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This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model
is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle,
and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the
proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that the proposed
model has better prediction accuracy compared to some empirical and statistical models. Two error statistics are used in this
research to evaluate the proposed model, namely, mean absolute percentage error and root mean square error. These values for the
proposed model are 11.8% and −3.1%, respectively. Finally, the proposed model shows better ability in overcoming the sophistic
nature of the solar radiation data.

1. Introduction

Solar energy is the portion of the sun’s energy available at
the earth’s surface for useful applications, such as raising the
temperature of water or exciting electrons in a photovoltaic
cell, in addition to supplying energy to natural processes.This
energy is free, clean, and abundant inmost places throughout
the year. Its effective harnessing and use are of importance
to the world, especially at a time of high fossil fuel costs and
degradation of the atmosphere by the use of fossil fuels. Solar
radiation data provide information on howmuch of the sun’s
energy strikes a location on the earth’s surface during a partic-
ular time period. These data are needed for effective research
into solar energy utilization [1].

In general, solar radiation that reaches the earth surface is
called extraterrestrial solar radiation (above the atmosphere).
In the meanwhile, the attenuated solar radiation within the
atmosphere is called global solar radiation. Global solar
radiation incident on a horizontal surface has two com-
ponents, namely, direct (beam) and diffuse solar radiation.
Both components of solar radiation are usually measured by
pyranometers, solarimeters, or actinography. Direct (beam)

solar radiation is measured by a pyrheliometer while diffuse
solar radiation is measured by placing a shadow band over a
pyranometer [1]. In addition, solar radiation can be modeled
using different techniques.

Many models of solar radiation were presented in the
literature. These methods can be mathematical such as linear
and polynomial functions, heuristic methods, fuzzy logic
techniques, or other individual methods such as Fourier
series and Markov chain. However, recently, artificial intel-
ligence techniques based models such as artificial neural
networks (ANNs) were used for solar radiation prediction.
According to [1, 2], ANNs were used many times for solar
radiation modeling, prediction, and forecasting. Different
types of ANNs were utilized for this purpose. Examples for
these models are feedback back forward ANN, cascade-for-
ward back propagation ANN, generalized regression ANN,
neurofuzzy ANN, and optimized ANN-genetic algorithm. In
general, most of the conducted work was done for solar radi-
ation prediction using groundmeasuredmeteorological vari-
ables such as ambient temperature, sunshine ratio, relative
humidity, wind speed, and other solar geometry angles such
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as hour angle and angle of declination. The main purpose
of the aforementioned models is to generate synthetic solar
radiation data at a specific location where there are no mea-
suring devices in order to be utilized in solar energy system
design, to restore a solar radiation data set in case of having
missing data due to monitoring system outages, or to predict
the performance of a solar energy system. In 1990s, ANNs
were proposed for predictingmonthly or daily solar radiation
utilizing monthly or daily meteorological variables due to
the availability of such data. However, hourly solar radiation
prediction is currently more important in order to optimally
design solar energy systems. Hourly solar radiation data can
be used to optimally design solar power and thermal systems.
By using hourly solar radiation data in the design of solar
energy systems, the stochastic nature of the solar radiation is
considered. In other words, the reliability of the solar power/
thermal systems designed based on hourly solar radiation
data is greater than systems designed based on daily or
monthly solar radiation profiles [3].The need for hourly solar
radiation data for accurate system’s design and control led
researchers to utilize hourly meteorological variables for pre-
dicting hourly solar radiation. However, there is a big debate
regarding the availability of hourly meteorological data such
as ambient temperature, relative humidity, and sunshine ratio
for this purpose [1]. On the other hand, some of pioneer
researchers have proposed empirical equations that can pre-
dict hourly solar radiation in terms of daily or monthly solar
radiation, hour angle, and sunrise/sunset hour angle. Exam-
ples of these models are Liu and Jordan’s model [4], Collares-
Pereira and Rabel’s model [5], Garg and Garg’s model [6],
Jain’s model [7], Baig’s model [8], and Kaplanis’s model [9,
10]. Proposing these equations has made a big advantage
in predicting hourly solar radiation without the need for
other meteorological variables. These models are reviewed
and discussed in detail in Section 2. Most of these models are
either empirical or statistical models that implying complex
calculations are required. Therefore, these empirical models
can be further enhanced in terms of accuracy and simplicity
by utilizing novel learningmachine such as generalized artifi-
cial neural network (GRNN) where GRNN has been recom-
mended for solar radiation prediction in previous researches
according to [1]. There is consequently a need to develop
GRNNbasedmodels that predict hourly solar radiation using
daily or monthly solar radiation without the need for hourly
meteorological data. The main objective of this paper is to
present a novel model for predicting hourly solar radiation
using global solar radiation andother solar angles.Thismodel
is developed using a generalized regression artificial neural
network and is designed to be more accurate than other
models. The proposed model is able to generate hourly solar
radiation data from daily solar radiation data at sites where
only daily averages of solar radiation are available.These data
can be used in optimal sizing of photovoltaic systems. The
optimal sizing of such systems requires hourly prediction of
system performance for at least one-year time in order to
provide optimal sizes of photovoltaic array and storage units,
for example.Moreover, such amodel can be used to optimally
manage photovoltaic based distributed generation (DG)
units. The output of DG systems needs to be predicted in
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Figure 1: Predicting of hourly solar radiation using statisticalmodel.

order to optimally operate the penetrated power system in
terms of optimal power flow and system’s stability, protection,
and power quality. This work is done utilizing solar radiation
data for Sohar city, Oman. The city has a desertic climate
and it is located on Gulf of Oman with latitude of 24.34N,
longitude of 56.73 E, and elevation of 13 ft. The utilized solar
radiation data are measured at Sohar University Weather
Station.

