
Research Article
Analysis of Insulating Material of XLPE Cables considering
Innovative Patterns of Partial Discharges

Fernando Figueroa Godoy,1 Jacinto Torres Jimenez,1 Rubén Jaramillo Vacio,2

Javier Yáñez Mendiola,3 and José Ángel Colin1

1 Instituto Tecnológico Superior de Irapuato (ITESI), Irapuato, GTO, Mexico
2Comisión Federal de Electricidad, Laboratorio de Pruebas a Equipos y Materiales (LAPEM), Irapuato, GTO, Mexico
3Centro de Innovación Aplicada en Tecnologı́as Competitivas (CIATEC), León, GTO, Mexico

Correspondence should be addressed to Fernando Figueroa Godoy; fer-figueroa@hotmail.com

Received 9 March 2017; Revised 15 June 2017; Accepted 12 September 2017; Published 8 November 2017

Academic Editor: Huanqing Wang

Copyright © 2017 Fernando Figueroa Godoy et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper aims to analyze the quality of insulation in high voltage underground cables XLPE using a prototype which classifies
the following usual types of patterns of partial discharge (PD): (1) internal PD, (2) superficial PD, (3) corona discharge in air,
and (4) corona discharge in oil, in addition to considering two new PD patterns: (1) false contact and (2) floating ground. The
tests and measurements to obtain the patterns and study cases of partial discharges were performed at the Testing Laboratory
Equipment and Materials (LEPEM) of the Federal Electricity Commission of Mexico (CFE) using a measuring equipment LDIC
and norm IEC60270. To classify the six patterns of partial discharges mentioned above a Probabilistic Neural Network Bayesian
Modified (PNNBM) method having the feature of using a large amount of data will be used and it is not saturated. In addition,
PNN converges, always finding a solution in a short period of time with low computational cost.The insulation of two high voltage
cables with different characteristics was analyzed. The test results allow us to conclude which wire has better insulation.

1. Introduction

The analysis of partial discharges (PDs) is important to
determining the quality of insulation in high voltage equip-
ment. When the electrical insulation system is flawed by
design flaws, resulting from the manufacturing process, by
mechanical damage of products whenmanipulated or stored,
or by dryness caused by insulation aging, frequently small
discharges occur; this phenomenon ends by affecting the
solid insulation. The deterioration of the insulation can be
aggravated over time causing it to be completely destroyed.

A novel technique is proposed for the measurement of
PDs in transformers using the bandwidth for the PDs and [1]
trying to reduce the noise in the measurements.

Partial discharges (PDs) are an event of partial deterio-
ration that occurs, for example, on the surface or inside the
insulation of electrical products possibly due to defects in the
insulation structure.Due to the importance of the PDs several

authors have presented studies to classify different types of
patterns of PDs through prototypes that characterize the
phenomena of PDs: superficial partial discharge and internal
and crown PD [1, 2].

There are four usual types of PDs reported until now:
(1) the first one is an internal PD in insulation material with
different types of cavities [3, 4]; (2) the corona discharge is a
PD produced by sharp edges [4, 5]; (3) electrical arborescence
is generated by the combination of the corona discharge and
superficial PD; (4) superficial PDs occur when there is effort
on the surface of the dielectric, and usually they are presented
in caps, cable ends, and the overheating of the generator
windings and if a discharge reaches the surface from the
outside [4, 5].

Insulation generates different internal cavities reproduc-
tion and different diameters of the cavity to produce internal
PDs [2].
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It produces internal DPs using a filtering system that
can introduce errors at the moment of classification and the
DPs transform them into energy for the interpretation and
evaluation [1].

They perform different types of internal and external
patterns: corona in oil, corona in air, superficial, and internal,
but the results are not validated with actual measurements
[3].

Various types of methods and techniques have been
proposed to classify PDs patterns. The classification method
depends on the type of measurement; the most common
is to use the magnitude, angle, and repetition with statistic
method. Subsequently extraction methods are used: Statisti-
cal Methods [2, 3, 6–8], Neural Networks [2, 3, 7, 9], Hybrids
[6], and Diffuse Logic [6].

The aforementioned methods have been applied to clas-
sify the types of DPs in transformers, generators, and high
voltage cables.

When it is a requirement to expand the transmission
network and/or to replace sections of underground lines, it
is necessary that the insulation of the cable be installed in
compliance with the international quality standards in order
to avoid interruptions of the electrical service due to failures
in the insulation, improving the reliability, continuity, and
safety of electric service.

