Hindawi

Security and Communication Networks
Volume 2017, Article ID 8575842, 9 pages
https://doi.org/10.1155/2017/8575842

Research Article

WILEY

Hindawi

ABS-TrustSDN: An Agent-Based Simulator of Trust
Strategies in Software-Defined Networks

Ivan Garcia-Magariio"” and Raquel Lacuesta'”

! Department of Computer Science and Engineering of Systems, Escuela Universitaria Politécnica de Teruel,

University of Zaragoza, c/Atarazana 2, 44003 Teruel, Spain

’Instituto de Investigacién Sanitaria Aragon, University of Zaragoza, Zaragoza, Spain

Correspondence should be addressed to Ivan Garcia-Magarifio; ivangmg@unizar.es

Received 28 July 2017; Accepted 6 September 2017; Published 11 October 2017

Academic Editor: Huaizhi Li

Copyright © 2017 Ivan Garcia-Magarino and Raquel Lacuesta. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Software-defined networks (SDNs) have become a mechanism to separate the control plane and the data plane in the communica-
tion in networks. SDNs involve several challenges around their security and their confidentiality. Ideally, SDNs should incorporate
autonomous and adaptive systems for controlling the routing to be able to isolate network resources that may be malfunctioning or
whose security has been compromised with malware. The current work introduces a novel agent-based framework that simulates
SDN isolation protocols by means of trust and reputation models. This way, SDN programmers may estimate the repercussions of
certain isolation protocols based on trust models before actually deploying the protocol into the network.

1. Introduction

Software-defined networks (SDNs) allow separating control
and data planes, offering better network management rather
than traditional networks. In SDNs, programming does not
need to be performed node by node, but in a centralized way.
This provides more flexible, efficient, and scalable networks.
This way, the network is implemented independently of
manufacturers or component models. The SDN controller
is responsible for acting as a centralized control point at
a logical level. The controller has the task of coordinating
communications between applications that interact with
network elements. However, this centralized control scenario
introduces some security challenges. In order to protect a
network, one should secure data, controllers and devices,
and communications. In the literature, some works increased
security in SDNs including authentication mechanisms, con-
troller replication schemes, and policy conflict resolution
schemas. Alterations in the network’s components and in
their behavior need to be assessed to sustain network security.
That way, the network’s components trust and reputation
become an important issue to deal with.

Due to the global network view that the SDNs provide, we
can introduce a detection system to assess the devices’ reputa-
tion and trustworthiness. Based on the analysis, the controller
can reprogram the network operation. In this scenario, the
SDN architecture is used to improve the network security
using a security monitor that analyzes anomaly-detection
behaviors of the network’s components. This approach can
improve the robustness of the network to detect attacks.

Monitoring systems have been proposed by some authors
in order to protect networks from attacks. Some of them
use a centralized scheme. For example, OpenSAFE system
[1] was proposed to enable the arbitrary direction of traffic
for security monitoring applications. A flow specification
language named ALARMs was used for arbitrary route
management through monitoring devices. Braga et al. [2]
presented a lightweight method for DDoS attack detection.
In the proposal, they monitored NOX switches at regular
intervals to identify abnormal flows. In [3], an Intrusion
Detection-Prevention System architecture was proposed for
the cloud virtual networking environment. It inherited the
detection capability from Snort and the flexible network
reconfiguration from SDNs. CloudWatchers, a framework

https://doi.org/10.1155/2017/8575842

used in [4], monitored network flows for large and dynamic
cloud networks.

Other authors presented distributed architecture models
to distribute the security efforts among the network’s devices.
For instance, a distributed approach was presented in [5]
where the control and trust were delegated to end hosts
and users. Therefore, the network’s devices participated in
network security enforcement. In [6], Resonance, a dynamic
access control system, was carried out by network devices.
The system used programmable switches to manipulate traffic
at lower layers, enforcing high-level security policies. A deep
packet inspection module was proposed by Goodney et al.
[7]. The proposed engine was used as a simple network
intrusion detection system.

Trust and reputation models have been applied for
achieving security in networks. Yan et al. [8] proposed a
security and trust framework using fifth-generation (5G)
wireless systems. That work proposed an adaptive trust
evaluation for deploying certain trustworthy security services
in both virtualized networks and SDNs. Michiardi and
Molva [9] proposed a collaborative reputation mechanism
for promoting the cooperation among network nodes, pre-
venting selfish behaviors. Liu and Issarny [10] proposed a
reputation mechanism for mobile ad hoc networks, in which
agents shared the reputation about other agents. This system
promoted honest recommendations, by including the notion
of recommendation reputation. The reputations were also
calculated about the recommendations of other agents.

