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This paper presents a method for designing a backstepping tracking controller for a class of continuous-time linear systems with
actuator delay subject to a reference signal. The actuator delay can be modeled by a first-order hyperbolic PDE, and then a PDE-
ODE coupled system is obtained. By applying the backstepping transformation to the coupled system, a feedback controller that
includes the state of the system, the integral of the input control, and the integral of the tracking error is derived. We show that
the closed-loop system is asymptotically stable at the equilibrium point and achieves complete regulation under the stabilizability
assumption. The designs in this paper are illustrated with numerical simulations.

1. Introduction

Over recent decades, many researchers have explored the
design of servomechanisms for linear systems with time
delay [1–3]. They aimed to design a controller such that
the outputs track the reference signals without steady-state
errors and the closed-loop system is asymptotically stable
at the equilibrium point. They eliminated the influence of
time delay on the systems by introducing a predictor that
represents the integrator of the time-delay process outputs
[4–6]. Or they dealt with the delay in robust control methods
for some systems under certain conditions by treating the
delay as an uncertain factor [7–9] and then designing the
tracking controllers. However, when the plant is unstable, the
predictor may fail to achieve closed-loop stability [10], while
the robust design method can only solve a portion of specific
problems.

Krstic and Smyshlyaev noted that the solution of the first-
order hyperbolic PDE 𝑢

𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) can be used to replace

the actuator delay if the boundary condition is 𝑢(𝐷, 𝑡) =
𝑈(𝑡). Then, the actuator delay systems can be modeled by
the PDE-ODE coupled systems. By applying the backstepping
transformation, a controller is derived [11]. This kind of
controller is equivalent to the classical predictive controller.
Moreover, the closed-loop system can be proved to be

exponentially stable at the equilibrium point by constructing
a Lyapunov-Krasovskii functional. This approach to dealing
with delay systems is called backstepping control.

In this way, Bekiaris-Liberis and Krstic [12] constructed
an explicit feedback law for systems with simultaneous input
and state delay. Krstic and Bresch-Pietri [13] presented an
adaptive control design for unstable systems with actuator
delay of substantial length and completely unknown value.
Other researchers [14–16] have studied systems with time-
varying input delay, distributed delay, and pointwise delay,
respectively. In their papers, they proved that the designed
closed-loop systems are exponentially stable by construct-
ing Lyapunov functionals. Bresch-Pietri et al. [17] made a
more intensive study of equilibrium regulation under partial
measurements, disturbance rejection, and parameter or delay
adaptation. Karafyllis and Krstic [18] provided formulas
according to which one can compute estimates of the least
upper bound of the magnitude of the delay perturbation.
And recently, Lin and Cheng [19] proposed an adaptive
block backstepping control scheme for a class of time-delay
systems.

The backstepping approach shows a strong superiority
in dealing with time-delay systems, but we found almost
no systematic results in studying the tracking problem for
delay systems with this method. This paper is a new attempt
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to design a tracking controller for a continuous-time linear
system with actuator delay, in which we develop a type
of servomechanism with PDE style and ODE style state
feedback by using the backstepping technique. We formulate
the control problem and offer some necessary assumptions
in Section 2. A backstepping tracking controller is derived
in Section 3 based on the theory of pole placement and
the backstepping method. Section 4 shows that the closed-
loop system is asymptotically stable at the equilibrium point
and achieves complete regulation under the stabilizability
assumption. In Section 5, we give a practical example and
design a backstepping tracking controller; the simulation
results demonstrate the effectiveness of the controller. Sec-
tion 6 is a brief conclusion.

2. Problem Formulation

Consider a continuous-time linear system with the actuator
delay

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑈 (𝑡 − 𝐷) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector,𝑈(𝑡−𝐷) ∈ 𝑅 is the control
vector delayed by 𝐷 units of time, and 𝑦(𝑡) ∈ 𝑅 is the output
vector to be controlled. 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×1, and 𝐶 ∈ 𝑅1×𝑛 are
constant matrices.

Let 𝑟(𝑡) ∈ 𝑅 be the reference signal. The objective of the
paper is to develop a feedback controller such that (i) the
closed-loop system is asymptotically stable at the equilibrium
point and (ii) the output vector𝑦(𝑡) tracks the reference signal
𝑟(𝑡); namely,

lim
𝑡→∞

(𝑦 (𝑡) − 𝑟 (𝑡)) = 0. (2)

The following assumptions will be needed throughout the
paper.

Assumption 1. (𝐴, 𝐵) is a controllable pair.

Assumption 2. Thereference signal 𝑟(𝑡) is a piecewise-contin-
uous function satisfying

lim
𝑡→∞

𝑟 (𝑡) = 𝑟
0
, (3)

where 𝑟
0
is a constant.

Assumption 3. Thematrix [ 𝐴 𝐵
𝐶 0
] has full row rank; that is,

rank [
𝐴 𝐵

𝐶 0

] = 𝑛 + 1. (4)

3. Design of Backstepping Tracking Controller

In this section, we will design a backstepping tracking
controller for system (1), so that the closed-loop system
is asymptotically stable at the equilibrium point, while the
output of the system asymptotically tracks the reference
signal.