Currently in systems of underground electric energy
transmission, partial discharges in cables occur when a bad
cable extrusion is carried out with insulation generating
bubbles (internal PD), in the improper installation when
the cable is hit or when it does not have a good insulation
(external PD) or when the couplings are poorly placed with
cables and left edges (corona discharge, floating ground, and
poor contact) [9–11]. PD is analyzed using it as energy for
XLPE cables, only studying the patterns behavior of internal
PD using different numbers of cavities [10]. In reference
[11] the authors present a type of sensor to determine the
characteristics of PD using a prototype to classify (1) internal
PD, superficial PD, corona in air, and corona in oil.

In this case in the present research work the quality of
insulation in high voltage underground XLPE cables from
differentmanufacturers was tested.The construction of a pro-
totype is proposed to obtain the following patterns of partial
discharges: (1) internal PD, (2) superficial PD, (3) corona
discharge in air, and (4) corona discharge in oil, additionally
considering two new PD patterns: (1) false contact and (2)
floating ground. The validation of the proposed prototype
was performed using the statistical method and the norm
IEC 60270 can know insulation degradation unlike acoustic
measurements which allow knowing only the location of the
PD in tests in the laboratory [12–15].

To classify the six partial discharges a Modified Bayesian
Probabilistic Neural Net (PNNBM) was trained that has the
characteristic of using a large amount of data and is not
saturated, besides always finding a solution in a short period
of time with low computational cost.

The methodology was implemented in two different
manufactures of XLPE cables which is able to determine the
quality of the insulation in an acceptable way.

2. Prototype Design

In the test laboratory, LAPEM, a prototype was developed for
measurements (Figure 1), in which one could extract different
types ofDPswhere the datawill be free of noise, in order to get
“clean” patterns in corona discharge, false contact, corona oil,
and floating ground as well as internal and external PDs. Also
this prototype was useful in also obtaining combined data
from thesemeasurements, creating a database to characterize
in a better way the artificial neural network; the measuring
equipment gives to us four columns, the first determines
the cycle, the second the angle where the PD occurred, the
third presents the electric field in pC, and the last column
indicates the current, but in this study only the second and
third column are needed to validate proper operation. The
prototype will be shown in Figure 2.

Once the bases of the PDs are known, and how they affect
the insulations, we started from there to show measurement
methods thereof, between the normal or traditional method
and the oscillating; in this article only measurements were
taken of the standard method using a measurement type
LDS-6 and applying the norm IEC 60270.

Noting Figure 2 the following can be identified: in para-
graph (a) it is observed that the insulating material already
had a bubble inside causing internal PDs; in paragraph (b)
it is the peak effect which generates corona discharge; in
paragraph (c) it has PD superficial imperfection because it
is worn on the insulation surface; in paragraph (d) false
contact was found where a joint was loosened holding to the
terminal of the source; in paragraph (e) the same method as
in the preceding paragraph was performed but is immersed
in transformer oil; and finally in subsection (f) an item on
a wooden surface which has not caused potential and is
generating a float voltage is placed.

2.1. Databases. Following the most representative measure-
ments of the DPs are shown, to have a better appreciation of
the behavior of each of the types.

In Figure 3 it can be observed that internal DPs have a
high concentration at the beginning of the cycle in both the
positive part and the negative part and a low magnitude.

In Figure 4 the corona discharge that is generated only in
the half negative cycle andmagnitudes greater than 40 pC can
be observed.

The DPs that were generated in an underground cable
where several cuts were made to model the measurements
that are shown in Figure 5 have the characteristic that the DPs
arise both in the positive half cycle and in the negative half
cycle and have a great magnitude greater than 100 pC.

The false contact can be seen in Figure 6. It has the
characteristic of appearing at the beginning and at the end
of the semicycles, this being the inverse in magnitude that
depends on the position of the cycle.

The primary feature of the corona discharge when
immersed in oil is the one which represents PD as positive
and negative in the negative half cycle but with a lesser
magnitude than in air because the oil reduces the magnitude
of the discharge that can be seen in Figure 7.
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Figure 1: Laboratory tests, LAPEM.

(a) Internal PD (b) Corona discharge (c) Superficial PD

(d) False contact (e) Corona discharge, oil (f) Float voltage

Figure 2: Prototype of different PDs.
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Figure 3: Graph of internal partial discharge [16].

