optimization
problem is as the formula
c=argmin ||,

cs ®)

st. Y=A"C=0¥c
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In the actual process of reconstruction, it will produce
certain error, so formula (5) can also be expressed as the
formula

C=argmin |cl,,

(6)
s.t. "Y - ACSc“z <e.

The formula, ¢, is the minimum constant value. To solve
this kind of problem, the numerical NP-complete problems
are unstable; we need exhaustive solving sparse vector ¢ in
the position of nonzero elements of possible combinations of
() kinds.

2.3. 1,-Norm Minimization Reconstruction. Candes pointed
out that the met premise conditions are M > nlog,(N/n + 1)
Based on the independent identically distributed Gaussian
observation matrix /,-norm problem can be transformed to
the I;-norm. And using (7) exact reconstruction of sparse
signal can be high probability approximation compressible
signals:

C=argmin ||,

(7)
st. Y = ASc = ove.

The application of the above formula will allow the exis-
tence of certain errors; the formula is used for solving

C=argmin |c[,,
(8)
s.t. "Y - Acsc"i <e.

The method to solve the [;-norm minimization is to
translate nonconvex problem into a convex programming
problem, where solving process is simple. Looking for a
minimum of /; solution space can be expressed as a linear
programming problem. But using the /;-norm for data
reconstruction creates the problem of high computational
complexity; its computation complexity is O(N°).

The existing data of compressed sensing reconstruction
algorithms are mostly based on the above three issues.
Therein, OMP algorithms are solving the /,-norm problem,
in which core content combines greedy algorithm with
iteration method to perceive the column vectors of matrix A.
Make the selected column vectors and the current residual
vectors have the maximum correlation and then subtract the
correlated volume from the observable volume and repeat
the process until reaching the known sparsity n. Q-CSDR
algorithm solves the [, -norm of the problem; in essence, the
algorithm is still a greedy algorithm; the core content is to
use quantum immune clone algorithm optimization feature;
formula (8) is the objective function, using the theory of
quantum immediately generated population, using the theory
of immune clone population, and constantly looking for the
best individual in the population.
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FIGURE 1: Time domain sparse preprocessed signal.

3. Microseismic Signal Subsection
Compression Algorithm Based on
Compressed Sensing

3.1. Microseismic Signal Characteristics and Thinning Methods.
Sparsity is the premise condition of compression perception
theory; for the data thinned out, we need to first analyze
the characteristics of the microseismic data. Sensor for the
conventional microseismic data signals is shown in Figure 1.

As can be seen, there are a number of peak signals in
the microseismic signal, in which there is a plurality of
lower amplitude vibration signal. The peak signal is sensors
monitoring of activity in the area of microseismic signal
and is needed for analysis and detection of signals, and
low amplitude vibration signal is far away in the process
of monitoring activities; it is not needed for analysis and
detection of the signal and is the redundant data in doping in
detecting signal, which can be gotten rid of in the process of
pretreatment. Using the feature, we can eliminate redundant
data from original seismic signal, replaced by an amplitude
of the time domain data 0 to complete the original signal
thinning. This will not only signal the completion of the
thinning, but also maximize the retention of the original
signal information. When there is no target activity around
the sensor, the collected data shown in Figure 2 is not valid.
It can be seen around the sensor when there is no activity
that the amplitude of the signal is generally around 45.
To identify and distinguish the invalid data, we will set
redundant numerical threshold to 2~3 times the average of
invalid data, about 140 or so.

After thinning, the signal is shown in Figure 3.

3.2. Improved Method. As canbe seen from the description of
Section 2, data reconstruction algorithm based on compres-
sion perception is the essence of the rising populations that
are actually looking for the original signal. Reconstruction
algorithm’s role is to find out how fast and accurate recon-
struction of data is; NP-hard problems entirely belong to
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FIGURE 2: Invalid data collected by sensors.
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FIGURE 3: After puncturing the time domain signal.

its essence. When reconstructing signal, when the number
of the positions of the nonzero element combination is too
much, the number of solutions of the solution space is huge,
which caused the complexity of the algorithm to be too high,
reducing the efficiency of the optimization algorithm. Its
theoretical analysis is as follows.