Define the error vector as

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑟 (𝑡) . (5)

Let 𝑞(𝑡) be the integral of the tracking error

𝑞 (𝑡) = ∫

𝑡

0

𝑒 (𝜏) d𝜏. (6)

In order to ensure that the system’s output tracks the reference
signal asymptotically, we need to obtain the integral of the
tracking error as part of the state variables. Differentiating
both sides of (6) derives

̇𝑞 (𝑡) = 𝑦 (𝑡) − 𝑟 (𝑡) . (7)

Let𝑋(𝑡) be the (𝑛 + 1) × 1 augmented vector

𝑋 (𝑡) = [

𝑥 (𝑡)

𝑞 (𝑡)

] . (8)

Then, it follows from (1) and (7) that

�̇� (𝑡) = 𝐴𝑋 (𝑡) + 𝐵𝑈 (𝑡 − 𝐷) + 𝐺𝑟 (𝑡) , (9)

where𝐴, 𝐵, and𝐺 are (𝑛+1)×(𝑛+1), (𝑛+1)×1, and (𝑛+1)×1
constant matrices defined by

𝐴 = [

𝐴 0

𝐶 0

] ,

𝐵 = [

𝐵

0

] ,

𝐺 = [

0

−𝐼

] .

(10)

Consider the following first-order hyperbolic PDE:

𝑢
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) ,

𝑢|
𝑠=𝐷

= 𝑈 (𝑡) ,

𝑢|
𝑡=0
= 𝜑 (𝑠) ,

𝑠 ∈ [0, 𝐷] .

(11)

In (11), the delay-free control signal 𝑈(𝑡) acts as a boundary
condition. 𝑢(𝑠, 0) ≜ 𝜑(𝑠) is the initial condition. For
convenience, we let the history control over the time interval
[−𝐷, 0] be 𝑈(𝑡) = 𝜑(𝐷 + 𝑡), 𝑡 ∈ [−𝐷, 0]. It is well known that
the hyperbolic PDE (11) has the following explicit solution:

𝑢 (𝑠, 𝑡) = 𝑈 (𝑡 + 𝑠 − 𝐷) . (12)

Then, the output

𝑢 (0, 𝑡) = 𝑈 (𝑡 − 𝐷) (13)
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is the 𝐷 seconds delayed input. For this reason, the delay
system (9) can be modeled by the following PDE-ODE
coupled system:

�̇� (𝑡) = 𝐴𝑋 (𝑡) + 𝐵𝑢 (0, 𝑡) + 𝐺𝑟 (𝑡) ,

𝑢
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) ,

𝑢 (𝐷, 𝑡) = 𝑈 (𝑡) .

(14)

The input signal 𝑈(𝑡) acts both as a controller and as a
boundary condition.

So far, we have converted the tracking problem of an
actuator delay system into a regulation problem of a PDE-
ODE coupled system. Next, we will design an appropriate
state feedback controller 𝑈(𝑡) for system (14) such that the
closed-loop system is asymptotically stable at the equilibrium
point. We now introduce the backstepping transformation
of system (14) and the inverse of this transformation in a
theorem form.

Theorem 4. Suppose that (𝐴, 𝐵) is controllable. Then,
(i) the backstepping transformation

𝑋 (𝑡) = 𝑋 (𝑡) ,

V (𝑠, 𝑡) = 𝑢 (𝑠, 𝑡) − ∫
𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧 − 𝐾𝑒𝐴𝑠𝑋 (𝑡)
(15)

maps system (14) into the following target system:

�̇� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡) + 𝐵V (0, 𝑡) + 𝐺𝑟 (𝑡) ,

V
𝑡
(𝑠, 𝑡) = V

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺𝑟 (𝑡) ,

V (𝐷, 𝑡) = 0,

(16)

where 𝐾𝑇 ∈ 𝑅
𝑛+1 is a stabilizing gain vector such that the

matrix 𝐴 + 𝐵𝐾 is Hurwitz.
(ii) The transformation (15) is invertible and the inverse

transformation has the following form:

𝑋 (𝑡) = 𝑋 (𝑡) ,

𝑢 (𝑠, 𝑡) = V (𝑠, 𝑡) + ∫
𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

+ 𝐾𝑒
(𝐴+𝐵𝐾)𝑠

𝑋 (𝑡) .

(17)

Proof. Let us prove the first part of the theorem. Considering
the second equation in (15) with 𝑠 = 0, we get

𝑢 (0, 𝑡) = V (0, 𝑡) + 𝐾𝑋 (𝑡) . (18)

Substituting this expression into the first equation in (14), we
get

�̇� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡) + 𝐵V (0, 𝑡) + 𝐺𝑟 (𝑡) , (19)

that is, the first equation in (16). Let us calculate the time
derivatives of the second equation in (15):

V
𝑡
(𝑠, 𝑡) = 𝑢

𝑡
(𝑠, 𝑡) − ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝑢
𝑡
(𝑧, 𝑡) d𝑧

− 𝐾𝑒
𝐴𝑠
�̇� (𝑡) .

(20)

Using 𝑢
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡), we have

V
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) − ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝑢
𝑧
(𝑧, 𝑡) d𝑧

− 𝐾𝑒
𝐴𝑠
(𝐴𝑋 (𝑡) + 𝐵𝑢 (0, 𝑡) + 𝐺𝑟 (𝑡)) .