In general, multiagent systems (MASs) have been consid-
ered a proper mechanism for implementing and simulating
trust and reputation models. For instance, the Agent Repu-
tation and Trust (ART) testbed [11] provided a framework
for testing different policies about trust on agents (esti-
mated from the direct interaction) and reputation of other
agents (obtained from the recommendations of other agents).
Their framework illustrated these concepts in the domain
of appraisals of paintings. They organized competitions, in
which each participant programmed an agent, and all the
agents were executed together. Other works explored how
to integrate different trust measures in MASs, like in the
one by Rosaci et al. [12]. They introduced concepts such
as the reliability about each reputation value. Furthermore,
Jelenc et al. [13] proposed an agent-based mechanism for
evaluating trust models. They used a testbed, but their
mechanism separated the measurement of trust models from
the repercussions of the decision-making mechanisms. In
addition, Chen et al. [14] presented a MAS trust model for
wireless sensor networks. In their system, they propagated
encrypted reputation information about the different nodes.
They tested their system under the bad mouthing attacks
(spread of false reputation information), conflicting behavior
attacks (an agent is malicious towards one node and honest
to the others, for provoking conflicts about the reputation of
certain nodes), and on-off attacks (a node behaves well and
badly alternatively). They also presented some simulations
with their models.

Agent-based simulators (ABSs) are a specific kind of
MASs intended for making simulations and have been
applied to implement trust testbed, like in the work of Kim

Security and Communication Networks

Agent | Trust

i Net1| 76.3
Net2 | 48.1

Controller Net3 | 97.4

agent

Network agents

Sger

A\
/ \ /

\ /

\ / .
i i i e

/

/ 1 A

\ ,7 Malware . /

FIGURE 1: Overview of ABS-TrustSDN.

[15] in the domain of supply networks. That work tested
adaptive behaviors based on trust and explored emergent
outcomes such as self-organizing processes and macrolevel
systems behaviors.

On the whole, the current literature shows the relevance
of guaranteeing the security on SDNs. Trust models have been
shown to be useful for this purpose. However, to the best of
the authors’ knowledge, the existing testbed for simulating
trust strategies is not designed for simulating the repercus-
sion of trust models specifically for SDNs. In this context,
MASs have been shown to be useful for comparing and
simulating trust models in several domains, especially when
separating trust models from decision-making processes.
ABSs may be a proper choice for developing trust testbeds
and simulation frameworks.

In this context, the current work presents an Agent-Based
Simulator of Trust strategies in SDNs (called ABS-TrustSDN).
In this simulator, an agent represents the centralized con-
troller of the SDN, and this agent builds a trust model regard-
ing the history of the network’s components based on the net-
work packets that were properly transmitted or lost through
that component. Other agents represent the network’s com-
ponents that can either work properly or malfunction. The
underlying framework allows designers to test different iso-
lation protocols based on trust models. This work explores
different strategies of the SDN controller based on trust with
the presented approach and compares their outcomes.

2. Materials and Methods
2.1. ABS-TrustSDN

2.1.1. Overview. The current work uses the novel ABS-
TrustSDN tool as the main material of this research. This tool
and its underlying framework have been developed specifi-
cally for the current work, which is one of its main contribu-
tions. In order to guarantee the reproducibility of the experi-
ments, this tool has been made available on its website [16].
This tool is an ABS in which agents simulate the behaviors
of the SNDs” components. Figure 1 introduces graphically

Security and Communication Networks

ABS-TrustSDN

Reliability of Network Agents. 95.0
(%):
Reliability of Network Agents 60.0
with Malware (%):
Number of Network Agents: 85
Number of Network Agents 15
with Malware:
Number of network 1000
packages: -

Strategy of the centralized

G Select Strategy ~

Run Simulation

(a) Inputs of the UI

< Average SDN results

Reputation

Malware
60.29%

Reputation
Network

84.06%

Show Evolution || Show Individuals

(b) Average results with a star plot

FIGURE 2: Main screens in the UI of ABS-TrustSDN.

an overview of this tool. The “network agents” represent
the network’s components such as groups of switches, and
these can have different behaviors. Most of these work
properly transmitting the network packages following the
orders of the SDN centralized controller. However, a few
of the network agents may have a malicious or nonproper
behavior. This behavior can be intended for compromising
the privacy and taking nonauthorized data. It can also be
some malfunctioning that makes them lose a high rate of
network packages. From this point forward, sometimes this
kind of network agents will also be referred to as “malware
agents” in order to distinguish them from all the other
network agents that will be referred to as “normal network
agents” in this context.