Suppose the original signal X length is N; the sparsity
is K and the number of nonzero elements is N x K, with
X reconstructing the processes requiring nonzero elements
position for C%XK to be uniformly distributed in [min, max].
According to probability theory knowledge, the reconstruc-
tion of probability formula is as in

1

CN¥ x |max — min|

NxK * 9

As can be seen from formula (9), the original signal length
N shortens. Suppose the original signal is compressed into



n sections; the I segment length is »; with the number of
nonzero elements in each piece of data for K, the reconstruc-
tion of the original signal probability formula is as follows:

P=) : (10)

n
S CK x |max - min|%’

i

Compared to the above two formulas, it can be seen that
the reconstruction probability of the compressed segment
is significantly higher than the probability of reconstruc-
tion before segment. Therefore, the original data can be
compressed section in order to improve the probability of
data refactoring. Considering the blind sparsity and sparsity
known under the two conditions of data compression and
reconstruction characteristics, this paper presents a micro-
seismic signal subsection compression algorithm based on
compressed sensing theory.

3.3. Algorithm Steps. This algorithm includes signal segmen-
tation algorithm and signal data compression process. The
purpose of segmentation is to reduce the number of exhaus-
tive reconstruction algorithms and improve the probability of
reconstructing the original signal. Data compression process
uses compressive sensing theory and segment compression of
each piece of data, thereby reducing the energy consumption
of network traffic and achieving high rates of microseismic
signal compression.
Algorithm steps are described below:

(1) Argument initialization: this step includes the largest
sample number max, the number of nonzero elements
in the current segment temp, the number of segments
i, and the value of segmentation threshold .

(2) Signal preprocessing: sensors began collecting data.
According to the redundancy threshold values its
time-domain thinning after the max data collected.

(3) Signal segmentation: when temp = #, it can be divided
into the starting data of the next data segment; go to
step (4). The current number i of segments plus 1 and
n is set to 0 at the same time.

(4) Compression process: the segments after each signal
X = {x1, %5, .. > Xpay block compression; to form a
compressed signal Y = {Y},Y,,..., Yy}, fi. is the
largest frame number:

Y, = O,x;. 1)

®; is the observation matrix of each segment signal.
According to the data length before compression,
the observation matrix dictionary is taken up in the
sensor nodes.

(5) Each segment consists of a data frame after the data
package and sends it to a remote server for data
reconstruction; go to step (2).

For example, X is assumed as the original signal: 0 0 0 1
110101010010001011010010 0 0; the length of
the original signal is 30. When n = 2, data is divided into six
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TABLE I: The number of combinations of signal segments before and
after the position of nonzero elements.

Unfragmented After the Number of
(sparsity known) segmentation segments
temp =1 4 12
emp =2 56493225 7200
temp =3 220500
temp =4 1270080
TABLE 2: Packet structure.
Packet Byte
Header 1 byte
Node power 1 byte
Packet length 1 byte
Node ID 1 byte
Data segment Variable
Checksum 1 byte
TABLE 3: Data paragraphs.
Data segment Byte Data Byte
The 1st data 1 byte The 1st segment Variable
segment data
The 2nd data 1 byte The 2nd Variable
segment segment data
The ith data 1 byte The ith segment Variable
segment data

sections: 00011[1010]10100]100010|110]10010
00.

The feature of this method is that, in addition to the first
paragraph of subsignal, the other starting position, all the
data segments are nonzero elements. And no matter whether
the sparsity of the original signal is predictable, sparsity of the
segmented signal is known. Therefore, there is a probability of
a substantial increase in reconstructed signal. Table 1 shows
the signal block before and after the combination of the
nonzero element position number.

As can be seen from the data in Table 1, before compressed
signal segments, the number of nonzero elements’ combined
position is huge, especially under conditions of blind sparsity.
The number of combinations of the original signal can reach
as much as 10°. This can also explain the low probabil-
ity signal reconstruction and poor accuracy reconstruction
under the original conditions. Also, from Table 1, it can also
be seen that, after the segment compression, the number
of nonzero combinations of the original signal decreased a
lot. Reconstruction of the probability substantially increased.
According to the data segment length, the remote server
carries out data reconstruction for each segment data.

The frame packet format is shown in Table 2.

Data segment table in the format is shown in Table 3.
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TABLE 4: Experimental parameters.