(21)

After a simple calculation,

V
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) − 𝐾𝐵𝑢 (𝑠, 𝑡)

− ∫

𝑠

0

𝐾𝐴𝑒
𝐴(𝑠−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧 − 𝐾𝑒𝐴𝑠𝐴𝑋 (𝑡)

− 𝐾𝑒
𝐴𝑠
𝐺𝑟 (𝑡) .

(22)

Calculating the spatial derivatives of the second equation in
(15) yields

V
𝑠
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) − 𝐾𝐵𝑢 (𝑠, 𝑡)

− ∫

𝑠

0

𝐾𝐴𝑒
𝐴(𝑠−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧 − 𝐾𝐴𝑒𝐴𝑠𝑋(𝑡) .
(23)

Subtracting (23) from (22) leads to

V
𝑡
(𝑠, 𝑡) − V

𝑠
(𝑠, 𝑡) = −𝐾𝑒

𝐴𝑠
𝐺𝑟 (𝑡) . (24)

With V
𝑠
(𝑠, 𝑡)moved to the right side of the equation,we get the

second equation in (16).Thus, we prove that the backstepping
transformation (15) maps system (14) into the target system
(16).

We will offer a straightforward method to prove the
second part of this theorem. Note that if we substitute (17)
into (15) and get an identity, then we demonstrate that (17)
and (15) are inverse.

Substituting (17) into (15), we have

𝑋 (𝑡) = 𝑋 (𝑡) , (25)

V (𝑠, 𝑡) = V (𝑠, 𝑡) + ∫
𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

+ 𝐾𝑒
(𝐴+𝐵𝐾)𝑠

𝑋 (𝑡) − ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵(V (𝑧, 𝑡)

+ ∫

𝑧

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)

𝐵V (ℎ, 𝑡) dℎ

+ 𝐾𝑒
(𝐴+𝐵𝐾)𝑧

𝑋 (𝑡)) d𝑧 − 𝐾𝑒𝐴𝑠𝑋 (𝑡) .

(26)
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Then, we only need to demonstrate that (26) is an identity.
Taking a collection of the similar items in𝑋 and V, we get

V (𝑠, 𝑡) = V (𝑠, 𝑡) + (𝐾𝑒(𝐴+𝐵𝐾)𝑠

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝐾𝑒
(𝐴+𝐵𝐾)𝑧d𝑧 − 𝐾𝑒𝐴𝑠)𝑋 (𝑡)

+ [∫

𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵(∫

𝑧

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)

𝐵V (ℎ, 𝑡) dℎ) d𝑧] .

(27)

For the second part on the right hand of (27), we add
𝐾∫

𝑠

0
𝑒
𝐴(𝑠−𝑧)

𝐴𝑒
(𝐴+𝐵𝐾)𝑧d𝑧 to the first integral and then subtract

it. By integral calculation, we get

(𝐾𝑒
(𝐴+𝐵𝐾)𝑠

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝐾𝑒
(𝐴+𝐵𝐾)𝑧d𝑧 − 𝐾𝑒𝐴𝑠)

⋅ 𝑋 (𝑡) = (𝐾𝑒
(𝐴+𝐵𝐾)𝑠

− 𝐾∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)

(𝐴 + 𝐵𝐾) 𝑒
(𝐴+𝐵𝐾)𝑧d𝑧

+ 𝐾∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)

𝐴𝑒
(𝐴+𝐵𝐾)𝑧d𝑧 − 𝐾𝑒𝐴𝑠)𝑋 (𝑡)

= (𝐾𝑒
(𝐴+𝐵𝐾)𝑠

− 𝐾𝑒
𝐴(𝑠−𝑧)

𝑒
(𝐴+𝐵𝐾)𝑧








𝑠

0

− 𝐾∫

𝑠

0

𝐴𝑒
𝐴(𝑠−𝑧)

𝑒
(𝐴+𝐵𝐾)𝑧d𝑧

+ 𝐾∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)

𝐴𝑒
(𝐴+𝐵𝐾)𝑧d𝑧 − 𝐾𝑒𝐴𝑠)𝑋 (𝑡) = 0.

(28)

And for the third part, we add
∫

𝑠

0
𝐾𝑒
𝐴(𝑠−𝑧)

(∫

𝑧

0
𝐴𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)

𝐵V(ℎ, 𝑡)dℎ)d𝑧 to the third
integral and then, subtracting it, we have

∫

𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧 − ∫
𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵(∫

𝑧

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)

𝐵V (ℎ, 𝑡) dℎ) d𝑧

= 𝐾[∫

𝑠

0

𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)V (𝑧, 𝑡) d𝑧 − ∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)

(∫

𝑧

0

(𝐴 + 𝐵𝐾) 𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)V (ℎ, 𝑡) dℎ) d𝑧

+ ∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)

(∫

𝑧

0

𝐴𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)V (ℎ, 𝑡) dℎ) d𝑧] 𝐵.