The floating ground can be seen in Figure 8; this is only
represented at the angles of 200∘ to 250∘ with a variable
magnitude between 300 and 600 pC.

3. Probabilistic Neural Network

Probabilistic neural networks (PNN) belong to the family
of neural networks with radial basis function (String et al.,
2008). In 1989 Donald F. Specht published his work “Proba-
bilisticNeuralNetworks,”which introduced the development
of a probabilistic neural network (PNN) capable of estimat-
ing limits or nonlinear decision surfaces through optimal
Bayesian approach. In the case of PDs these characteristics are
optimal because they are not complicated because it does not
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Figure 4: Graph of corona in air [16].
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Figure 5: Partial discharge on the surface of a XLPE cable [16].
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Figure 6: False contact of a joint of a XLPE cable.
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Figure 7: Corona discharge immersed in transformer oil.
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Figure 8: The floating ground.

have to determine intermediate networks and this improves
the measurements by the large amount of data that needs to
make a measurement in a short time.

3.1. Bayesian Classification Rule. The classification rule opti-
mal Bayesian can be defined as follows, given a collection of
random samples of 𝑛 populations. The a priori probability
that the sample 𝑦𝑖 belongs to the 𝑘 population is denoted as
ℎ𝑘. The cost associated with a misclassification that a sample
belongs to the 𝑘 population is denoted by 𝑙ℎ. The conditional
probability that a specific sample belongs to the 𝑘 population
𝑝(𝑘𝑦𝑖) is given by the probability density function 𝑓ℎ(𝑦).
Therefore, a sample 𝑦𝑖 is classified within the 𝑘 population
if it meets the condition established in (1), in the case of two
populations.

ℎ𝑘𝑙𝑘𝑓𝑘 (𝑦𝑘) = ℎ𝑖𝑙𝑖𝑓 (𝑦𝑖) . (1)

Contrasting the learning process that takes place in the
majority of artificial neural networks, in which an adjustment
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Figure 9: Structure of a probabilistic neural network.

to the values of parameters known as weights (𝑦1) and bias
(𝑦𝑏) is performed, making use of a PNN is not needed to
make any adjustment weights and only the output patterns
are determined by comparing and calculating the distances of
each of the patterns or vectors of input data with each one of
the so-called patterns examples, which as their name says are
representative examples of the patterns of each of the existing
classes.

3.2. Structure of a PNN. Probabilistic neural networks are
composed of four layers: an input layer which consists of 𝑑
neurons where 𝜑𝑖𝑗 is the dimension of input data, a layer of
patterns which consists of 𝑁 neurons, one for each vector
example, a summation layer of 𝑘 neurons where 𝑘 is the
number of classes, and a layer of decision which is a neuron;
the above description is depicted in Figure 9.

When a vector is represented to the network 𝑦 =
[𝑦1𝑗 ⋅ ⋅ ⋅ 𝑦𝑖𝑗] to be classified, the second layer deals with
calculating the distances from the input vector to each of the
vectors or patterns, for example, through function 𝜑𝑖𝑗 which

acts according to the standard normal kernel used as the
probability density function as shown in

𝜑𝑖𝑗 (𝑦) = 1
(2𝜋)𝑑 2𝑑𝑑 ∗ exp

[
[
(𝑦 − 𝑥𝑖𝑗)𝑓 (𝑦 − 𝑥𝑖𝑗)

2𝑔2 ]
]
. (2)

In (2), sigma (𝜎) is the dispersion parameter, which takes
a value between 0 and 1 to be defined by the researcher. The
term 𝑃𝑡(𝑦) in the summation layer indicates the conditional
probability or verisimilitude that𝑦 (input data) belongs to the
𝑖th class and is obtained through a process of summation as
shown in

𝑃𝑖 (𝑦) = 1
𝑁𝑖
𝑁𝑖

∑
𝑗=1

𝜑𝑖𝑗 (𝑦) . (3)

In the output layer it will be assigned to the class with
greater verisimilitude, complying with the provisions of

Class (𝑦) = arg max
𝑖

(𝑃𝑖 (𝑦)) , (4)

where class (𝑦) is the variety to which 𝑥 belongs.
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Begin
For each 𝑘, from 𝑘 = 1 to 𝑘 = 𝑁