The “controller agent” represents the centralized con-
troller of the SDN. It decides how to route the traffic of the
network to avoid its saturation. In ABS-TrustSDN, this agent
is mainly intended to incorporate the isolation protocol. This
can be programmed by the SDN designer, in order to simulate
several isolation protocols. The controller agent incorporates
a table with its trust on each network agent as a percentage in
the 0-to-100 interval.

The tool can simulate any number of messages from
a sender to a receiver. In each simulated communication,
the controller agent selects a route represented with several
network agents. The receiver can report whether the message
was properly received or whether it was lost. If lost, the
controller agent can track in which point of the route the
package was lost and decrease its trust in the corresponding
network agent. Normally, if the transmission was correct, it
slightly increases its trust on all the involved network agents.

The network agents with a nonproper behavior only
perform malicious or error-prone actions sometimes in a
certain percentage of times, so these can be difficult to detect
without an accurate isolation protocol. This percentage of
misbehavior can be configured as an input of the simulator.

2.1.2. Definition of Strategies with ABS-TrustSDN. This tool
was developed following PEABS (a process for developing
agent-based simulators) [17]. It considered the common
guidelines for designing proper agent-oriented architectures
[18] and integrating these with web-based systems [19]. The
communications were designed considering the common
recommendations in the area of MASs [20]. This process was
adapted to develop the app with the Unity engine and the C#
language.

In each simulation iteration, the controller agent selects
the next network agent to transmit from the available ones
with a nondeterministic decision based on probabilities.
These probabilities are determined by its internal trust model.
This way, normally, this agent selects more frequently the
agents that it trusts more according to its model.

The controller agent receives feedback about whether the
transmission was correct or not for each transmitted package
in each network agent. The framework allows extending
the controller agent to define exactly the way of updating
the trust by overwriting the method “Update Trust.” This
method receives the previous trust of the agent, the positive
or negative result of the communication, and the ID of the
network agent. It must return the new trust. Designers can
implement basic behaviors regarding only the previous trust
and the communication result. They can also implement
more elaborated trust models with data structures inside the
extended class for taking into account the previous histories
of the agents identified by their IDs. Section 2.2 introduces
several examples of strategies that were defined with the
current approach.

2.1.3. User Interface of ABS-TrustSDN. Figure 2 shows the
main screens of the user interface (UI) of ABS-TrustSDN.
More concretely, Figure 2(a) shows the screen in which the
user enters the input values of the simulations. These include
the reliabilities of, respectively, the normal network agents

< Evolution of SDN metrics
100

i

200 400 600 800 1000
Network packages

[Reputation
Malware

- Reputation - Successful
Network Communication

(a) Evolution of SDN metrics (%)

Security and Communication Networks

< Reputation of Network Agents
Id Type Reputation (%)
1 Network 929
3 Network 850
5 Network 940
7 Network 902
9 Network 827
1 Network 938
13 Network 9.5
15 Network 519
17 Network 956
19 Network 988
21 Network 940
23 Network 973
25 Network 940
27 Network %38
29 Network 908
31 Network 940
33 Network 840
35 Network 914
37 Malware 634
39 Malware 66.9
4 Malware 728
43 Malware 520
45 Malware 576
47 Malware 533
49 Malware 503

51 Malware 363

(b) Reputation of network agents

FIGURE 3: Screens with the details of the simulation in the UI of ABS-TrustSDN.

and the ones with malware. Each reliability represents the
percentage of times that a kind of network agents works prop-
erly. It is worth mentioning that even correct components can
fail occasionally, and the network components with malware
can work most of the times. Both aspects can be configured by
the user with two percentages. The simulation can be set with
different numbers of normal network agents and the ones
with malware. The components with malware are usually a
minority, but the user can simulate different scenarios about
this.

The user can also set the number of transmitted network
packages, to show both the short-term and the long-term
repercussions of the different trust policies. Finally, the user
can select one of the existing trust model strategies for the
centralized controller. The user can easily define new strate-
gies by using the underlying framework of ABS-TrustSDN,
as previously introduced in Section 2.1.2. After entering the
simulation inputs, the user can start running the simulation
by pressing the corresponding “Run simulation” button.