(29)

Then, exchanging integral order and calculating it, we get

∫

𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧 − ∫
𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵(∫

𝑧

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)

𝐵V (ℎ, 𝑡) dℎ) d𝑧

= 𝐾[∫

𝑠

0

𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)V (𝑧, 𝑡) d𝑧 − ∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

(∫

𝑠

ℎ

𝑒
𝐴(𝑠−𝑧)

(𝐴 + 𝐵𝐾) 𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)d𝑧)

⋅ V (ℎ, 𝑡) dℎ + ∫
𝑠

0

(∫

𝑠

ℎ

𝑒
𝐴(𝑠−𝑧)

𝐴𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)d𝑧)

⋅ V (ℎ, 𝑡) dℎ]𝐵 = 𝐾[∫
𝑠

0

𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)V (𝑧, 𝑡) d𝑧

− ∫

𝑠

0

𝑒
𝐴(𝑠−𝑧)V (𝑧, 𝑡) d𝑧 − ∫

𝑠

0

(𝑒
𝐴(𝑠−𝑧)

𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)








𝑠

ℎ

+ ∫

𝑠

ℎ

𝐴𝑒
𝐴(𝑠−𝑧)

𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)d𝑧) V (ℎ, 𝑡) dℎ

+ ∫

𝑠

0

(∫

𝑠

ℎ

𝑒
𝐴(𝑠−𝑧)

𝐴𝑒
(𝐴+𝐵𝐾)(𝑧−ℎ)d𝑧) V (ℎ, 𝑡) dℎ]𝐵 = 0.

(30)

Thus, (26) is an identity

V (𝑠, 𝑡) = V (𝑠, 𝑡) (31)

which illustrates that (15) and (17) are inverse transformswith
each other. The proof is complete.

In the proof of Theorem 4, we have not mentioned the
third equation in (16). In fact, the boundary condition V(𝐷, 𝑡)
of (16) depends not only on the transformation of (15), but
also on the boundary input 𝑢(𝐷, 𝑡) for (14). In order to get
the desired results, we let

V (𝐷, 𝑡) = 0. (32)

Then, the boundary input for (14) should be

𝑢 (𝐷, 𝑡) = ∫

𝐷

0

𝐾𝑒
𝐴(𝐷−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧 + 𝐾𝑒𝐴𝐷𝑋 (𝑡) . (33)

Equation (33) is the feedback controller for (14). Noting that
𝑋(𝑡) = [𝑥(𝑡)

𝑇
𝑞(𝑡)
𝑇
]

𝑇

, we give the backstepping tracking
controller 𝑈(𝑡) for (1) by the following theorem.

Theorem 5. Suppose that (𝐴, 𝐵) is controllable and the ref-
erence signal satisfies Assumption 2. Then, the backstepping
tracking controller 𝑈(𝑡) is given by

𝑈 (𝑡) = ∫

𝐷

0

𝐾𝑒
𝐴(𝐷−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧 + 𝐾
𝑥
𝑥 (𝑡)

+ 𝐾
𝑒
∫

𝑡

0

𝑒 (𝜏) d𝜏,
(34)
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where 𝐾 ∈ 𝑅
1×(𝑛+1) is a stabilizing gain vector such that the

matrix 𝐴 + 𝐵𝐾 is Hurwitz. 𝐾
𝑥
∈ 𝑅
1×𝑛 and 𝐾

𝑒
∈ 𝑅
1×1 are the

feedback gains defined by

𝐾𝑒
𝐴𝐷
= [𝐾𝑥

𝐾
𝑒
] . (35)

Remark 6. We can find that the backstepping tracking con-
troller consists of three parts. The first is the feedback in
partial differential form, and its essence is the feedback of
the input delay integral, which is used to offset the lag input’s
effect on the system. The second part is the feedback of the
present state. And the third part is the integral action on
the tracking error: it guarantees that the output tracks the
reference signal asymptotically.

Remark 7. Specifically, if𝐷 = 0, then (34) is

𝑈 (𝑡) = 𝐾
𝑥
𝑥 (𝑡) + 𝐾

𝑒
∫

𝑡

0

𝑒 (𝜏) d𝜏 (36)

which consists of the feedback of the state and integral of error
but does not consist of the PDE section. This indicates that
the effect of introducing PDE is to eliminate the input delay’s
impact formally. On the other hand, 𝐾𝑒𝐴𝐷 = 𝐾 when 𝐷 = 0,
and then 𝐴 + 𝐵𝐾 is stable. This is consistent with the results
of general control theory and is equivalent to the controller
design with the pole placement method.

In fact, with the backstepping coordinate transformation
of (15), the closed-loop system constituted by (14) and (33)
is (16). If we can prove that the closed-loop system (16) is
asymptotically stable at the equilibrium point, then we have
demonstrated that (34) is the exact controller we want to
design.

4. Stability of the Closed-Loop System

In this section, we will consider the stability and tracking
property of the closed-loop system. Two lemmas are needed.

Lemma 8 (see [20]). The pair (𝐴, 𝐵) is controllable if and only
if (𝐴, 𝐵) is controllable and the matrix Φ = [ 𝐴 𝐵

𝐶 0
] has full row

rank.

Lemma 9 (see [21]). Consider the linear continuous-time
system

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛
,

(37)

where 𝐴 ∈ 𝑅𝑛×𝑛 is Hurwitz and 𝑓(⋅) is a bounded measurable
function on [0,∞). And lim

𝑡→∞
𝑓(𝑡) = 𝑓

∗
∈ 𝑅
𝑛.Then for any

𝑥
0
∈ 𝑅
𝑛 the state vector 𝑥(𝑡) satisfies

lim
𝑡→∞

𝑥 (𝑡) = −𝐴
−1
𝑓
∗
. (38)

Now we present the stability theorem of the closed-loop
system (16).

