
Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2013, Article ID 951643, 10 pages
http://dx.doi.org/10.1155/2013/951643

Research Article
Positive Solution for the Nonlinear Hadamard Type
Fractional Differential Equation with 𝑝-Laplacian

Ya-ling Li and Shi-you Lin

School of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan 571158, China

Correspondence should be addressed to Shi-you Lin; linsy1111@aliyun.com

Received 28 May 2013; Revised 6 August 2013; Accepted 7 August 2013

Academic Editor: T. Diagana

Copyright © 2013 Y.-l. Li and S.-y. Lin.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the following nonlinear fractional differential equation involving the 𝑝-Laplacian operator 𝐷𝛽(𝜑𝑝(𝐷
𝛼
𝑢(𝑡))) = 𝑓(𝑡, 𝑢(𝑡)),

1 < 𝑡 < 𝑒, 𝑢(1) = 𝑢

(1) = 𝑢


(𝑒) = 0, 𝐷𝛼𝑢(1) = 𝐷

𝛼
𝑢(𝑒) = 0, where the continuous function 𝑓 : [1, 𝑒] × [0, +∞) → [0, +∞), 2 <

𝛼 ≤ 3, 1 < 𝛽 ≤ 2. 𝐷𝛼 denotes the standard Hadamard fractional derivative of the order 𝛼, the constant 𝑝 > 1, and the 𝑝-Laplacian
operator 𝜑𝑝(𝑠) = |𝑠|

𝑝−2
𝑠. We show some results about the existence and the uniqueness of the positive solution by using fixed point

theorems and the properties of Green’s function and the 𝑝-Laplacian operator.

1. Introduction

Fractional differential equations have attracted more and
more attention for their useful applications in various fields,
such as economics, science, and engineering; see [1–4]. In the
last few decades, much attention has been focused on the
study of the existence and uniqueness of solutions for bound-
ary value problems of Riemann-Liouville type or Caputo type
fractional differential equations; see [5–19].There are few pa-
pers devoted to the research of the 𝑝-Laplacian fractional
differential equations; see [20–25].

By the use of the fixed point theorem on cones, Chai in
[20] obtained the existence and multiplicity of positive so-
lutions for a class of boundary value problem of fractional
differential equation with 𝑝-Laplacian operator:

𝐷
𝛽
0+ (𝜙𝑝 (𝐷

𝛼
0+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) + 𝜎𝐷
𝛾
0+𝑢 (1) = 0, 𝐷

𝛼
0+𝑢 (0) = 0,

(1)

where 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 0 < 𝛾 ≤ 1, 0 ≤ 𝛼 − 𝛾 − 1, 𝜎 is a
positive constant number, and𝐷𝛼0+, 𝐷

𝛽
0+, 𝐷
𝛾
0+ are the standard

Riemann-Liouville derivatives. 𝜙𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1, 𝜙−1𝑝 =

𝜙𝑞, 1/𝑝 + 1/𝑞 = 1.

Han et al. in [22] studied the following boundary value
problem of nonlinear fractional differential equation with
𝑝-Laplacian operator:

𝐷
𝛽
0+ (𝜙𝑝 (𝐷

𝛼
0+𝑢 (𝑡))) + 𝑎 (𝑡) 𝑓 (𝑢) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝛾𝑢 (𝜉) + 𝜆,

𝜙𝑝 (𝐷
𝛼
0+𝑢 (0)) = (𝜙𝑝(𝐷

𝛼
0+𝑢(1)))



= (𝜙𝑝 (𝐷
𝛼
0+𝑢 (1)))


= 0,

(2)

where 0 < 𝛼 ≤ 1, 2 < 𝛽 ≤ 3, 0 ≤ 𝛾 < 1, 0 ≤ 𝜉 ≤ 1,
𝜆 > 0 is a parameter, and 𝐷

𝛼
0+, 𝐷
𝛽
0+ are the standard Caputo

fractional derivatives. By the properties of Green function
and Schauder fixed point theorem, several existence and non-
existence results and the uniqueness of positive solutions are
acquired.

Liu et al. in [23] investigated the solvability of a fractional
differential equation model involving the 𝑝-Laplacian opera-
tor with boundary value conditions as follows:

(𝜑𝑝 (
𝑐
𝐷
𝛼
𝑥 (𝑡)))


= 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,
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𝑥 (0) = 𝑟0𝑥 (1) , 𝑥

(0) = 𝑟1𝑥


(1) ,

𝑥
(𝑖)

= 0, 𝑖 = 2, 3, . . . , [𝛼] − 1,

(3)

where 1 < 𝛼 ∈ R, 𝑟0, 𝑟1 ̸= 1, and 𝑐𝐷𝛼 is the standard Caputo
derivative. By the means of the Banach contraction mapping
principle, they obtained the existence and uniqueness of a
solution for the model.

Lu et al. in [24] considered the following fractional
boundary value problem with 𝑝-Laplacian operator:

𝐷
𝛽
0+ (𝜙𝑝 (𝐷

𝛼
0+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = 𝑢


(1) = 0, 𝐷

𝛼
0+𝑢 (0) = 𝐷

𝛽
0+𝑢 (1) = 0,

(4)

where 2 < 𝛼 ≤ 3, 1 < 𝛽 ≤ 2, and 𝐷
𝛼
0+, 𝐷
𝛽
0+ are the standard

Riemann-Liouville fractional derivatives. By the properties of
Green’s function, the Guo-Krasnosel’skii fixed point theorem,
the Leggett-Williams fixed point theorem, and the upper and
lower solutions method, some new results on the existence of
positive solutions are gained.