After running the simulation, the ABS presents the
average simulated outcomes with a star plot like the one in
Figure 2(b). These outcomes include average reputations of,
respectively, the normal network agents and the ones with
malware. The star plot also includes the success rate of the
transmitted network packages through the network agents
in general. The user can also observe further details in the
screens of the UI presented in Figure 3, by pressing any of the
two bottom buttons in Figure 2(b).

The UI screen of Figure 3(a) shows the evolution of the
average reputations of the two different kinds of network
agents and the evolution of the success rate in the commu-
nications up to the corresponding time. The chart shows the
evolution of these three variables evolving along the evolution
time implicitly represented by the number of the network
packages transmitted in the abscissa axis. In the UI screen of

Figure 3(b), the user can see the reputations of all the network
agents alongside their IDs and their abbreviated types (i.e.,
“Network” for the normal network agents and “Malware”
for the ones with malware). The reputation of each network
agent is determined by the percentage that the centralized
controller agent trusts on it.

2.2. Experimental Method. The current work followed an
exploratory design, as commonly done in works about ABSs
[21] or more generally in MASs [22], in order to test the
utility of the novel ABS-TrustSDN tool and its underlying
framework. We implemented three different strategies of
conforming trust models. Then, we experienced the strategies
in two different scenarios represented with certain input
configurations. Each combination of strategy and configura-
tion was executed 1,000 times for avoiding bias due to the
nondeterministic behavior of the simulator. The results were
compared by presenting and discussing the average results.
The results were analyzed with a statistical test to determine
the significance of the differences. We calculated the effect
sizes to measure these differences. Furthermore, we analyzed
the evolutions of the different combinations in order to
provide possible explanations about the resulting outcomes.
In this experimental method, we defined the following
strategies with the underlying framework of ABS-TrustSDN:

(i) Fixed Strategy. This strategy just considers the last
time the controller agent interacted with a certain
network agent. If the communication was successful,
then it assigns a high fixed trust. Otherwise, it assigns
a low fixed trust. The high fixed trust is 100%, while
the low trust is 10%. It does not assign a 0% trust, as
anormal network agent may have had an uncommon
failure. This way, the network agent may be contacted
eventually in the future and then it will recover the
high trust if it does not fail again.

Security and Communication Networks

TABLE 1: Input configurations.

Configuration 1 Configuration 2

Reliability of network agents (%)

Reliability of network agents with malware (%)
Number of network agents

Number of network agents with malware
Number of network packages

95.0 95.0
60.0 15.0
85 85
15 15
1000 1000

TABLE 2: Average results of the 1,000 simulations for each pair of strategies and input configuration with SDs between parentheses.

Configuration 1

Configuration 2

Strategy Reputation Reputation Successful Reputation Reputation Successful
network (%) malware (%) communication (%) network (%) malware (%) communication (%)
Fixed 73.55 (4.63) 22.88 (8.04) 92.60 (0.76) 73.48 (4.46) 11.55 (3.04) 91.88 (0.81)
Tabsaond 84.51 (0.75) 55.18 (3.56) 90.84 (0.86) 85.08 (0.74) 28.32 (2.22) 88.18 (0.92)
History 99.52 (0.68) 39.94 (13.52) 91.12 (0.76) 99.53 (0.67) 3.70 (4.76) 89.03 (0.74)

(ii) Tabsaond Strategy. If the communication was correct
with a network agent, the controller increases the
trust on it. Otherwise, it decreases the trust. It updates
the trust considering a ratio of the distance to the
approaching limit, following the recommendations of
TABSAOND (a technique for developing agent-based
simulation apps and online tools with nondetermin-
istic decisions) [23]. The controller agent decision can
be either to increase its trust (d = 1), decrease its
trust (d = -1), or keep the trust with a neutral
trend (d = 0). In particular, the controller agent uses
the following formula to calculate the variation for
altering the trust on a network agent:

K (Up-x), ifd>0,
v=4-K=*(x-L;), ifd<o, 1)
0, otherwise,

where x is the current trust on this agent, K represents
the ratio to the approaching limit (in this work K =
0.15), and L; and U, respectively, represent the lower
and the upper limits (i.e., 0 and 100, as the trust is
represented with percentages).

(iii) History Strategy. This strategy assigns a high trust
value to all the network agents by default. In each
interaction with a specific agent, it records the com-
munication result. It does not change the trust until
it has analyzed a minimum number of interactions
that is established as an internal parameter named
“analysis window.” In this experiment, this parameter
was set to 5 interactions. Once this limit is reached,
this strategy calculates the ratio of successful trans-
missions with the corresponding agent. If this ratio is
below a certain threshold (in this experiments set to
60%), then the agent is set to a low trust for isolating

the agent. In this case, the low trust was set to zero
for the complete isolation, as it has made sure that
its behavior is wrong for at least a certain number of
interactions.