Theorem 10. Suppose that (𝐴, 𝐵) is controllable and the
matrix Φ = [

𝐴 𝐵

𝐶 0
] has full row rank, and the reference signal

is asymptotically stable. Then, the closed-loop system (16) is
asymptotically stable at the equilibrium point. And the output
of system (1) asymptotically tracks the reference signal under
the controller (34); namely,

lim
𝑡→∞

𝑒 (𝑡) = 0. (39)

Proof. We first show that the closed-loop system is asymptot-
ically stable at the equilibrium point. Under the conditions
Assumptions 1 and 3, it follows from Lemma 8 that (𝐴, 𝐵) is
controllable and there exists a matrix 𝐾𝑇 ∈ 𝑅𝑛+1 such that
𝐴 + 𝐵𝐾 is Hurwitz. Let [ 𝑋

∗

V(𝑠)∗ ] be the equilibrium point of
(16): it follows that

(𝐴 + 𝐵𝐾)𝑋
∗
+ 𝐵V (0)∗ + 𝐺𝑟

0
= 0,

𝑑V (𝑠)∗

𝑑𝑠

− 𝐾𝑒
𝐴𝑠
𝐺𝑟
0
= 0,

V (𝐷)∗ = 0.

(40)

Solving (40), we get

𝑋
∗
= − (𝐴 + 𝐵𝐾)

−1

(𝐺𝑟
0
− 𝐵∫

𝐷

0

𝐾𝑒
𝐴𝜏
𝐺𝑟
0
d𝜏) ,

V (𝑠)∗ = −∫
𝐷

𝑠

𝐾𝑒
𝐴𝜏
𝐺𝑟
0
d𝜏.

(41)

Letting

𝑋(𝑡) = 𝑋 (𝑡) − 𝑋
∗
,

Ṽ (𝑠, 𝑡) = V (𝑠, 𝑡) − V (𝑠)∗
(42)

we transform (16) into
̇
�̃� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡) + 𝐵Ṽ (0, 𝑡) + 𝐺 (𝑟 (𝑡) − 𝑟

0
) ,

Ṽ
𝑡
(𝑠, 𝑡) = Ṽ

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺 (𝑟 (𝑡) − 𝑟

0
) ,

Ṽ (𝐷, 𝑡) = 0.

(43)

Now, we give a detailed demonstration of the asymptotic
stability of (43) through direct calculation.

We consider the partial differential equation in (43) first.
According to 𝑢(𝑠, 0) = 𝜑(𝑠) and 𝜑(𝐷 + 𝑡) = 𝑈(𝑡) (𝑡 ∈ [−𝐷, 0])
in Section 3, we have 𝑢(𝑠, 0) = 𝑈(𝑠 − 𝐷) (𝑠 ∈ [0, 𝐷]). That
is, the initial condition of the partial differential equation
𝑢(𝑠, 0) is determined by the initial input 𝑈(𝑡) on 𝑡 ∈ [−𝐷, 0].
Hence, Ṽ(𝑠, 0) is determined by 𝑟

0
and the initial input 𝑈(𝑡).

For briefness in calculation, we let Ṽ(𝑠, 0) = 0 by giving a
suitable initial input. It should be pointed out that the proof
is also correct when Ṽ(𝑠, 0) ̸= 0.

Thus, the partial differential equation in (43) with initial
and boundary condition is described as follows:

Ṽ
𝑡
(𝑠, 𝑡) = Ṽ

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺 (𝑟 (𝑡) − 𝑟

0
) ,

Ṽ (𝐷, 𝑡) = 0,

Ṽ (𝑠, 0) = 0.

(44)
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Solving (44) and letting 𝑟(𝑡) = 𝑟
0
(𝑡 < 0), we obtain

Ṽ (𝑠, 𝑡) = ∫
𝑠

𝐷

𝐾𝑒
𝐴𝜏
𝐺 (𝑟 (𝑡 + 𝑠 − 𝜏) − 𝑟

0
) d𝜏. (45)

Taking the norm on both sides of (45), we have

‖Ṽ (𝑠, 𝑡)‖

≤ max
𝜏∈[𝑠,𝐷]








𝐾𝑒
𝐴𝜏
𝐺








max
𝜏∈[𝑠,𝐷]





𝑟 (𝑡 + 𝑠 − 𝜏) − 𝑟

0





𝐷.

(46)

According to Assumption 2, we have lim
𝑡→∞

(𝑟(𝑡) − 𝑟
0
) = 0.

Thus, we have

lim
𝑡→∞

‖Ṽ (𝑠, 𝑡)‖ = 0. (47)

On the other hand, according to (45) we have

Ṽ (0, 𝑡) = ∫
0

𝐷

𝐾𝑒
𝐴𝜏
𝐺 (𝑟 (𝑡 − 𝜏) − 𝑟

0
) d𝜏. (48)

Substituting (48) into the first equation of (43), we get

̇
�̃� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡)

+ 𝐵∫

0

𝐷

𝐾𝑒
𝐴𝜏
𝐺 (𝑟 (𝑡 − 𝜏) − 𝑟

0
) d𝜏

+ 𝐺 (𝑟 (𝑡) − 𝑟
0
) .