Motivated by the mentioned papers, we will consider
the Hadamard fractional boundary value with 𝑝-Laplacian
operator as below:

𝐷
𝛽
(𝜑𝑝 (𝐷

𝛼
𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 1 < 𝑡 < 𝑒,

𝑢 (1) = 𝑢

(1) = 𝑢


(𝑒) = 0, 𝐷

𝛼
𝑢 (1) = 𝐷

𝛼
𝑢 (𝑒) = 0,

(5)

where 2 < 𝛼 ≤ 3, 1 < 𝛽 ≤ 2, 𝜑𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, and 𝑓 : [1, 𝑒] ×

[0, +∞) → [0, +∞) is a positive continuous function. Evi-
dently, for any 𝑝 > 1, 𝜑−1𝑝 = 𝜑𝑞, here 1/𝑝 + 1/𝑞 = 1. Here 𝐷𝛼

is the standard Hadamard fractional derivative of order 𝛼
which is described as follows.

Definition 1 (see [1, Page 111]). The 𝛼th Hadamard fractional
order derivative of a function 𝑢 : [1, +∞) → R is defined by

𝐷
𝛼
𝑢 (𝑡) =

1

Γ (𝑛 − 𝛼)
(𝑡

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

1
(log 𝑡

𝑠
)

𝑛−𝛼−1 𝑢 (𝑠)

𝑠
𝑑𝑠, (6)

where 𝛼 > 0, 𝑛 = [𝛼] + 1, and [𝛼] denotes the largest integer
which is less than or equal to 𝛼. Correspondingly, the 𝛼th
Hadamard fractional order integral of 𝑢 : [1, +∞) → R is
defined by

𝐼
𝛼
𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

1
(log 𝑡

𝑠
)

𝛼−1 𝑢 (𝑠)

𝑠
𝑑𝑠, (7)

where Γ is the gamma function.

To the best of our knowledge, there are few contributions
to the Hadamard type with 𝑝-Laplacian operator; we fill the
gap in this paper. In fact, we will discuss the existence and the
uniqueness of the positive solutions of (5). The structure of
this paper goes on as follows. In Section 2, we will introduce
some basic lemmas that will be used. In Section 3, we first

give some existence results including Theorems 10 and 11,
Corollary 12, andTheorem 13. Then, we will prove Theorems
14 and 15 which reveal the uniqueness of the solution. In
Section 4, we give two examples to illustrate our results.

2. Preliminary Results

In this section, we will first recall the following preliminary
facts that will be used in our main results.

Lemma 2 (see [1, Theorem 2.3]). Let 𝛼 > 0, 𝑛 = [𝛼] + 1; then

𝐼
𝛼
𝐷
𝛼
𝑢 (𝑡) = 𝑢 (𝑡) +

𝑛

∑

𝑖=1

𝑐𝑖(log 𝑡)
𝛼−𝑖

, (8)

where 𝑐𝑖, 𝑖 = 1, 2, . . . , 𝑛, are some constants in R.

The following lemma is the Schauder fixed point theorem
which is well known; see Theorem 2.10 in [22].

Lemma 3. If 𝑈 is a nonempty closed, bounded, and convex
subset of a Banach space𝑋 and 𝑇 : 𝑈 → 𝑈 is completely con-
tinuous, then 𝑇 has a fixed point in 𝑈.

Lemma 4 (see [24, Lemma 2.7]). Let𝑋 be a Banach space, let
𝑃 ⊆ 𝑋 be a cone, and let Ω1, Ω2 be two bounded open balls of
𝐸 centered at the origin with Ω1 ⊂ Ω2. Suppose that 𝑇 : 𝑃 ∩

(Ω2 \ Ω1) → 𝑃 is a completely continuous operator such that
either

(i) ‖𝑇𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω1 and ‖𝑇𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω2,
or

(ii) ‖𝑇𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω1 and ‖𝑇𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝑃∩𝜕Ω2,

holds. Then 𝑇 has a fixed point in 𝑃 ∩ (Ω2 \ Ω1).

The following conclusion is the nonlinear alternative of
Leray-Schauder type; see Lemma 2.6 in [10].

Lemma 5. Let 𝑋 be a Banach space with 𝐶 ⊆ 𝑋 being closed
and convex. Assume that𝑈 is a relatively open subset of𝐶with
0 ∈ 𝑈 and 𝐴 : 𝑈 → 𝐶 is a continuous, compact map. Then
either

(1) 𝐴 has a fixed point in 𝑈, or

(2) there exists 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1), with 𝑢 = 𝜆𝐴𝑢.

Next, we give several lemmas which will be applied in the
proofs of our main results.

Lemma 6. Let 𝑢(𝑡) be the solution of the problem (5); then it
can be described as below:

𝑢 (𝑡) = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑s
𝑠

= 𝑌 (𝑡) ,

(9)
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where

𝐺 (𝑡, 𝑠) =

{{{{{

{{{{{

{

(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2 − (log (𝑡/𝑠))𝛼−1

Γ (𝛼)
, 𝑠 ≤ 𝑡,

(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2

Γ (𝛼)
, 𝑡 ≤ 𝑠,

𝐻 (𝑡, 𝑠) =

{{{{{

{{{{{

{

(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1 − (log (𝑡/𝑠))𝛽−1

Γ (𝛽)
, 𝑠 ≤ 𝑡,

(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1

Γ (𝛽)
, 𝑡 ≤ 𝑠.

(10)

Proof. Putting 𝑦(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), we have 𝐷𝛽(𝜑𝑝(𝐷
𝛼
𝑢(𝑡))) =

𝑦(𝑡). By Lemma 2 and the fact that 1 < 𝛽 ≤ 2,

𝜑𝑝 (𝐷
𝛼
𝑢 (𝑡)) = 𝐼

𝛽
𝑦 (𝑡) + 𝑐1(log 𝑡)

𝛽−1
+ 𝑐2(log 𝑡)

𝛽−2
. (11)

The boundary value hypotheses give 𝐷𝛼𝑢(1) = 𝐷
𝛼
𝑢(𝑒) = 0.