2. Hourly Solar Radiation Data Mining

Data mining (knowledge discovery in databases) is the pro-
cess that attempts to discover patterns in large data sets. Based
on this, mean hourly solar radiation data mining is the pro-
cess that attempts to estimate, predict, or obtain mean hourly
solar radiation from a solar radiation data set.This solar radi-
ation data set ideally contains measurements such as mean
daily solar radiation and solar angles such as hour angle, sun-
set angle, and angle of declination. The importance of mean
hourly solar radiation data mining is to obtain these data for
sites that have only mean daily solar radiation. Mean hourly
data represents considerable more information and therefore
is more useful for the already mentioned applications. Fig-
ure 1 shows a typical profile of mean hourly solar radiation
versus time. The mean daily solar radiation is indicated here
as a horizontal line.

2.1. Empirical Models for CalculatingMeanHourly Solar Radi-
ation. According to the literature, there are some empirical
models developed for calculating hourly solar radiation from
daily solar radiation. In [4], Liu and Jordan proposed the
following to calculate hourly solar radiation:

𝐺ℎ

𝐺𝐷

=

(𝜋/24) (cos𝜔 − cos𝜔𝑠)
sin𝜔𝑠 − (2𝜋𝜔𝑠/360) cos𝜔𝑠

, (1)

where 𝐺ℎ is the mean hourly solar radiation, 𝐺𝐷 is the mean
daily solar radiation, 𝜔 is the hour angle, and 𝜔𝑠 is the sunset
hour angle.

The hour angle (𝜔) is the angular displacement of the sun
from the local point and it is given by the following:

𝜔 = 15 (AST − 12 hour) , (2)
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where AST is the apparent or true solar time and it is given by
the daily apparentmotion of the true, or observed, sun.AST is
based on the apparent solar day, which is the interval between
two successive returns of the sun to the local meridian.
Apparent solar time can be calculated as follows:

AST = LST + EoT + (4

min
degree

) [(LSMT − LOD)] , (3)

where LST is the local standard time, LOD is the longitude,
LSMT is the local standard meridian time, and EoT is the
equation of time.

The local standardmeridian (LSMT) is a referencemerid-
ian used for a particular time zone and is similar to the prime
meridian, used for Greenwich Mean Time. LSMT is given by
the following:

LSMT = 15

∘
∗ Time zone in GMT. (4)

In themeanwhile, the equation of time (EoT) is the difference
between apparent andmean solar times, both taken at a given
longitude at the same real instant of time. EoT is given by the
following:

EoT = 9.87 sin (2𝐵) − 7.53 cos (𝐵) − 1.5 sin (𝐵) , (5)

where 𝐵 is a factor and it can be calculated by

𝐵 =

360

∘

365

(𝑁 − 81) ,

(6)

where𝑁 is the day number and it is defined as the number of
days elapsed in a given year up to a particular date (e.g., 2nd
February corresponds to 33).

The sunset hour angle can be calculated using the follow-
ing:

𝜔𝑠𝑠,𝑠𝑟 = cos−1 (− tan𝜙 tan 𝛿) , (7)

where 𝜙 is the latitude and 𝛿 is the angle of declination. The
angle of declination is the angle between the Earth-sun vector
and the equatorial plane and it is calculated as follows:

𝛿 = 23.45 sin [360 (284 + 𝑁)

365

] .
(8)

On the other hand, Collares-Pereira and Rabel verified the
previous model in [5] and propose the following for calculat-
ing mean hourly solar radiation:

𝐺ℎ

𝐺𝐷

= (𝑎 + 𝑏 cos𝜔)
(𝜋/24) (cos𝜔 − cos𝜔𝑠)

sin𝜔𝑠 − (2𝜋𝜔𝑠/360) cos𝜔𝑠
, (9)

where the coefficients 𝑎 and 𝑏 are defined as follows:

𝑎 = 0.409 + 0.5016 sin (𝜔𝑠 − 60) ,

𝑏 = 0.6609 − 0.4767 sin (𝜔𝑠 − 60) .
(10)

In addition to that, H. P. Garg and S. N. Garg checked the
adequacy of the Liu-Jordan correlation in [6] to estimate

the hourly horizontal global radiation for various Indian
stations as follows:

𝐺ℎ

𝐺𝐷

=

(𝜋/24) (cos𝜔 − cos𝜔𝑠)
sin𝜔𝑠 − (2𝜋𝜔𝑠/360) cos𝜔𝑠

− 0.008 sin 3 (𝜔 − 0.65) .