(49)

Let

𝑓 (𝑡) = 𝐵∫

0

𝐷

𝐾𝑒
𝐴𝜏
𝐺 (𝑟 (𝑡 − 𝜏) − 𝑟

0
) d𝜏

+ 𝐺 (𝑟 (𝑡) − 𝑟
0
) .

(50)

Equation (49) is written as

̇
�̃� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡) + 𝑓 (𝑡) . (51)

For (50), the following inequality holds:





𝑓 (𝑡)





≤






𝐵𝐾












𝐺






max
𝜏∈[0,𝐷]








𝑒
𝐴𝜏











𝑟 (𝑡 − 𝜏) − 𝑟

0





𝐷

+






𝐺











𝑟 (𝑡) − 𝑟

0





.

(52)

Combining lim
𝑡→∞

(𝑟(𝑡) − 𝑟
0
) = 0, we have

lim
𝑡→∞

𝑓 (𝑡) = 0. (53)

Using Lemma 9, we obtain

lim
𝑡→∞

𝑋 (𝑡) = − (𝐴 + 𝐵𝐾)

−1

lim
𝑡→∞

𝑓 (𝑡) = 0. (54)

Combining (47) and (54), we have

lim
𝑡→∞

(






𝑋 (𝑡)






+ ‖Ṽ (𝑠, 𝑡)‖) = 0 (55)

which indicates that (43) is asymptotically stable.

Obviously, the target system (16) is also asymptotically
stable at the equilibrium point because (42) is just a coordi-
nate moving in parallel with (16). And the equilibrium point
is

[

𝑋 (𝑡)

V (𝑠, 𝑡)
] = [

𝑋
∗

V (𝑠)∗
] . (56)

Hence, the statement in Section 1 is proved.
From the discussions above, we have

lim
𝑡→∞

𝑋(𝑡) = 𝑋
∗
,

lim
𝑡→∞

𝑈 (𝑡) = 𝑈
∗
,

(57)

where𝑋∗, 𝑈∗ are constant vectors and satisfy

𝐴𝑋
∗
+ 𝐵𝑈
∗
+ 𝐺𝑟
0
= 0. (58)

Denoting𝑋∗ = [ 𝑥
∗

𝑞
∗ ], (58) can also be written as

[

𝐴 0

𝐶 0

][

𝑥
∗

𝑞
∗
] + [

𝐵

0

]𝑈
∗
+ [

0

−𝐼

] 𝑟
0
= 0. (59)

We have

𝐶𝑥
∗
− 𝑟
0
= 0; (60)

that is,

lim
𝑡→∞

(𝐶𝑥 (𝑡) − 𝑟 (𝑡)) = 0. (61)

Namely,

lim
𝑡→∞

𝑒 (𝑡) = 0. (62)

Equation (62) suggests the system’s output asymptotically
tracks the reference signal. Thus, the proof of Theorem 10 is
complete.

Summarizing the results above, we give the following
tracking controller theorem.

Theorem 11. Suppose that Assumptions 1 to 3 are satisfied;
then, there exists𝐾 such that 𝐴 + 𝐵𝐾 is stable, and the closed-
loop system of (1) is

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (0, 𝑡) . (63)

The control input 𝑈(𝑡 − 𝐷) = 𝑢(0, 𝑡) is determined by the
following PDE-ODE coupled system:

𝑢 (𝑠, 𝑡) = V (𝑠, 𝑡) + ∫
𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

+ 𝐾𝑒
(𝐴+𝐵𝐾)𝑠 [

[

[

𝑥 (𝑡)

∫

𝑡

0

[𝐶𝑥 (𝜏) − 𝑟 (𝜏)] d𝜏
]

]

]

,

V
𝑡
(𝑠, 𝑡) = V

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺𝑟 (𝑡) ,

V (𝐷, 𝑡) = 0.

(64)
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U(t − D)

iL(t)

R C uC(t)

Figure 1: An RLC actuator delay network.

Theorem 11 illustrates that V(𝑠, 𝑡) can be obtained through
solving the PDE

V
𝑡
(𝑠, 𝑡) = V

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺𝑟 (𝑡) ,

V (𝐷, 𝑡) = 0.
(65)

Then,𝑢(𝑠, 𝑡) is obtained from (64), and finally we get the control
input 𝑈(𝑡 − 𝐷) = 𝑢(0, 𝑡).

5. A Simulation Example

We will give the actuator delay RLC network [22] described
in Figure 1 to illustrate the effectiveness of the controller.

In Figure 1, 𝑖
𝐿
is the current through the inductor 𝐿, 𝑢

𝐶

is the voltage across the capacitor 𝐶 and is also the output of
the system, 𝑈(𝑡 − 𝐷) is the input voltage which has a time
delay to the network, and 𝑅 = 1/3Ω, 𝐶 = 1 F, 𝐿 = 0.5H,
and 𝐷 = 0.5 s. Now, we make the definition 𝑥

1
(𝑡) = 𝑖

𝐿
(𝑡)

and 𝑥
2
(𝑡) = 𝑢

𝐶
(𝑡); applying Kirchhoff ’s current and voltage

laws to the RLC network, we get the following mathematical
model:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑈 (𝑡 − 0.5) , (66)

where 𝑥(𝑡) = [ 𝑥1(𝑡)
𝑥
2
(𝑡)
], 𝐴 = [ 0 −2

1 −3
], and 𝐵 = [ 2

0
]. The output

equation is given by

𝑦 (𝑡) = 𝐶𝑥 (𝑡) , (67)

where 𝐶 = [0 1]. Let 𝑥(0) = [ 0
0
] and 𝑈(𝑡) = 0, (−0.5 ≤ 𝑡 ≤

0).
We give the reference output of 𝑢

𝐶
as the following four

types.