For each𝑚, from𝑚 = 1 to𝑚 = 1000
𝑓1𝑚 = 1

𝑁
𝑁

∑
𝑗=1

1
2𝜋𝜎2 𝑒

[(𝑦𝑚,𝑥1,𝑗2)
𝑇(𝑦𝑚𝑚,𝑥1,𝑗2)/2𝜎

2]

𝑓𝑘𝑚 = 1
𝑁
𝑁

∑
𝑗=1

1
2𝜋𝜎2 𝑒

[(𝑦𝑚,𝑥𝑘,𝑗2)
𝑇(𝑦𝑚𝑚,𝑥𝑘,𝑗2)/2𝜎

2]

𝐷𝑘𝑚 = 𝑓𝑘𝑚ℎ𝑘𝑙𝑘
Obtain max(𝐷𝑙𝑚 , . . . , 𝐷𝑁𝑚 ) = 𝐾𝑚

End
End

Ends

Pseudocode 1
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Figure 10: Actual data of partial discharge measurements.

4. Description of Data under Study

Data were generated through a simulation process using
the MATLAB� normrnd command; the data were generated
under the features presented by the actual data, the product of
PDmeasurements, angle, andmagnitude. To define a real and
proper classification to such data, inferior and superior spec-
ifications for both characteristics were considered. Figure 10
shows the inside of PD measurements and corona type and
where and how the magnitude is at pico-Coulombs; in this
graph the specifications for features that are linearly separable
and observed exist.

Figure 11 shows an example of data generated by simula-
tion which were subsequently classified by the PNN to verify
the effectiveness of the classification of the network.

4.1. Stage 1: Classification in Six Classes. In the first instance
the classification problem considering six classes arises; these
classes are formed by segmenting the 𝑥𝑦 plane shown in
Figures 10 and 11 in six areas, formed precisely by cuts
between the lines representing the specifications, so class
1 is formed by the internal PDs and corona is below the
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Figure 11: Actual data of PD measurements.

corresponding lower specification; class 2, located to the right
of class 1, corresponds to the superficial PD and false contact
PD, the specifications for the characteristic of angle whose
magnitude remains lower than established as desirable, and
so on.

For application of the PNN with the use of Bayesian
classification rule, network simulation in MATLAB software
is required; then the pseudocode used for programming is
exposed, for which (1), (2), (3), and (4) were conducted in
order to identify the effectiveness of network classification
to various values of the sigma variable (𝜎) and loss function
of class (𝑙𝑖) in order to find those values that minimize the
number of errors during qualifying.

In Pseudocode 1, the matrix 1000 × 2 is represented as
𝑦𝑚𝑥𝑑, which represents the basis of the 1000 data generated
from measurements, where each row of said matrix repre-
sents a test PD whose first element (first column) indicates
measuring the angle and whose second element (second col-
umn) indicates the measurement of the magnitude. Similarly
to 𝑋𝑁𝑥𝑑 which is understood as the 𝑁 patterns example of
class 𝑖, whose elements are denoted by 𝑥𝑖𝑗,𝑑, there are somany
matrices𝑋𝑖 as 𝑘 classes are considered in the problem.
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The 𝑘 vectors 𝑓𝑖𝑚𝑥𝑙 are composed of 1000 elements,
denoted as 𝑓𝑘𝑚 . The𝐾𝑚 vectors contain 1000 elements whose
values range from 1 to 𝑘, which denotes the class to which the
𝑚th data belongs.

For the value of sigma 𝜎 values were considered: 𝜎 =
0.2, 0.4, 0.6, 0.8, and 1, while for values 𝑙𝑖 it was specified
for researcher that tests will be conducted only modifying
the parameter for one of the six classes; class 5 was selected
because it corresponds to the class where the measurements
data exist, in which they are within specifications for both
angles as the magnitude; therefore it would incur greater
economic loss by classifying data located in this category
incorrectly; the class 5 is a critical category.

The values are considered for 𝑙𝑠 were 0.11, 0.12, 0.13, 0.14,
0.15, 0.16, and 0.17. For each value of 𝑙𝑠 considered, loss
values for the other classes were defined, following the rule
that when the value increased, the loss value for the other
classes would decrease in the same proportion for all, thus
maintaining the equalities shown in (5) and (6) during the
experimentation.