In order to experience the aforementioned strategies in differ-
ent contexts, this work established two settings of the input
parameters, which are referred to as input configurations.
Table 1 shows the input values of these configurations. The
difference between these two is that the rates of failures of the
malware agents are different. This way, the strategies will be
tested with different kinds of network agents with malware,
represented with different reliability percentages (i.e., 60%
versus 15%).

3. Results and Discussions

3.1. Comparison of the Final Simulated Outcomes of the Trust
Strategies. As mentioned in the experimental method, the
simulator was executed 1,000 times for each combination of
strategy and input configuration. Table 2 presents the average
results of these simulations with the SD between parentheses.

By observing the averages, one can extract several conclu-
sions. First, when the input configuration varies considering
different reliabilities of network agents with malware, the
relative order of the strategies varies in the malware agents’
reputation dependent variable. Thus, different strategies may
be considered appropriate given the nature of the most
expected kind of malware.

In addition, one can observe the results of the isolation
of malware resources by observing the reputation of normal
network agents and the reputation of the ones that got
malware. An ideal strategy would trust network agents with
100% and would not rely on the ones with malware with trust
of 0%. One can observe that History strategy is the one that
gets closer to the ideal trust for isolating malware resources.
When the agents with malware have a very low reliability

Security and Communication Networks

TaBLE 3: Results of Welch’s unequal variances t-test generalized for three samples. *Asymptotically F distributed. **Significant with a

significance level of .001.

Configuration 1

Configuration 2

Reputation Reputation Successful Reputation Reputation Successful
network (%) malware (%) communication (%) network (%) malware (%) communication (%)
Statistic® 119441.343 6993.621 1461.395 113571.231 17614.808 5368.600
df1 2 2 2 2 2
df2 1613.377 1992.052 1783.826 1856.863 1983.274
Sig. .000™" .000™" .000™" .000™" .000™"
TaBLE 4: Cohen’s d effect sizes.
Tabsaond History
Configuration Reputation Reputation Successful Reputation Reputation Successful
network (%) malware (%) communication (%) network (%) malware (%) communication (%)
. 1 2.34 3.67 -1.54 5.55 1.08 -1.39
Fixed
2 2.56 4.60 -3.02 5.77 -1.39 -2.59
Tabsaond 1 14.90 -1.09 0.24
2 14.43 —4.78 0.72

(i.e., configuration 2), the history strategy assigns the highest
reputation to network agents (i.e., 99.5%) compared to the
other strategies and the lowest reputation to the agents with
malware (i.e., 3.7%). In configuration 1 with malware agents
with a higher reliability, Fixed strategy isolates them with a
lower reputation, but it also isolates wrongly some normal
network agents. Thus, even in this configuration, History
strategy may be the most appropriate one for separating the
trust values of network agents and malware agents.

Another relevant aspect is to analyze which strategy
achieves the highest rate of successful communications. In
this case, the Fixed strategy is the one that obtains the
highest rate in both configurations. Notice that the rate
of success in communications not only depends on the
quality of the final trust model of the isolation protocol
of malware resources, but also depends on how quick the
isolation is taken. Slow isolation may cause the failure of
many initial communications, and this will hinder the final
communication rate. This may be the reason why the Fixed
strategy got the highest rate, as it can start the isolation from
the very first interaction with an agent.

The results were analyzed with Welch’s unequal variances
t-test generalized for more than two samples [24], in order
to determine whether the differences were statistically sig-
nificant. Table 3 shows the results of this statistical test. This
test was selected as it is robust for comparing samples with
unequal variances. The differences of the results between the
different strategies were very significant with a significance
level of .001 for all the dependent variables.

Table 4 analyzes Cohen’s d effect sizes between each pair
of strategies for each input configuration and dependent
variable. Cohen’s [25] guideline assigned .2, .5, and .8, respec-
tively, to small, medium, and large effect sizes. According to
this guideline, all the effect sizes of the current experiments

were large between all the pairs of strategies and dependent
variables, except in the case of the comparison of success rate
in communications between Tabsaond and History strategies.
In that case, the effect size was small and medium for,
respectively, configurations 1 and 2.