So we can get that

𝑐2 = 0, 𝑐1 = −
1

Γ (𝛽)
∫

𝑒

1
(1 − log 𝜏)𝛽−1𝑦 (𝜏) 𝑑𝜏

𝜏
. (12)

Therefore,
𝜑𝑝 (𝐷

𝛼
𝑢 (𝑡))

= 𝐼
𝛽
𝑦 (𝑡) −

(log 𝑡)𝛽−1

Γ (𝛽)
∫

𝑒

1
(1 − log 𝜏)𝛽−1𝑦 (𝜏) 𝑑𝜏

𝜏

=
1

Γ (𝛽)
∫

𝑡

1
(log 𝑡

𝜏
)

𝛽−1

𝑦 (𝜏)
𝑑𝜏

𝜏

−
(log 𝑡)𝛽−1

Γ (𝛽)
∫

𝑡

1
(1 − log 𝜏)𝛽−1𝑦 (𝜏) 𝑑𝜏

𝜏

−
(log 𝑡)𝛽−1

Γ (𝛽)
∫

𝑒

𝑡
(1 − log 𝜏)𝛽−1𝑦 (𝜏) 𝑑𝜏

𝜏

= −∫

𝑡

1

(log 𝑡)𝛽−1(1 − log 𝜏)𝛽−1 − (log 𝑡 − log 𝜏)𝛽−1

Γ (𝛽)

× 𝑦 (𝜏)
𝑑𝜏

𝜏
− ∫

𝑒

𝑡

(log 𝑡)𝛽−1(1 − log 𝜏)𝛽−1

Γ (𝛽)
𝑦 (𝜏)

𝑑𝜏

𝜏

= −∫

𝑒

1
𝐻(𝑡, 𝜏) 𝑦 (𝜏)

𝑑𝜏

𝜏
.

(13)

Notice the fact that 𝜑−1𝑝 = 𝜑𝑞, 1/𝑝 + 1/𝑞 = 1; we have

𝐷
𝛼
𝑢 (𝑡) + 𝜑𝑞 (∫

𝑒

1
𝐻(𝑡, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
) = 0. (14)

Putting 𝑥(𝑡) = 𝜑𝑞(∫
𝑒

1
𝐻(𝑡, 𝜏)𝑓(𝜏, 𝑢(𝜏))(𝑑𝜏/𝜏)), it follows from

Lemma 2 that

𝑢 (𝑡) = −𝐼
𝛼
𝑥 (𝑡) + 𝐶1(log 𝑡)

𝛼−1
+ 𝐶2(log 𝑡)

𝛼−2
+ 𝐶3(log 𝑡)

𝛼−3
.

(15)

This, combined with the fact that 𝑢(1) = 𝑢

(1) = 𝑢


(𝑒) = 0,

yields

𝐶3 = 0, 𝐶2 = 0,

𝐶1 =
1

Γ (𝛼)
∫

𝑒

1
(1 − log 𝑠)𝛼−2𝑥 (𝑠) 𝑑𝑠

𝑠
.

(16)

Thus,

𝑢 (𝑡) = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝑥 (𝑠)

𝑑𝑠

𝑠

= ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠
,

(17)

where

𝐺 (𝑡, 𝑠) =

{{{{{{

{{{{{{

{

(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2 − (log (𝑡/𝑠))𝛼−1

Γ (𝛼)
, 𝑠 ≤ 𝑡,

(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2

Γ (𝛼)
, 𝑡 ≤ 𝑠,

𝐻 (𝑡, 𝑠) =

{{{{{{

{{{{{{

{

(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1 − (log (𝑡/𝑠))𝛽−1

Γ (𝛽)
, 𝑠 ≤ 𝑡,

(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1

Γ (𝛽)
, 𝑡 ≤ 𝑠.

(18)

This completes the proof of Lemma 6.

Lemma 7. Suppose that 2 < 𝛼 ≤ 3, 1 < 𝛽 ≤ 2. Then the
functions 𝐺(𝑡, 𝑠) and𝐻(𝑡, 𝑠) defined in (10) have the following
properties:

(1) 𝐺(𝑡, 𝑠),𝐻(𝑡, 𝑠) are continuous on [1, 𝑒] × [1, 𝑒];

(2) for any 𝑡, 𝑠 ∈ [1, 𝑒], 𝐺(𝑡, 𝑠) ≥ 0,𝐻(𝑡, 𝑠) ≥ 0;

(3) for any 𝑡, 𝑠 ∈ [1, 𝑒], 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑒, 𝑠),𝐻(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠);

(4) there exist two positive functions 𝛾1, 𝛾2 ∈ 𝐶(1, 𝑒) such
that

min
𝑒1/4≤𝑡≤𝑒3/4

𝐺 (𝑡, 𝑠) ≥ 𝛾1 (𝑠)max
1≤𝑡≤𝑒

𝐺 (𝑡, 𝑠)

= 𝛾1 (𝑠) 𝐺 (𝑒, 𝑠) , for 𝑠 ∈ (1, 𝑒) ,

(19)

min
𝑒1/4≤𝑡≤𝑒3/4

𝐻(𝑡, 𝑠) ≥ 𝛾2 (𝑠)max
1≤𝑡≤𝑒

𝐻(𝑡, 𝑠)

= 𝛾2 (𝑠)𝐻 (𝑠, 𝑠) , for 𝑠 ∈ (1, 𝑒) .