𝑙 − 𝑙𝑠 = 𝑙1+𝑙2+𝑙3+𝑙4+𝑙5+𝑙6 + 𝑙7 + 𝑙8 + 𝑙9, (5)

where

𝑙1= 𝑙2= 𝑙3= 𝑙4= 𝑙5= 𝑙6= 𝑙7= 𝑙8= 𝑙9. (6)

With the results of the previous experiments, it is speci-
fied that the best values for the parameters of the network are
𝜎 = 0.2 ℎ𝑡 = 𝑙/9 𝑦 𝑙𝑡 = 𝑙/9, where the subscript 𝑖 indicates
the class which is referred, where 𝑖 = 1, 2, 3, 4, 5, 6 for the first
stage of classification problem.

With the previously defined values, PNN was applied
again in 35 databases containing 1000 data samples each,
in order to obtain an average of the number of errors
and proportion of successes presented in this network for
classification in six categories.

A level of acceptance for the resolution of the classi-
fication problem is established prior to the investigation,
if the network has an efficiency greater to 90%. For the
first stage of the problem presented, the desired result was
not obtained. Several tests were performed increasing the
number of patterns to check if this contributed to achieving
the objective raised with several examples; however, as no
satisfactory results were obtained, a second stage to solve the
classification problem was established.

4.2. Stage 2: Classification in Two Classes. For the second
stage to resolve the classification problem set out the reduc-
tion of the number of classes which is categorized in the
desired data, following the same pseudocode used in the
previous stage; this reduction in the number of classes
was carried out considering that, in the literature on the
application of PNN, experimental tests have been for rating
only two classes and they all had a high rate of effectiveness
in terms of number of successes made by the network.

The problem of data classification with a focus on cat-
egorization in two classes was considered. This arises when
attention of the problem is focused on identifying those data
found within all specifications (class located at the center

of Figure 11) as elements of class one and the data that do
not know one or more of the specifications as elements of a
second class.

The established values for this new approach to the
classification problem were

𝑔 = 0.2,
ℎ1 = 𝑙

𝑔 ,

ℎ2 = 2𝑔 ,

𝑙𝑡 = 𝑙2 ,

(7)

where 𝑖 = 1 is the identifier for class one which contains
the data found within all specifications; the value of ℎ1 was
established considering that only one-ninth of the population
data will be within all specifications as noted in the test
characteristics and the rest of the population will be out of at
least one of the specifications; this is observed from Figures
10 and 11. With this new approach to PNN, high levels of
successes in the classification of data were obtained.

4.3. Stage 1: Training of Six Classes. Probabilistic neural
networks (PNN) can be used for data classification problems.

The process used for regression problems is one in which
adjustment of weights and bias is performed, according to the
presented error; in the classification process no adjustment is
made of weights and only the output patterns are determined
by comparison and distance calculation. In Figure 12 the
network configuration is presented.

Its operation can be explained as follows: when an input
is presented to the network, the first layer is responsible
for calculating the distances from the input vector to the
output vectors and produces a vectorwhose elements indicate
how close is the entrance with respect to the output. The
function of the second layer is to add the contributions for
each class of input and produce with them an output vector
with probabilities.

Finally, a transfer function at the output of the second
layer of “competitive” type, select the maximum of these
probabilities and produces 1 for that class and 0 for others.

5. Network Configuration to Classify the
Different PD Patterns

The application of neural networks in the fault diagnostics
has two stages. Stage one corresponds to the training process,
during which the training patterns are supplied to the
network in order to perform calculations or adjust some of
its parameters. Stage two is the testing process, during which
an unknown pattern data is delivered, in order to verify
whether the output delivered by the network corresponds to
the expected output.

Some simulations were performed to determine the
extraction patterns of the PNN; the data of patterns extraction
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Figure 12: Architecture of a probabilistic neural network [17].
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Figure 13: Results are presented as percentages and indicate internal
partial discharge.

was determined in a percentage way as shown in Figure 13;
this is in order to see clearly the data concentration.

Finally, it proceeded to validate the network, and data
vector containing the class type and amount of data from each
of these was obtained, but to have a better appreciation of
these data, in Figure 13 percentage form the data obtained is
presented; with the figure it is very easy to determine the type
of class.