On the whole, one can observe that ABS-TrustSDN has
allowed comparing the repercussions of three different trust
strategies on SDNs concerning two different kinds of attacks.
These attack kinds were represented with their different ratios
of communication failures implicitly indicated in the input
configurations. The results presented significant differences.
Hence, ABS-TrustSDN may be useful for selecting the right
trust policy in an SDN when considering possible alterna-
tives.

3.2. The Simulated Evolutions with the Trust Strategies. This
section shows examples of evolutions of the simulations in
each combination of strategy and input configuration, in
order to understand some features of these simulations.

Figure 4 shows the evolution of the simulations of the
Fixed strategy. One of the most relevant features is that
it separates the reputation of network agents and malware
agents very soon in the simulations (i.e., from the beginning).
The drawback is that it starts decreasing the reputation of the
normal network agents in the long term. The reason is that
uncommon errors of these agents are taken seriously by this
strategy, and wrongly isolating them enlarges the group of
unfairly isolated network agents.

In Figure5, one can observe that the most relevant
aspect of simulations with the Tabsaond strategy is that the
evolutions of strategies are smooth in comparison to the other
strategies. In addition, Tabsaond strategy may reach stable
states in different levels of reputations of malware regarding

Security and Communication Networks

100 -
90 -
80 -
70
60 -

T
N
o~

1

40
664 -
703
742
781 A
820 -
859
898 -
937
976

L —
DN \O N
<t oo
N \o

235
274 1
313 4
352
391 A
430
469 A
508

T
\O
[}
—

118 A
157 |

Network packages

lae]

—— Reputation network (%)
Successful communication (%)
—— Reputation malware (%)

(a) Configuration 1

T
N
SN

547 4
586 -
625 -
664
703
742
781 -
820 -
859 -
898 -
937
976 -

T T T T
N~ O QR
NN \O O
e en < <N

118 -
157 A
196 -
235
274
313

o
F

Network packages
—— Reputation network (%)

Successful communication (%)
—— Reputation malware (%)

(b) Configuration 2

FIGURE 4: Evolution of SDN metrics with Fixed strategy.

0O+ T 0o+

HFORNRXNOINIFNONAN—TONONNOINFHFON—=ONXDNN\O

TERER RN NN RBES LTSI IRRNR SR E R RARC N A RO TR A0S T 0N A M

—HreEE NN NN HO NN N0 \ODNDNDN 00000 N N A ANNNONOFFNNN O ODNDNDN00 000NN
Network packages Network packages

—— Reputation network (%)
Successful communication (%)
—— Reputation malware (%)

(a) Configuration 1

—— Reputation network (%)
Successful communication (%)
—— Reputation malware (%)

(b) Configuration 2

FIGURE 5: Evolution of SDN metrics with Tabsaond strategy.

the reliability of these agents, as suggested in the original
TABSAOND approach.

Figure 6 shows the evolution of History strategy. One
can observe that, in the beginning, it trusts almost the
same malware agents and other agents, due to the minimum
amount of interactions for analyzing an agent. Then, it almost
separates perfectly the reputation of these two kinds of agents,
getting really close to the ideal 0% and 100% trust for,
respectively, malware agents and other agents in the second
input configuration.

Therefore, ABS-TrustSDN presents detailed results of the
simulations including their evolutions that have been useful
for providing explanations to the outcomes of three different

trust strategies. In general, the results of this experimentation
advocate that ABS-TrustSDN may be an appropriate frame-
work for designing and comparing trust strategies in SDNs,
providing an adequate testbed simulation environment for
this comparison.

4. Conclusions

The current work has introduced a novel agent-based frame-
work for defining strategies for conforming trust models
about network components. This framework and the cor-
responding ABS tool allow SDN designers to simulate and
estimate the repercussion of certain protocols regarding the

Security and Communication Networks

O T 0 T

HORNXNOINFNONAN—FONONNONFHON—HO N0\ HFORNXNOINFNONAN —TORNONNONFON—~O N0

NN NN OO FROANOOF0ALN NN DS NN AN OO FROANOO FOALN NN DS

HreEAANANOOOFFHFNNON O ONININ0 00NN HEAANANOOOFFNNIN O ONINDN0 00NN
Network packages Network packages

—— Reputation network (%)
Successful communication (%)
—— Reputation malware (%)

(a) Configuration 1

—— Reputation network (%)
Successful communication (%)
—— Reputation malware (%)

(b) Configuration 2

FIGURE 6: Evolution of SDN metrics with History strategy.

trust policy of the centralized controller of the SDN. This way;,
one can test several trust models in different contexts like
short-term or long-term repercussions and the frequency of
misbehavior of the network components with malware. This
way, the current ABS supports the decision in selecting the
most appropriate trust policy.