Step Signal

𝑟 (𝑡) =

{

{

{

0, 𝑡 < 15,

1, 𝑡 ≥ 15.

(68)

Periodic Signal

𝑟 (𝑡) =

{

{

{

sin(𝜋
5

(𝑡 − 3)) , 3 < 𝑡 ≤ 53,

0, other.
(69)

Ramp Signal

𝑟 (𝑡) =

{
{
{
{

{
{
{
{

{

0, 𝑡 ≤ 10,

1

20

(𝑡 − 10) , 10 < 𝑡 ≤ 30,

1, 𝑡 > 30.

(70)

Fading Signal

𝑟 (𝑡) =

{
{

{
{

{

0, 𝑡 ≤ 5,

1

𝑡

sin(𝜋
5

(𝑡 − 5)) , 𝑡 > 5.

(71)

The control system can be described as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑈 (𝑡 − 0.5) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑟 (𝑡) ,

𝑢
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) ,

𝑢 (0.5, 𝑡) = 𝑈 (𝑡) .

(72)

And the control input 𝑈(𝑡 − 0.5) = 𝑢(0, 𝑡) is given by the
following PDE-ODE coupled system:

𝑢 (𝑠, 𝑡) = V (𝑠, 𝑡) + ∫
𝑠

0

𝐾𝑒
(𝐴+𝐵𝐾)(𝑠−𝑧)

𝐵V (𝑧, 𝑡) d𝑧

+ 𝐾𝑒
(𝐴+𝐵𝐾)𝑠 [

[

[

𝑥 (𝑡)

∫

𝑡

0

[𝐶𝑥 (𝜏) − 𝑟 (𝜏)] d𝜏
]

]

]

,

V
𝑡
(𝑠, 𝑡) = V

𝑠
(𝑠, 𝑡) − 𝐾𝑒

𝐴𝑠
𝐺𝑟 (𝑡) ,

V (𝐷, 𝑡) = 0,

(73)

where 𝐴 = [ 0 −2 01 −3 0
0 1 0

], 𝐵 = [ 20
0

], and 𝐺 = [ 00
−1

]. Prescribing the
poles [−9 −10 −8] to the nominal system (14) results in

𝐾 = [−12 −84 −360] (74)

and hence we have

𝐾
𝑥
= 𝐾𝑒
𝐴𝐷[

[

[

1 0

0 1

0 0

]

]

]

,

𝐾
𝑒
= 𝐾𝑒
𝐴𝐷[

[

[

0

0

1

]

]

]

.

(75)

The system response under the backstepping track-
ing controller is depicted in Figures 2, 3, 4, and 5. It can
be observed that the backstepping tracking controller can
indeed guarantee that the output tracks the reference signals
asymptotically. That is to say, the design method of the
controller in this paper is effective.



8 Mathematical Problems in Engineering

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Time (s)

Th
e o

ut
pu

t r
es

po
ns

e

r(t)

y(t)

Figure 2: Closed-loop responses of step signal (68).
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Figure 3: Closed-loop responses of periodic signal (69).

6. Conclusion

In this paper, we have proposed a backstepping tracking con-
trol scheme for a class of linear systems with actuator delay.
By constructing a PDE-ODE coupled system based on the
augmented system constructed, we converted the tracking
problem into a regulation one. The proposed control scheme
can effectively track the reference signal and guarantee the
asymptotic stability of the closed-loop system.The numerical
simulations show the efficiency of the backstepping tracking
controller.
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Figure 4: Closed-loop responses of ramp signal (70).
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Figure 5: Closed-loop responses of fading signal (71).

Appendix

The backstepping transformation (15) can be obtained by this
method. Let the transformation have the following form:

𝑋(𝑡) = 𝑋 (𝑡) ,

V (𝑠, 𝑡) = 𝑢 (𝑠, 𝑡) − ∫
𝑠

0

𝑘 (𝑠, 𝑧) 𝑢 (𝑧, 𝑡) d𝑧

− 𝛾 (𝑠)
𝑇
𝑋 (𝑡) ,

(A.1)
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where 𝑘(𝑠, 𝑧) ∈ 𝑅 and 𝛾(𝑠) ∈ 𝑅
𝑛+1 are kernels to be

determined and 𝐾𝑇 ∈ 𝑅𝑛+1 satisfying 𝐴 + 𝐵𝐾 is Hurwitz.
This converts plant (14) into the following target system:

�̇� (𝑡) = (𝐴 + 𝐵𝐾)𝑋 (𝑡) + 𝐵V (0, 𝑡) + 𝐺𝑟 (𝑡) ,

V
𝑡
(𝑠, 𝑡) = V

𝑠
(𝑠, 𝑡) − 𝛾 (𝑠)

𝑇
𝐺𝑟 (𝑡) ,

V (𝐷, 𝑡) = 0.