(20)

Proof. (1) and (2) are evident from the expression of 𝐺(𝑡, 𝑠)
and𝐻(𝑡, 𝑠). Since, for any fixed number 𝑠 ∈ [1, 𝑒],𝐺(𝑡, 𝑠) is an



4 Journal of Function Spaces and Applications

increasing function on [1, 𝑒] and𝐻(𝑡, 𝑠) is a decreasing func-
tion on [𝑠, 𝑒] and increasing on [1, 𝑠], we get (3). To prove (4),
suppose that

𝛾1 (𝑠)

=

{{{{{

{{{{{

{

(1/4)
𝛼−1

(1 − log 𝑠)𝛼−2 − (1/4 − log 𝑠)𝛼−1

(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1
, 𝑠 ∈ (1, 𝑒

1/4
] ,

(1/4)
𝛼−1

(1 − log 𝑠)𝛼−2

(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1
, 𝑠 ∈ [𝑒

1/4
, 𝑒) ,

(21)

and put

𝑝1 (𝑡, 𝑠) =
(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2 − (log (𝑡/𝑠))𝛼−1

Γ (𝛼)
,

𝑝2 (𝑡, 𝑠) =
(log 𝑡)𝛼−1(1 − log 𝑠)𝛼−2

Γ (𝛼)
.

(22)

The monotonicity of 𝐺(𝑡, 𝑠) gives

min
𝑒1/4≤𝑡≤𝑒3/4

𝐺 (𝑡, 𝑠)

=

{{

{{

{

𝑝1 (𝑒
1/4

, 𝑠) , 𝑠 ∈ (1, 𝑒
1/4

] ,

𝑝2 (𝑒
1/4

, 𝑠) , 𝑠 ∈ [𝑒
1/4

, 𝑒) ,

=

{{{{{{{{{

{{{{{{{{{

{

1

Γ (𝛼)
[(

1

4
)

𝛼−1

(1 − log 𝑠)𝛼−2

−(
1

4
− log 𝑠)

𝛼−1

] , 𝑠 ∈ (1, 𝑒
1/4

] ,

1

Γ (𝛼)
(
1

4
)

𝛼−1

(1 − log 𝑠)𝛼−2, 𝑠 ∈ [𝑒
1/4

, 𝑒) ,

max
1≤𝑡≤𝑒

𝐺 (𝑡, 𝑠) = 𝐺 (𝑒, 𝑠)

=
1

Γ (𝛼)
[(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1] ,

𝑠 ∈ (1, 𝑒) .

(23)

Which implies that (19) holds.
Similarly, by writing

𝑞1 (𝑡, 𝑠) =
(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1 − (log (𝑡/𝑠))𝛽−1

Γ (𝛽)
,

𝑞2 (𝑡, 𝑠) =
(log 𝑡)𝛽−1(1 − log 𝑠)𝛽−1

Γ (𝛽)

(24)

and applying the monotonicity of𝐻(𝑡, 𝑠), we have
min
𝑒1/4≤𝑡≤𝑒3/4

𝐻(𝑡, 𝑠)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑞1 (𝑒
3/4

, 𝑠) , 𝑠 ∈ (1, 𝑒
1/4

] ,

min {𝑞1 (𝑒
3/4

, 𝑠) ,

𝑞2 (𝑒
1/4

, 𝑠)} , 𝑠 ∈ [𝑒
1/4

, 𝑒
3/4

] ,

𝑞2 (𝑒
1/4

, 𝑠) , 𝑠 ∈ [𝑒
3/4

, 𝑒) ,

=

{{

{{

{

𝑞1 (𝑒
3/4

, 𝑠) , 𝑠 ∈ (1, 𝑟] ,

𝑞2 (𝑒
1/4

, 𝑠) , 𝑠 ∈ [𝑟, 𝑒) ,

=

{{{{{{{{{

{{{{{{{{{

{

1

Γ (𝛽)
[(

3

4
)

𝛽−1

(1 − log 𝑠)𝛽−1

−(
3

4
− log 𝑠)

𝛽−1

] , 𝑠 ∈ (1, 𝑟] ,

1

Γ (𝛽)
(
1

4
)

𝛽−1

(1 − log 𝑠)𝛽−1, 𝑠 ∈ [𝑟, 𝑒) ,

max
1≤𝑡≤𝑒

𝐻(𝑡, 𝑠) = 𝐻 (𝑠, 𝑠)

=
1

Γ (𝛽)
[log 𝑠 (1 − log 𝑠)]𝛽−1,

𝑠 ∈ (1, 𝑒) ,

(25)

where 𝑒1/4 < 𝑟 < 𝑒
3/4 is the unique solution of the equation

[
3

4
(1 − log 𝑠)]

𝛽−1

− (
3

4
− log 𝑠)

𝛽−1

= [
1

4
(1 − log 𝑠)]

𝛽−1

.

(26)
Hence, setting
𝛾2 (𝑠)

=

{{{{

{{{{

{

[(3/4) (1 − log 𝑠)]𝛽−1 − (3/4 − log 𝑠)𝛽−1

[log 𝑠 (1 − log 𝑠)]𝛽−1
, 𝑠 ∈ (1, 𝑟] ,

1

(4 log 𝑠)𝛽−1
, 𝑠 ∈ [𝑟, 𝑒) ,

(27)
we obtain (20). This completes the proof of Lemma 7.

Let 𝑋 = 𝐶[1, 𝑒], ‖𝑢‖ = max1≤𝑡≤𝑒|𝑢(𝑡)|. we define the cone
𝑃 = {𝑢 ∈ 𝑋 | 𝑢(𝑡) ≥ 0} and the bounded closed set 𝑈 = {𝑢 ∈

𝑋 | 0 ≤ 𝑢(𝑡) ≤ 𝐾}.
The operator𝑇 : 𝑋 → 𝑋 is defined as the following form:

𝑇𝑢 (𝑡) = 𝑌 (𝑡)

= ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠
.

(28)
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Evidently, the solutions of boundary value problem (5) are the
corresponding fixed points of the operator 𝑇.

Lemma 8. Suppose that 𝑇 : 𝑃 → 𝑋 is an operator as above;
then 𝑇 : 𝑃 → 𝑃 is completely continuous.