The current approach has assisted the definition of three
different trust models. Each of these has been tested with
two contexts with different frequencies of misbehavior of
network components. Each case was simulated 1,000 times,
and the results were compared. The results showed signif-
icant differences with a significance level of .001. In most
cases, Cohen’s d effect sizes were large according to Cohen’s
guidelines. Thus, the presented ABS approach was useful to
find significant differences in the final simulated outcomes
between different trust models for isolating problematic
resources. The presented novel ABS-TrustSDN tool outputs
several charts in its UI for analyzing the results not only at
its final state but also in the evolution of the simulation. The
evolution was crucial for understanding facts such as why the
best isolation mechanism according to the final trust model
does not necessarily imply the highest rate of success in the
communications of the whole analyzed period.

The current work is planned to be enhanced by defining a
higher number of trust policies in SDNs and simulating their
repercussions. The presented approach will also be further
experienced by simulating the repercussions of the variations
of certain internal parameters of the strategies on the final
simulated outcomes. The current approach will include the
principles of model-driven development with (1) an agent-
based metamodel [26] for supporting trust modeling and (2)
model transformations for supporting the systems generation
from their models [27]. The presented tool is planned to
be tested with SDN designers as users to detect design
opportunities related to aspects such as (a) improving the

usability of the tool, (b) including more functionalities, (c)
adding new ways of presenting and analyzing the data, and
(d) supporting more primitives for supporting the definition
of trust strategies.

Conflicts of Interest

The authors do not have any conflicts of interest regarding
this work.

Acknowledgments

The authors would like to acknowledge “Desarrollo Colabo-
rativo de Soluciones AAL” project (Ref. TIN2014-57028-R)
supported by the Spanish Ministry of Economy and Com-
petitiveness. This work was also supported by “Fondo Social
Europeo” and the “Departamento de Tecnologia y Universi-
dad del Gobierno de Aragon” (Ref-T81).

References

[1] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable
network monitoring using OpenSAFE,” in Proceedings of the
2010 Internet Network Management Conference on Research on
Enterprise Networking, INM/WREN’IO, p. 8, April 2010.

[2] R.Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding
attack detection using NOX/OpenFlow,” in Proceedings of the
Local Computer Networks (LCN), 2010 IEEE 35th Conference, pp.
408-415, IEEE, October 2010.

[3] T.Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: enabling
software-defined networking based intrusion prevention sys-
tem in clouds,” in Proceedings of the 10th International Confer-
ence on Network and Service Management, CNSM 2014, pp. 308—-
311, IEEE, Rio de Janeiro, Brazil, November 2014.

[4] S. Shin and G. Gu, “CloudWatcher: Network security moni-
toring using OpenFlow in dynamic cloud networks (or: How

Security and Communication Networks

(10]

(15]

to provide security monitoring as a service in clouds?),” in
Proceedings of the 2012 20th IEEE International Conference
on Network Protocols, ICNP 2012, IEEE, Austin, TX, USA,
November 2012.

J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zel-
dovich, “Delegating network security with more information,”
in Proceedings of the In Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking, pp. 19-26, 2009.

A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Res-
onance: dynamic access control for enterprise networks,” in
Proceedings of the In Proceedings of the Ist ACM Workshop on
Research on Enterprise Networking, pp. 11-18, August 2009.

A. Goodney, S. Narayan, V. Bhandwalkar, and Y. H. Cho,
“Pattern based packet filtering using NetFPGA in DETER
infrastructure;” in Proceedings of the Ist Asia NetFPGA Devel-
opers Workshop, Daejeon, Korea.

Z. Yan, P. Zhang, and A. V. Vasilakos, “A security and trust
framework for virtualized networks and software-defined net-
working,” Security and Communication Networks, 2015.

P. Michiardi and R. Molva, “Core: a collaborative reputation
mechanism to enforce node cooperation in mobile ad hoc net-
works,” in Advanced Communications and Multimedia Security,
pp- 107-121, Springer, New York, NY, USA, 2002.

J. Liu and V. Issarny, “Enhanced reputation mechanism for
mobile ad hoc networks,” in Proceedings of the In International
Conference on Trust Management, pp. 48-62, Springer, Berlin,
Germany, 2004.

K. K. Fullam, T. B. Klos, G. Muller et al., “A specification of
the agent reputation and trust (art) testbed: experimentation
and competition for trust in agent societies,” in Proceedings of
the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 512-518, July 2005.