Network and scene parameters Hardware parameters Energy consumption/mW
Network model Star Communication frequency 2.4GHz Transmitter power 61
Area size 100 * 100 m* RF chip CC2420 Received power 45
Nodes number 25 Physical layer IEEE 802.15.4 Idle power 2.4x107°
Node spacing 20m MAC layer IEEE 802.15.4 Sleep power 14 %107

4. Experimental Results

4.1. Experimental Parameters. 'The experimental site was
chosen by the Shi Kaijia Terracotta Army Museum, K9901,
next to the Qin Shihuang Pavilion. The nodes are arranged
in 5 x 5 mesh in the forest of their southwest direction. The
base station and node communication directly form a star
network. The microseismic signal of the joint monitoring site
is collected. After the node runs the algorithm, the data is
transmitted to a remote terminal server using Q-CSDR data
reconstruction algorithm. Specific test parameters are shown
in Table 4.

4.2. Energy Model. In order to further analyze the impact
on energy consumption data compression algorithm for
wireless sensor networks, the data is compared at the same
standard under compression algorithm in the network energy
consumption and computational consumption of computing
performance. A first-order model for network wireless energy
analysis is used herein. Send m bits of data to the distance d
of the node or the base station; sending and receiving energy
consumption are defined as

Etrans (m’ d) = Etr—elec (m) + ETx—amp (m’ d)

= mE,, +emd” (12)

Erecv (I’l’l) = ERx—elec (m) = mEelec'

E..ns and E, ., represent nodes sending and receiving
energy consumption. Ery,q, is the channel transmission
power consumption. E,. is the energy consumption when
sending a single byte. Generally, E .. = 50 nJ/bit and & =
100 pJ/(bit-m ™).

Assume that each node to collect the data is 1 bit; distance
from the node to the base station is d. Taking into account
the communication overhead of premise, the average data
compression ratio W is defined as formulae (13) and (14):

elec

fmax
W -1- Zi:l Li,com + Lcost (13)
Zﬁnlax Li,incom + Lcost
L; omand L;;, ., are the length of data after compression

and before compression, respectively. L
tion overhead.

When the network does not use data compression algo-
rithms, the total energy consumption is

cost 18 the communica-

E, =E,, (md)=aE,, +aed’ =a (Eelec + sdz) . (19

Assuming an average compression ratio of W compres-
sion algorithm has been used, the size of the compressed data

TaBLE 5: Three compression algorithms’ instruction cycle statistics.

Subsection
Instruction compression ISDT DWC

algorithms
ADC 42 49 210
ADIW 10 30 135
SUB 2 21 173
INC 0 7 13
DEC 0 0 61
RJUMP 55 67 47
RET 1 13 35
ICALL 3 7 51
CPT 51 71 95
LJUMP 32 0 32
Total 206 265 852

is W times the size of the original data. In this case the total
energy consumption of the link is

E2:Etrans(m’d):a(1_W)E +a(1—W)Sd2

elec

(15)

=a(1-W) (Eelec +sd2) .

According to formulae (15) and (16), after an average
compression ratio of W compression algorithm, ratio Q of
energy consumption and the unused energy consumption of

the compression algorithm is

Q= E 1-W. (16)
E,

As can be seen from (16), under the conditions of energy
consumption and when other factors are ignored, with the
energy consumption of the network, the ratio of the network
energy computation before and after compression is equal
to 1 — W. That is, under this condition, the greater the
average compression ratio, the less the communication data,
the smaller the communication energy, and the smaller the
energy consumption. Therefore, the compression ratio of
energy consumption has a significant impact.

Under the condition of the average compression ratio of
0.5, the sensor microseismic signals were collected as the
data source. The performance of the ISDT algorithm is com-
pared with the segmentation compression algorithm, the dis-
tributed wavelet compression algorithm, and the improved
segmentation linearization compression algorithm. The three
algorithms were compiled into the Crossbow node imple-
mentation, as shown in Table 5.



As can be seen from Table 5, under the same conditions,
the performance of this algorithm and ISDT algorithm is
similar, and its instruction cycle is 77.7% for ISDT. The
DWC algorithm instruction cycle is far higher than the
previous two algorithms, about 3.9 times of data compression
algorithm based on compression perception. Under the same
compression ratio, the calculation energy consumption of
this paper is 22.3% less than that of ISDT and 75.8% less than
DWC algorithm.

4.3. Algorithm Performance Analysis. As it can be seen from
Figure 4, the recovery accuracy of the signal is subject to the
effective compression ratio and the number of data segments
in the nonzero elements » has greater impact, but the impact
is less data segment length. Reconstruction of variance € here
is defined as formula (17). Consider the following:

N 1/2
= <Z(xi_yi)2> .