(A.2)

Calculating the time derivatives of the second equation in
(A.1),

V
𝑡
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) − 𝑘 (𝑠, 𝑠) 𝑢 (𝑠, 𝑡) + 𝑘 (𝑠, 0) 𝑢 (0, 𝑡)

+ ∫

𝑠

0

𝑘
𝑧
(𝑠, 𝑧) 𝑢 (𝑧, 𝑡) d𝑧 − 𝛾 (𝑠)𝑇𝐴𝑋 (𝑡)

− 𝛾 (𝑠)
𝑇
𝐵𝑢 (0, 𝑡) − 𝛾 (𝑠)

𝑇
𝐺𝑟 (𝑡) ,

(A.3)

and calculating the spatial derivatives of the second equation
in (A.1),

V
𝑠
(𝑠, 𝑡) = 𝑢

𝑠
(𝑠, 𝑡) − 𝑘 (𝑠, 𝑠) 𝑢 (𝑠, 𝑡)

− ∫

𝑠

0

𝑘
𝑠
(𝑠, 𝑧) 𝑢 (𝑧, 𝑡) d𝑧 − 𝛾 (𝑠)𝑇𝑋(𝑡) ,

(A.4)

by the target system (A.2) we get

V
𝑡
(𝑠, 𝑡) − V

𝑠
(𝑠, 𝑡) + 𝛾 (𝑠)

𝑇
𝐺𝑟 (𝑡)

= ∫

𝑠

0

(𝑘
𝑠
(𝑠, 𝑧) + 𝑘

𝑧
(𝑠, 𝑧)) 𝑢 (𝑧, 𝑡) d𝑧

+ (𝑘 (𝑠, 0) − 𝛾 (𝑠)
𝑇
𝐵) 𝑢 (0, 𝑡)

+ (𝛾

(𝑠)
𝑇
− 𝛾 (𝑠)

𝑇
𝐴)𝑋 (𝑡) = 0.

(A.5)

This equation should be valid for all 𝑢(𝑠, 𝑡), 𝑢(0, 𝑡), and 𝑋(𝑡),
so we have

𝑘
𝑠
(𝑠, 𝑧) + 𝑘

𝑧
(𝑠, 𝑧) = 0,

𝑘 (𝑠, 0) − 𝛾 (𝑠)
𝑇
𝐵 = 0,

𝛾

(𝑠)
𝑇
= 𝛾 (𝑠)

𝑇
𝐴.

(A.6)

On the other hand, let 𝑠 = 0 in the second equation in (A.1),
which gives

V (0, 𝑡) = 𝑢 (0, 𝑡) − 𝛾 (0)𝑇𝑋 (𝑡) . (A.7)

Substituting (A.7) into the first equation in (14) and (A.2), we
have

(𝐾 − 𝛾
𝑇
(0))𝑋 (𝑡) = 0. (A.8)

So

𝛾
𝑇
(0) = 𝐾. (A.9)

The kernels 𝑘(𝑠, 𝑧) and 𝛾(𝑠) should satisfy

𝑘
𝑠
(𝑠, 𝑧) + 𝑘

𝑧
(𝑠, 𝑧) = 0,

𝑘 (𝑠, 0) − 𝛾 (𝑠)
𝑇
𝐵 = 0,

(A.10)

𝛾

(𝑠)
𝑇
= 𝛾 (𝑠)

𝑇
𝐴,

𝛾
𝑇
(0) = 𝐾.

(A.11)

We can easily obtain by (A.11) that 𝛾(𝑠)𝑇 = 𝐾𝑒𝐴𝑠. Substituting
this expression into (A.10), we get 𝑘(𝑠, 𝑧) = 𝐾𝑒𝐴(𝑠−𝑧)𝐵. Thus,
we get the transformation (A.1):

𝑋 (𝑡) = 𝑋 (𝑡) ,

V (𝑠, 𝑡) = 𝑢 (𝑠, 𝑡) − ∫
𝑠

0

𝐾𝑒
𝐴(𝑠−𝑧)

𝐵𝑢 (𝑧, 𝑡) d𝑧

− 𝐾𝑒
𝐴𝑠
𝑋 (𝑡) .

(A.12)

And that is (15).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 61174209) and the Oriented Award
Foundation for Science and Technological Innovation, Inner
Mongolia Autonomous Region, China (2012).

References

[1] A. T. Bahill, “A simple adaptive Smith-predictor for controlling
time-delay systems: a tutorial,” IEEE Control Systems Magazine,
vol. 3, no. 2, pp. 16–22, 1983.

[2] J. E. Normey-Rico and E. F. Camacho, Control of Dead-Time
Processes, Springer, London, UK, 2007.

[3] S. Oucheriah, “Robust tracking and model following of uncer-
tain dynamic delay systems by memoryless linear controllers,”
IEEE Transactions on Automatic Control, vol. 44, no. 7, pp. 1473–
1477, 1999.

[4] Y. Fiagbedzi and A. E. Pearson, “Feedback stabilization of linear
autonomous time lag systems,” IEEE Transactions on Automatic
Control, vol. 31, no. 9, pp. 847–855, 1986.

[5] S. Majhi and D. P. Atherton, “Obtaining controller parameters
for a new Smith predictor using autotuning,” Automatica, vol.
36, no. 11, pp. 1651–1658, 2000.
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