Proof. It is easy to see that 𝑇 : 𝑃 → 𝑃 is continuous. Let
Ω ⊂ 𝑃 be a bounded set; then there is a positive constant
𝐴 > 0 such that ‖𝑢‖ ≤ 𝐴 for any 𝑢 ∈ Ω. Write 𝐵 =

max1≤𝑡≤𝑒,0≤𝑢≤𝐴𝑓(𝑡, 𝑢(𝑡)) + 1. For any 𝑢 ∈ Ω, we have

|𝑇𝑢 (𝑡)| = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ 𝐵
𝑞−1

∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)))

𝑑𝜏

𝜏

< +∞,

(29)

which shows that 𝑇Ω is uniformly bounded.
Next, the continuity of 𝐺(𝑡, 𝑠) implies that, for any 𝜀 > 0,

there exists a constant 𝛿 such that, for any 𝑡1, 𝑡2 ∈ [1, 𝑒], if
|𝑡1 − 𝑡2| < 𝛿, then

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
 <

𝜀

𝐵𝑞−1𝜑𝑞 (∫
𝑒

1
𝐻(𝜏, 𝜏) (𝑑𝜏/𝜏))

. (30)

Therefore, for any 𝑢 ∈ Ω,
𝑇𝑢 (𝑡1) − 𝑇𝑢 (𝑡2)



=


∫

𝑒

1
(𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠))

× 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠



≤ 𝐵
𝑞−1

∫

𝑒

1

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)


× 𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠
< 𝜀.

(31)

That is, 𝑇Ω is equicontinuity. By the means of Arzela-Ascoli
theorem [26], we have that 𝑇 : 𝑃 → 𝑃 is completely contin-
uous. This completes the proof of Lemma 8.

In the final part of this section, we list the following basic
properties of the 𝑝-Laplacian operator.

Lemma 9. (1) If 1 < 𝑝 < 2, 𝑥𝑦 > 0, and |𝑥|, |𝑦| ≥ 𝑚 > 0, then

𝜑𝑝 (𝑥) − 𝜑𝑝 (𝑦)


≤ (𝑝 − 1)𝑚

𝑝−2 𝑥 − 𝑦
 . (32)

(2) If 𝑝 > 2, |𝑥|, |𝑦| ≤ 𝑀, then

𝜑𝑝 (𝑥) − 𝜑𝑝 (𝑦)


≤ (𝑝 − 1)𝑀

𝑝−2 𝑥 − 𝑦
 . (33)

3. Proofs of the Main Results

In this section, first, we consider the existence of the solutions
of problem (5).

Theorem 10. If [max1≤𝑡≤𝑒, 0≤𝑢≤𝐾𝑓(𝑡, 𝑢)]
𝑞−1

∫
𝑒

1
𝐺(𝑒, 𝑠)(𝑑𝑠/𝑠)𝜑𝑞

(∫
𝑒

1
𝐻(𝜏, 𝜏)(𝑑𝜏/𝜏)) ≤ 𝐾, then the boundary value problem (5)

has at least one positive solution.

Proof. For any 𝑢 ∈ 𝑈, by the assumption as above and the
nonnegativeness of 𝐺(𝑡, 𝑠),𝐻(𝑡, 𝑠), and 𝑓(𝑡, 𝑢), we have

0 ≤ 𝑇𝑢 (𝑡) = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ [ max
1≤𝑡≤𝑒, 0≤𝑢≤𝐾

𝑓 (𝑡, 𝑢)]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)

≤ 𝐾.

(34)

Therefore, 𝑇 is a mapping from 𝑈 to 𝑈. This, combined with
the continuity of 𝐺(𝑡, 𝑠), 𝐻(𝑡, 𝑠), and 𝑓(𝑡, 𝑢), implies that 𝑇 :

𝑈 → 𝑈 is continuous.
Let Ω ⊂ 𝑈 be a bounded set; then there exists a positive

constant 𝐴 such that ‖𝑢‖ ≤ 𝐴 for any 𝑢 ∈ Ω. So we have, for
any 𝑢 ∈ Ω,

|𝑇𝑢 (𝑡)| = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ [ max
1≤𝑡≤𝑒, 0≤𝑢≤𝐴

𝑓 (𝑡, 𝑢)]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)

≤ [ max
1≤𝑡≤𝑒, 0≤𝑢≤𝐾

𝑓 (𝑡, 𝑢)]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
) ≤ 𝐾 ≤ +∞.

(35)

Therefore, 𝑇Ω is uniformly bounded.
Since 𝐺(𝑡, 𝑠) is continuous, for any 𝜀 > 0, there exists

a constant 𝛿 > 0 satisfying that, for any 𝑡1, 𝑡2 ∈ [1, 𝑒] and
|𝑡1 − 𝑡2| < 𝛿,

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)


<
𝜀

[max1≤𝑡≤𝑒, 0≤𝑢≤𝐴𝑓 (𝑡, 𝑢) + 1]
𝑞−1

𝜑𝑞 (∫
𝑒

1
𝐻(𝜏, 𝜏) (𝑑𝜏/𝜏))

.

(36)
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Then, for any 𝑢 ∈ Ω,

𝑇𝑢 (𝑡1) − 𝑇𝑢 (𝑡2)
 ≤ ∫

𝑒

1

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)


× 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ [ max
1≤𝑡≤𝑒, 0≤𝑢≤𝐴

𝑓 (𝑡, 𝑢) + 1]

𝑞−1

× 𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)

× ∫

𝑒

1

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)

𝑑𝑠

𝑠
< 𝜀,

(37)

which shows that 𝑇Ω is equicontinuous. By Arzela-Ascoli
theorem [26], 𝑇 : 𝑈 → 𝑈 is a completely continuous oper-
ator. It follows from Lemma 3 that 𝑇 has a fixed point 𝑢 in𝑈.
That is, problem (5) has at least one positive solution. This
completes the proof of Theorem 10.