The results are shown in Figure4. The first line is
the figure sensor to the original microseismic signals. The
second line is compressed sensing segment after compression
algorithm, and the reconstructed signal is recovered by the Q-
CSDR algorithm gradually. The third line is the reconstruc-
tion error, the original signal, and the reconstructed signal
difference.

When n = 2, the original data is divided into 22 segments’
data, with signal compression ratio of 200: 51, almost up to
4:1. Considering the communication, each data packet needs
an additional 2 bytes of data for each segment and the sparsity
of the original length, the total number of segments, and serial
number information, Therefore, the actual data compression
ratio of 190:400 = 0.475. The reconstruction signal MSE is
less than 0.01.

As shown in Figure 5, when n = 3, the original data
is divided into 15 segments’ data, with signal compression
ratio of 200: 59, about 3 : 1. Considering the communication,
each data packet needs an additional 2 bytes of each segment
data of the original length and sparsity information, with the
actual packet length compression ratio of 178:400 = 0.445.
The reconstructed signal MSE is 0.02.

As shown in Figure 6, when n = 4, the original data is
divided into 12 segments’ data, with signal compression ratio
of 200:66, about 3.3:1. Considering the communication,
each data packet needs an additional 2 bytes of each segment
data of the original length and sparsity information, and the
actual packet length compression ratio is 180 : 400 = 0.45. The
reconstructed signal MSE is 0.2.

As can be seen from the above results, the threshold value
n has greater recovery segment with lower accuracy. From
the above experimental results, the segmentation threshold
of N is higher, and the recovery accuracy is lower. From the
transmission point of view, the less the value of n, the less the
communication overhead, but the probability and accuracy of
data reconstruction are also bad; the lower the value of N, the
higher the probability of the reconstruction and the recovery
precision.

17)
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FIGURE 4: The result of data reconstruction when »n = 2.
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FIGURE 5: The result of data reconstruction when n = 3.

4.4. Wireless Sensor Network Data Compression Algorithm
Comparison. The comparison of the data recovery perfor-
mance of the proposed algorithm with the ISDT algorithm
is presented. SDT algorithm is a linear trend of compression
algorithms; it defines a threshold E to given data and finds the
longest straight trend, by a straight line which is determined
by the start and end point instead of a series of consecutive
data points collected. SDT algorithm set two “fulcrums” at
the start of the data where its vertical distance is equal to the
threshold E. The line between the fulcrum and the subsequent
data is called “door” When the algorithm is initialized two
doors are closed. As more data is collected into the data
series, these doors will be open or stop operation according
to the actual situation; the width of the door is not fixed, and
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FIGURE 6: The result of data reconstruction when n = 4.

once the doors opened, they cannot be closed. When the two
doors reach parallelism, the current compression interval is
over. Begin a new round of compression. The performance
of SDT algorithm is only limited by the threshold E, and
the threshold E is selected depending on the experience
and experimentation and cannot be changed in the entire
compression process; once the threshold is established, so
compressing the signal data which the conditions of volatility
is not ideal. ISDT algorithm for the shortcomings of SDT
algorithm has been improved. ISDT algorithms can, accord-
ing to data’s fluctuations, adjust its size within a range in
real time, continuously and adaptively, so that ISDT always
maintains a good compression during the compression. ISDT
algorithm judges the data fluctuation by the ratio of one
point. According to the difference between the data points
and the two data points, the SDT algorithm is judging the data
fluctuation, and the threshold value is updated continuously
according to the formula.

From the above description, we know ISDT algorithm’s
compressed performance is perfect, but the compression
process is the close relationship with the data collection
process; the algorithm should not only calculate the value
of the limited door, but also adjust the limit value. These
two kinds of algorithm for data compression are good under
the condition of small amplitude fluctuation effect, but data
compression effect is not good under the condition of volatile
data, and because the threshold value needs to be updated in
real time, its computation cost can increase instead. Concrete
comparative experiment results are shown in Figure 7.