D. Rosaci, G. M. L. Sarné, and S. Garruzzo, “Integrating
trust measures in multiagent systems,” International Journal of
Intelligent Systems, vol. 27, no. 1, pp. 1-15, 2012.

D. Jelenc, R. Hermoso, J. Sabater-Mir, and D. Tréek, “Deci-
sion making matters: A better way to evaluate trust models;
Knowledge-Based Systems, vol. 52, pp. 147-164, 2013.

H. Chen, H. Wu, X. Zhou, and C. Gao, “Agent-based trust model
in wireless sensor networks,” in Proceedings of the 8th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing
(SNPD ’07),vol. 3, pp. 119-124, IEEE, Qingdao, China, July 2007.
W. S. Kim, “Effects of a trust mechanism on complex adaptive
supply networks: an agent-based social simulation study;” Jour-
nal of Guangxi Traditional Chinese Medical University, vol. 12,
no. 3, pp. 56-58, 2009.

I. Garcia-Magarifio and R. Lacuesta, ABS-TrustSDN website.
Available at http://webdiis.unizar.es/~ivangmg/abstrustsdn/
(last accessed July 28, 2017).

I. Garcia-Magarifio, A. Gémez-Rodriguez, J. C. Gonzalez-
Moreno, and G. Palacios-Navarro, “PEABS: a process for
developing efficient agent-based simulators,” Engineering Appli-
cations of Artificial Intelligence, vol. 46, pp. 104-112, 2015.

I. Garcia-Magarino, M. Cossentino, and V. Seidita, “A metrics
suite for evaluating agent-oriented architectures,” in Proceedings
of the 25th Annual ACM Symposium on Applied Computing, SAC
2010, pp. 912-919, Sierre, Switzerland, March 2010.

R. Fuentes-Fernandez, I. Garcia-Magarifo, J. J. Gdmez-Sanz,
and J. Pavon, “Integration of web services in an agent-oriented
methodology,” in Proceedings of the Integration of Web Services
in an Agent-Oriented Methodology, vol. 3, pp. 145-161, 2007.

[20]

(21]

[22]

C. Gutierrez and I. Garcia-Magarifio, “A metrics suite for the
communication of multi-agent systems,” Journal of Physical
Agents, vol. 3, no. 2, pp. 7-14, 2009.

B. Desmarchelier and E. S. Fang, “National Culture and
Innovation diffusion. Exploratory insights from agent-based
modeling,” Technological Forecasting and Social Change, vol. 105,
pp. 121-128, 2016.

I. Garcia-Magarino, J. J. Gémez-Sanz, and J. R. Pérez-Agiiera,
“A multi-agent based implementation of a Delphi process;’
in Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2008, vol.
3, pp. 1543-1546, International Foundation for Autonomous
Agents and Multiagent Systems, Estoril, Portugal, May 2008.

I. Garcia-Magarifio, G. Palacios-Navarro, and R. Lacuesta,
“TABSAOND: A technique for developing agent-based simu-
lation apps and online tools with nondeterministic decisions,”
Simulation Modelling Practice and Theory, vol. 77, pp. 84-107,
2017.

B. L. Welch, “On the comparison of several mean values: an
alternative approach,” Biometrika, vol. 38, no. 3/4, pp. 330-336,
1951.

J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
Lawrence Earlbaum Associates, Hillsdale, NJ, USA, 2nd edition,
1988.

I. Garcia-Magarino, R. Fuentes-Fernandez, and J. J. Gomez-
Sanz, “A framework for the definition of metamodels for
computer-aided software engineering tools,” Information and
Software Technology, vol. 52, no. 4, pp. 422-435, 2010.

I. Garcia-Magarifio, S. Rougemaille, R. Fuentes-Fernandez, E
Migeon, M. P. Gleizes, and J. Gémez-Sanz, “A tool for generating
model transformations by-example in multi-agent systems,” in
Proceedings of the In 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems PAAMS 2009,
vol. 55 of Advances in Intelligent and Soft Computing, pp. 7079,
Springer, Berlin, Germany, 2009.

http://webdiis.unizar.es/~ivangmg/abstrustsdn/

International Journal of

Rotating
Machinery

The Scientific
quld Journal

Journal of

Sensors

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of
Navigation and
Observation

Aoet®

International Journal of
Anten nas and
Propagation

International Journal of
Chemical Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Active and Passive
Electronic Components

Modelling &
Simulation
in Engineering

ekt sty St |
e L~

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of

Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

and Vibration