Let us denote

Λ 1 = (∫

𝑒3/4

𝑒1/4
𝛾1 (𝑠) 𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠

× 𝜑𝑞(∫

𝑒3/4

𝑒1/4
𝛾2 (𝜏)𝐻 (𝜏, 𝜏)

𝑑𝜏

𝜏
))

−1

,

Λ 2 = (∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
))

−1

.

(38)

Theorem 11. Suppose that 𝑓(𝑡, 𝑢) : [1, 𝑒] × [0, +∞) is a con-
tinuous function and there exist two constants 𝑟2 > 𝑟1 > 0

satisfying that

(i) 𝑓(𝑡, 𝑢) ≥ 𝜑𝑝(Λ 1𝑟1), for (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑟1];

(ii) 𝑓(𝑡, 𝑢) ≤ 𝜑𝑝(Λ 2𝑟2), for (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑟2].

Then the boundary value problem (5) has at least one positive
solution 𝑢 which satisfies that 𝑟1 ≤ ‖𝑢‖ ≤ 𝑟2.

Proof. Let Ω1 = {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝑟1}. For any 𝑢 ∈ 𝜕Ω1, we
have 0 ≤ 𝑢(𝑡) ≤ 𝑟1 for 𝑡 ∈ [1, 𝑒]. By the assumption (i), for
any 𝑡 ∈ [𝑒

1/4
, 𝑒
3/4

],

|𝑇𝑢 (𝑡)| = ∫

𝑒

1 𝐺 (𝑡, 𝑠)

× 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≥ Λ 1𝑟1 ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏)

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≥ Λ 1𝑟1 ∫

𝑒3/4

𝑒1/4
𝐺 (𝑡, 𝑠) 𝜑𝑞(∫

𝑒3/4

𝑒1/4
𝐻(𝑠, 𝜏)

𝑑𝜏

𝜏
)

𝑑𝑠

𝑠

≥ Λ 1𝑟1 ∫

𝑒3/4

𝑒1/4
𝛾1 (𝑠) 𝐺 (𝑒, 𝑠)

× 𝜑𝑞(∫

𝑒3/4

𝑒1/4
𝛾2 (𝜏)𝐻 (𝜏, 𝜏)

𝑑𝜏

𝜏
)

𝑑𝑠

𝑠
= 𝑟1 = ‖𝑢‖ .

(39)

Hence,

‖𝑇𝑢‖ ≥ ‖𝑢‖ , for 𝑢 ∈ 𝜕Ω1. (40)

Similarly, let Ω2 := {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝑟2}. For any 𝑢 ∈ 𝜕Ω2, we
get 0 ≤ 𝑢(𝑡) ≤ 𝑟2, 𝑡 ∈ [1, 𝑒]. It follows from (ii) that for any
𝑡 ∈ [1, 𝑒],

|𝑇𝑢 (𝑡)| = ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ Λ 2𝑟2 ∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏)

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

≤ Λ 2𝑟2 ∫

𝑒

1
𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠

= 𝑟2 = ‖𝑢‖ .

(41)

Therefore,

‖𝑇𝑢‖ ≤ ‖𝑢‖ , for 𝑢 ∈ 𝜕Ω2. (42)

By Lemmas 4 and 8, 𝑇 has a fixed point inΩ2 \Ω1. Therefore,
the boundary value problem (5) has one positive solution in
Ω2 \ Ω1. This completes the proof of Theorem 11.

Corollary 12. Suppose that 𝑓(𝑡, 𝑢) : [1, 𝑒] × [0, +∞) is a con-
tinuous function and there exist two constants 𝑟2 > 𝑟1 > 0

satisfying that

(i) 𝑓(𝑡, 𝑢) ≤ 𝜑𝑝(Λ 2𝑟1), for (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑟1];
(ii) 𝑓(𝑡, 𝑢) ≥ 𝜑𝑝(Λ 1𝑟2), for (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑟2].

Then the boundary value problem (5) has at least one positive
solution 𝑢 which satisfies that 𝑟1 ≤ ‖𝑢‖ ≤ 𝑟2.
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Proof. The proof of Corollary 12 is similar to the one of
Theorem 11. So we omit the detail.

Theorem13. Suppose that𝑓(𝑡, 𝑢) : [1, 𝑒]×[0, +∞) is a positive
continuous function and there exists a constant 𝑟 > 0 such that

𝑟 > [ max
1≤𝑡≤𝑒,0≤𝑢≤𝑟

𝑓 (𝑡, 𝑢) + 1]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
) .

(43)

Then the boundary value problem (5) has at least one positive
solution.

Proof. Let
𝐸 = {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝑟} . (44)

From Lemma 8, we know 𝑇 : 𝐸 → 𝑃 is completely contin-
uous. Assume that there exist 𝑢 ∈ 𝐸, 𝜆 ∈ (0, 1) such that
𝑢 = 𝜆𝑇𝑢. Then we have

|𝑢 (𝑡)| = |𝜆𝑇𝑢|

≤


∫

𝑒

1
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏
)
𝑑𝑠

𝑠



≤ [ max
1≤𝑡≤𝑒,0≤𝑢≤𝑟

𝑓 (𝑡, 𝑢) + 1]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
) .

(45)

Thus,

‖𝑢‖ ≤ [ max
1≤𝑡≤𝑒,0≤𝑢≤𝑟

𝑓 (𝑡, 𝑢) + 1]

𝑞−1

× ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑𝑞 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
) .

(46)

By (43), we can imply that ‖𝑢‖ < 𝑟, which means that 𝑢 ∉

𝜕𝐸. That is to say, there is no 𝑢 ∈ 𝜕𝐸 such that 𝑢 = 𝜆𝑇𝑢 for
some 𝜆 ∈ (0, 1). Therefore, by Lemma 5, we conclude that the
problem (5) has at least one positive solution. This completes
the proof of Theorem 13.

Now we turn to the uniqueness of solution for boundary
value problem (5).