We can make conclusion that the performance of the
algorithm in this paper is superior to the contrast algorithm.
The square error value can keep stable under the condition
of various compression ratios; this is because the probability
of signal reconstruction after using the algorithm can be
improved. When n = 3 and n = 4 and compression
ratio is greater than 0.8, algorithm’s performance is not as
good as ISDT algorithms. This is due to the characteristics
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FIGURE 7: Comparison of the performance of the algorithm.
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FI1GURE 8: Comparison of experimental results of similar algorithms.

of the data reconstruction algorithm, and quantum cloning
immune algorithm in optimization process is easy to fall
into local optima. At the same time when the compression
ratio is less than 0.2, the performance of the algorithm will
be a sharp decline, mainly because in the data compression
process the raw data information loss is too much. When the
compression ratio is from 0.2 to 0.8, the performance of the
proposed algorithm is better than the other two algorithms
on the whole.

4.5. Compressed Sensing Data Reconstruction Algorithm Com-
parison Test. Figure 8 shows the comparison of performance
with different compression sensing data algorithms (without
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TABLE 6: Results of microseismic network performance.

Microseismic signal

Uncompressed data

Compressed data

Audio signal

Uncompressed data Compressed data

Data pack length (every 200

pieces of data) 1000 bytes
Sampling rate 10 SPS
Data amount (24 hours) 34.56 Mbit
Communi.cation energy 1306.9]
consumption (24 hours)

Working time 673.3h

224 bytes 1000 bytes 336 bytes
10 SPS 200 SPS 200 SPS
7.4 Mbit 691.2 Mbit 232.2 Mbit

222] 20736 ] 6967.296 ]
2465.9h 50.7h 100.9h

regard to the communication overhead) under the condition
of the sparse degree. As can be seen under the condition of
the small sparse degree various algorithms have better data
recovery accuracy. After more than 30 in sparse degree, data
recovery of OMP algorithm performance fell sharply; SDIHT
algorithm and BIHT algorithm in sparse degree more than
40; there is an obvious downward trend, and this algorithm
significantly decreased in sparse degree greater than 45,
especially when n = 2; subsection compression algorithm
in sparse degree 50 maintains a recovery of 90% probability,
and combined with Figure 4 we can know the reconstruction
mean square error of the signal is less than 0.1 when n = 2.
It also illustrates that the data sparseness degree effect on
the accuracy of data recovery is still evident in the section.
Algorithm description and segmented way description can
be seen such that subsection compression algorithm only
for microseismic signals and other time series signals has
good effect. While the effect of image signals reconstruction
is very poor, because of the image signal of large amount of
data, excessive segmentation will affect the operation speed
of algorithm and reduce the practicability of the algorithm
and the algorithm performance is reduced dramatically. So
the drawback of this algorithm is that it only applies to two-
dimensional sequence signal.

4.6. Performance Results of Networks. As shown in Table 6,
monitoring objects are microseismic signal and sensor sam-
pling rate, respectively, of 200 SPS. Contrast experiment
is divided into three groups, respectively: wireless sensor
network without data compression, compression algorithm,
and ISDT compression algorithm is used in this paper. There
are 25 sensor nodes in each network. Each sensor node in
the system adopts 4400 mAh, 3.6 VDC lithium batteries. In
experiment, this is ten times the statistical average. It should
be noted that selecting the compression ratio of the data
compression algorithm ensures the validity and reliability of
cultural intrusion detection systems; in the reconstruction
of data mean square error is less than 0.3; wherein the data
compression algorithm ISDT ratio is 0.7, compressive sensing
data compression algorithm compression ratio is 0.4, using
n = 2 segmented data compression method.

As you can see, in the microseismic signals as monitoring
objects, compressed rather than uncompressed communica-

tion energy consumption of sensor nodes was reduced by a
third.

Considering the factors, such as computing energy con-
sumption and standby energy consumption, node’s actual life
extends to 2 times which is 103.9 hours, and it is more than
ISDT algorithm’s 57.3 hours.

5. Conclusions

Compression perception theory was applied to wireless sen-
sor network applications to reduce energy consumption of
network nodes’ communication and extend the life of the
network. On the basis of analyzing the principle of the com-
pressed sensing data reconstruction, the microseismic signals
segmentation algorithm based on compressed sensing theory
was put forward. The algorithm can overcome reconstruction
precision in the compressed sensing theory which is not
high at high sparsity conditions and increased the probability
of data reconstruction significantly. Experimental results
show that compared with the existing classical compression
algorithms based on the theory of compressed sensing data
compression method has low computational complexity,
low computation cost, and high compression ratio. When
the sparsity degree is higher than 40, the algorithm can
reconstruct the data accurately with the accuracy of less
than 0.01. In microseismic signals for monitoring objects, the
system life is extended by about 2 times.
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