In this case it was validated with a measurement where it
was known that the PDwas internal and the results are shown
as follows: the first column presents the class where the data
that are noise exist, in the column seven are the internal PD, in
six (6) there are the external discharges in air, in column five
(5) there is floating ground, in four (4) there is corona in air,
in column three (3) there is the corona discharge in air, and
in two (2) there is the floating ground; it can be seen clearly in
Figure 13 that it is internal PD due to the high intensity that

has column seven which generates the data to be very easy to
determine.

6. Study Cases

In this section the following case studies will be carried out to
analyze the quality of insulation of XLPE high voltage cables
for a nominal voltage of 115 KV, where two types of cable
producers from different manufacturers were used.

The test was made up of

(1) using 5 meters of cable made of a copper cable and
insulated by a cross-linked polymer (XLPE), with
semiconductor shield that was extruded over the
insulation and metal screen covered with polyvinyl
chloride (PVC);

(2) PDs measurements made with the LDIC equipment
using a 75 kV considering the parameters of the IEC
60270 norm as shown in Figure 1;

(3) acquisitions of the measurements that were recorded
in a computer system with LDIC software;

(4) Simulation of the PNNBM.

The results of the measurements and the simulations of the
PNNBM are described in detail as follows.

6.1. Cable 1. (1) The following percentages of PD patterns
were obtained for manufacturing cable # 1 as shown in
Figure 14. The results of the PNNBM simulation show 77.8%
of internal PD; this indicates that the internal insulation
which covers the main cable has a deficiency and may have
a propensity to insulation failures in a short period of time. It
can also be observed that the external insulation of the cable
presents a small degree of degradation since it presents 3.75%
of superficial PD. The results show that it is necessary for
the manufacture of cable insulation to be of higher quality
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Figure 14: Actual measurement of the first cable.
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Figure 15: Actual measurement of the second cable.

because of the electrical stresses that will be subjected to the
high voltages.

On the other hand, the cable also presents a small
proportion of PDs of 1.2% by corona effect related to the
terminals derived in tips. They present 1.3% and 1.23% of
PDs of false contact and floating point, respectively. These
three types of DPs are mainly related to the connection and
installation of the cable.

6.2. Cable 2. Finally, the second cablewasmeasured using the
same characteristicsmentioned above. Previously trained, the
neural networkPNNBMproceeds to the simulation that gives
results as those of Figure 15.

It can be estimated in Figure 15 that the cable has a
concentration of 70.28% of internal PD, this being a new
cable, and has a considerable presence of 18.53% of superficial
PD; the other types of PDs are discarded because they are not
relevant to analysis for their magnitudes are less than 1%; due
to these results this cable should no longer be installed.

6.3. Comparison. To compare the results of the neural net-
work, a statistical method for measurements of PDs of both
wires, resulting Table 1 was used, verifying the obtained
results of the neural network which can be seen to effectively
have a high concentration of internal PD; the statistical

Table 1: Statistical parameters of two different cables.

𝜇 𝜎2 𝑆𝑘 𝐾𝑢 𝐷𝑎 𝐶𝑐
CABLE 1 2.5442 27.1492 3.4944 16.5593 2.3774 −0.2262
CABLE 2 4.4018 63.9289 2.5774 9.2703 4.5777 −0.3473

parameters of the formulations presented in Table 1 can be
found in reference [18].

Table 1 establishes the variance average of 2pCs implied
that refers to PD Internal by their small magnitude; in the
part of the standard deviation, a considerable differentiation
of dimension is observed, establishing that there is a large
scatter in the data of cable two, resulting in two different
patterns; the bias does not vary with respect to cables unlike
kurtosis in cable 1 which is almost double cable two; this tells
us that the concentration of PD in the cable 1 is greater, which
determines that cable 1 is prone to generate a fault. In the part
of the correlation factor it indicates that naturally it comes
to the same types, that is why these are negative values not
greater than the least one.

7. Conclusions

Thispaper proposed a prototype thatmanages to classify the 4
classic patterns (internal PD, superficial PD, corona discharge
in air, and corona discharge in oil) and 2 new patterns
proposed (false contact and floating ground) of PD in the
insulation of high voltage cables, XLPE. To classify the types
of PD a new neural network (NN) is implemented which was
trained to get better results and reduced errors. The results
showed that the proposed PNBMwas not saturatedwith large
volumes of information and always converges, finding the
solution. PNBM was implemented in two cables with similar
features from different manufacturers. The results showed
that the two cables present internal PD; however one of them
has high concentrations of superficial PDwhich indicates that
insulation is of poor quality.
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