Theorem 14. Suppose that 𝑝 > 2. If there exists a nonnegative
function 𝑔 satisfying that

(1) for any (𝑡, 𝑢) ∈ [1, 𝑒] × [0, +∞), 𝑓(𝑡, 𝑢) ≥ 𝑔(𝑡);

(2) 𝑁 = ∫
𝑒3/4

𝑒1/4
𝛾2(𝜏)𝐻(𝜏, 𝜏)𝑔(𝜏)(𝑑𝜏/𝜏) > 0;

(3) for any 𝑡 ∈ [1, 𝑒], 𝑢, V ∈ [0, +∞), |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤
𝐿|𝑢 − V|, where

0 < 𝐿 < (∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
(𝑞 − 1)𝑁

𝑞−2
)

−1

,

(47)

then the boundary value problem (5) has a unique solution.

Proof. Assume that 𝑢, V are two positive solutions of problem
(5). It is easy to see that

∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏

≥ ∫

𝑒3/4

𝑒1/4
𝛾2 (𝜏)𝐻 (𝜏, 𝜏) 𝑔 (𝜏)

𝑑𝜏

𝜏
= 𝑁 > 0;

(48)

then by the fact 𝑝 > 2 (i.e., its dual exponent 1 < 𝑞 < 2) and
Lemma 9, we have

|𝑢 (𝑡) − V (𝑡)| ≤ ∫

𝑒

1
𝐺 (𝑡, 𝑠) (𝑞 − 1)𝑁

𝑞−2

×


∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏))

𝑑𝜏

𝜏

−∫

𝑒

1
𝐻(𝑠, 𝜏) 𝑓 (𝜏, V (𝜏))

𝑑𝜏

𝜏



𝑑𝑠

𝑠

≤ ∫

𝑒

1
𝐺 (𝑡, 𝑠) (𝑞 − 1)𝑁

𝑞−2

× ∫

𝑒

1
𝐻(𝑠, 𝜏)

𝑓 (𝜏, 𝑢 (𝜏)) − 𝑓 (𝜏, V (𝜏))
𝑑𝜏

𝜏

𝑑𝑠

𝑠

≤ ∫

𝑒

1
𝐺 (𝑒, 𝑠) (𝑞 − 1)𝑁

𝑞−2

× ∫

𝑒

1
𝐻(𝜏, 𝜏) 𝐿 ‖𝑢 − V‖

𝑑𝜏

𝜏

𝑑𝑠

𝑠

= ∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠

× ∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
(𝑞 − 1)𝑁

𝑞−2
𝐿 ‖𝑢 − V‖

= 𝛿1 ‖𝑢 − V‖ ,
(49)

where 𝛿1 = ∫
𝑒

1
𝐺(𝑒, 𝑠)(𝑑𝑠/𝑠) ∫

𝑒

1
𝐻(𝜏, 𝜏)(𝑑𝜏/𝜏)(𝑞 − 1)𝑁

𝑞−2
𝐿. So

we can get

‖𝑢 − V‖ ≤ 𝛿1 ‖𝑢 − V‖ . (50)

By the third hypothesis, 0 < 𝛿1 < 1, which implies that 𝑢(𝑡) =
V(𝑡). And this completes the proof of Theorem 14.

By using the same way, we can prove the last one of our
main uniqueness results.

Theorem 15. Suppose that 1 < 𝑝 < 2. If there exists a nonneg-
ative function ℎ satisfying that

(1) for any (𝑡, 𝑢) ∈ [1, 𝑒] × [0, +∞), 𝑓(𝑡, 𝑢) ≤ ℎ(𝑡);
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(2) 𝑀 = ∫
𝑒

1
𝐻(𝜏, 𝜏)ℎ(𝜏)(𝑑𝜏/𝜏) > 0;

(3) for any 𝑡 ∈ [1, 𝑒], 𝑢, V ∈ [0, +∞), |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤
𝐿|𝑢 − V|, where

0 < 𝐿 < (∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
(𝑞 − 1)𝑀

𝑞−2
)

−1

,

(51)

then the boundary value problem (5) has a unique solution.

4. Examples

In this section we give several examples to illustrate our main
results.

Example 16. Consider the boundary value problem:

𝐷
3/2

(𝜑5/2 (𝐷
5/2

𝑢 (𝑡)))

= (1 − log 𝑡)1/2 (1 + sin2𝑢) , 1 < 𝑡 < 𝑒,

𝑢 (1) = 𝑢

(1) = 𝑢


(𝑒) = 0,

𝐷
5/2

𝑢 (1) = 𝐷
5/2

𝑢 (𝑒) = 0.

(52)

Then the boundary value problem has a unique positive
solution.

Proof. Since 𝛼 = 5/2, 𝛽 = 3/2, a straightforward calculation
gives

∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
= ∫

𝑒

1

(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1

Γ (𝛼)

𝑑𝑠

𝑠

=
1

Γ (𝛼)
∫

𝑒

1
(1 − log 𝑠)𝛼−2 𝑑𝑠

𝑠

−
1

Γ (𝛼)
∫

𝑒

1
(1 − log 𝑠)𝛼−1 𝑑𝑠

𝑠

=
1

Γ (𝛼)
∫

1

0
(1 − 𝑡)

𝛼−2
𝑑𝑡

−
1

Γ (𝛼)
∫

1

0
(1 − 𝑡)

𝛼−1
𝑑𝑡

=
1

(𝛼 − 1) Γ (𝛼 + 1)

=
1

(3/2) Γ (7/2)
=

16

45√𝜋
,

∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
= ∫

𝑒

1

(log 𝜏)𝛽−1(1 − log 𝜏)𝛽−1

Γ (𝛽)

𝑑𝜏

𝜏

=
1

Γ (𝛽)
∫

1

0
𝑡
𝛽−1

(1 − 𝑡)
𝛽−1

𝑑𝑡

=
Γ (𝛽)

Γ (2𝛽)

=
Γ (3/2)

Γ (3)

=
√𝜋

4
.

(53)

Taking 𝐾 = 1, 𝑓(𝑡, 𝑢) = (1 − log 𝑡)1/2(1 + sin2𝑢), and
𝑝 = 5/2 > 2 (its dual exponent 𝑞 = 5/3), we have

max
1≤𝑡≤𝑒,0≤𝑢≤1

𝑓 (𝑡, 𝑢) = 1 + sin21 < 2,

[ max
1≤𝑡≤𝑒,0≤𝑢≤1

𝑓 (𝑡, 𝑢)]

(5/3)−1

∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑5/3 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)

< 2
2/3

⋅
16

45√𝜋
⋅ (

√𝜋

4
)

2/3

≈ 0.185 < 1.

(54)

By Theorem 10, the boundary value problem (52) has at least
one positive solution.

Choosing the nonnegative function 𝑔(𝑡) = (1 − log 𝑡)1/2,
for any (𝑡, 𝑢) ∈ [1, 𝑒] × [0, +∞), we gain that 𝑓(𝑡, 𝑢) = (1 −

log 𝑡)1/2(1 + sin2𝑢) ≥ 𝑔(𝑡). Then

𝑁 = ∫

𝑒3/4

𝑒1/4
𝛾2 (𝜏)𝐻 (𝜏, 𝜏) 𝑔 (𝜏)

𝑑𝜏

𝜏

= ∫

𝑟

𝑒1/4

1

Γ (3/2)
{[

3

4
(1 − log 𝜏)]

3/2−1

− (
3

4
− log 𝜏)

3/2−1

} ⋅ (1 − log 𝜏)1/2 𝑑𝜏
𝜏

+ ∫

𝑒3/4

𝑟

1

Γ (3/2)
(
1

4
)

3/2−1

(1 − log 𝜏)3/2−1

⋅ (1 − log 𝜏)1/2 𝑑𝜏
𝜏

≥ ∫

𝑒3/4

𝑟

1

√𝜋
(1 − log 𝜏) 𝑑𝜏

𝜏

=
1

2√𝜋
(1 − log 𝑟)2 − 1

32√𝜋
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=
1

2√𝜋
(1 − 1 +

√3

6
)

2

−
1

32√𝜋

=
1

96√𝜋
,

(55)

where 𝑟 = 𝑒
1−(√3/6) is the solution of (26) when 𝛽 = 3/2. For

any 𝑡 ∈ [1, 𝑒], 𝑢, V ∈ [0, +∞), taking 𝐿 = 2, we obtain

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) = (1 − log 𝑡)1/2 sin
2
𝑢 − sin2V

≤ 2 |𝑢 − V| = 𝐿 |𝑢 − V| .
(56)

Thus,

(∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
(𝑞 − 1)𝑁

𝑞−2
)

−1

= (
16

45√𝜋
⋅
√𝜋

4
⋅
2

3
𝑁
−1/3

)

−1

≥
135

8
(

1

96√𝜋
)

1/3

≈ 3.045 > 2 = 𝐿.

(57)

ByTheorem 14, the boundary value problem (52) has a unique
solution.

Example 17. Consider the following nonlinear boundary
value problem:

𝐷
3/2

(𝜑3/2 (𝐷
5/2

𝑢 (𝑡))) = log1/2𝑡 sin2𝑢, 1 < 𝑡 < 𝑒,

𝑢 (1) = 𝑢

(1) = 𝑢


(𝑒) = 0, 𝐷

5/2
𝑢 (1) = 𝐷

5/2
𝑢 (𝑒) = 0.

(58)

Then the boundary value problem has a unique positive
solution.

Proof. Taking 𝑟 = 1, since 𝛼 = 5/2, 𝛽 = 3/2, 𝑝 = 3/2 < 2 (its
dual exponent 𝑞 = 3) and 𝑓(𝑡, 𝑢) = log1/2𝑡 sin2𝑢, we obtain

max
1≤𝑡≤𝑒,0≤𝑢≤1

𝑓 (𝑡, 𝑢) = sin21 < 1, (59)

[ max
1≤𝑡≤𝑒,0≤𝑢≤1

𝑓 (𝑡, 𝑢) + 1]

3−1

∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
𝜑3 (∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
)

< 4 ⋅
16

45√𝜋
⋅
𝜋

16
≈ 0.158 < 1.

(60)

By means of Theorem 13, the boundary value problem (58)
has at least one positive solution.

Taking the nonnegative function ℎ(𝑡) = log1/2𝑡, for
(𝑡, 𝑢) ∈ [1, 𝑒] × [0, +∞), it is easy to obtain 𝑓(𝑡, 𝑢) = log1/2𝑡
sin2𝑢 ≤ ℎ(𝑡) and

𝑀 = ∫

𝑒

1
𝐻(𝜏, 𝜏) ℎ (𝜏)

𝑑𝜏

𝜏

=
1

Γ (3/2)
∫

𝑒

1
log 𝜏 (1 − log 𝜏)1/2 𝑑𝜏

𝜏
=

8

15√𝜋
.

(61)

Choosing 𝐿 = 2, for any 𝑡 ∈ [1, 𝑒], 𝑢, V ∈ [0, +∞), we have
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) = log1/2𝑡 sin

2
𝑢 − sin2V

≤ 2 |𝑢 − V| = 𝐿 |𝑢 − V| ,

(∫

𝑒

1
𝐺 (𝑒, 𝑠)

𝑑𝑠

𝑠
∫

𝑒

1
𝐻(𝜏, 𝜏)

𝑑𝜏

𝜏
(𝑞 − 1)𝑀

𝑞−2
)

−1

= (
16

45√𝜋
⋅
√𝜋

4
⋅ 2 ⋅

8

15√𝜋
)

−1

≈ 18.694 > 2 = 𝐿.

(62)

From Theorem 15, the boundary value problem (58) has a
unique solution.
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