(11)

In addition, Jain in [7] suggested calculating hourly solar
radiation as follows:

𝐺ℎ = 𝑟𝑡 ⋅ 𝐺𝐷, (12)

where 𝑟𝑡 is a Gaussian function to fit the recorded data. The
authors of [7] established the following relation for global
irradiation:

𝑟AST =
1

𝜎

√

2𝜋

exp[−(AST − 12)

2

2𝜎

2
] , (13)

where 𝑟AST is the ratio of hourly to daily global solar radiation
and 𝜎 is a factor that is defined by

𝜎 =

1

𝑟AST(AST=12)√2𝜋
. (14)

Later, Baig et al. in [8] have proposed amodel that is based on
Jain’s model in [7]. Baig et al. modified Jain’s model to better
fit the recorded data during the start and the end periods of a
day. In this model, 𝑟AST is estimated by the following:

𝑟AST =
1

𝜎

√

2𝜋

(exp[−(AST − 12)

2

2𝜎

2
]

+ cos[180(AST − 12)

(𝑆𝑜 − 1)

]) .

(15)

Another model was proposed by Kaplanis in [9].The authors
assumed that daily solar radiation profile can be described as
follows:

𝐼 = 𝑎 + 𝑏 ⋅ cos(2𝜋𝑡
24

) , (16)

where 𝑎 and 𝑏 are parameters to be determined for any site
and for any day. The followed methodology was represented
by integrating (16) over 𝑡, from sunrise (𝑡𝑠𝑟) to sunset (𝑡𝑠𝑠) as
below:

∫

𝑡
𝑠𝑠

𝑡
𝑠𝑟

𝐺ℎ𝑑𝑡 = 2𝑎 (𝑡𝑠𝑟 − 12) +

24𝑏

𝜋

sin(
2𝜋𝑡𝑠𝑠

24

) . (17)

Later, Kaplanis has proposed two improvements for hismodel
in [10]. In [10], a statistical model for calculating hourly
solar radiation in terms of the variation of the daily solar
attention as well as air mass is done. The proposed statistical
model is based on three constants which need to be calculated
based on actual data. Similarly in [10], a stochastic prediction
model for hourly solar radiation is presented. The model
calculates hourly solar radiation in terms of the average global
solar radiation and the standard deviation of the hourly solar
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radiation from the average daily solar radiation. The model
is developed based on historical data. Here, also the models
presented in [10] are only valid for the case study. Here, also
the models presented in [10] are location dependent.

In addition to that, in [11], the authors presented a corre-
lation between 𝐺ℎ and 𝐺𝐷 according to Figure 1 as follows:

𝐺ℎ

𝐺𝐷

= 𝑎 + 𝑏𝑡 + 𝑐𝑡

2
, (18)

where 𝑎, 𝑏, and 𝑐 are coefficients that can be determined by
any curve fitting tool. However, the drawback of this model
is that it is a location dependent model whereas such a type
of models is devoted to a specific region. This is because the
coefficients 𝑎, 𝑏, and 𝑐 are calculated based on a specific solar
radiation profile.

In addition, in [12], statistical model for calculating
hourly global solar radiation on horizontal surface was
developed. This model represents the hourly solar radiation
as a function of extraterrestrial solar radiation as well as a sky
transmission function. The proposed sky transmission func-
tion is presented as two transmission functions indicating the
daily and the hourly variation. At this point, the hourly and
the daily transmission variation functions are estimated as
statistical relations in terms of day number, hour of the day,
and location latitude and longitude based on ground mea-
surements of environmental parameters for a specific loca-
tion. After all, the inputs of the model were the hour of day,
day number, optimized sky transmission function, solar con-
stant, and location coordination. The main drawback of this
work is that the relations proposed for the daily and hourly
transmission functions are location dependent.Moreover, the
utilized extraterrestrial solar radiation data are based on satel-
lite measurements which might not be accurate. More statis-
tical methods were provided. In [13], a model for generating
hourly solar radiation as a function of the clearness index
is proposed. The development of the model is based on an
assumption that the relation between clearness index values
and solar radiation can be described by a Gaussian function.
In the meanwhile, in [14], the authors proposed a trigono-
metrical function for predicting daily solar radiation values
from monthly solar radiation values.

2.2. ProposedGeneralizedRegressionArtificialNeuralNetwork
Model. Artificial neural networks, ANNs, are nonalgorith-
mic and intensely parallel information processing systems.
They learn the relationship between input and output vari-
ables bymastering previously recorded data. AnANNusually
consists of parallel elemental units called neurons. Neurons
are connected by a large number of weighted links which
pass signals or information. A neuron receives and combines
inputs and then generates the final results in a nonlinear
operation. The term ANN usually refers to a Multilayer Per-
ceptron (MLP)Network; however, there aremany other types
of neural networks, including Probabilistic Neural Networks
(PNNs), General Regression Neural Networks (GRNNs),
Radial Basis Function (RBF) Networks, Cascade Correla-
tion, Functional Link Networks, Kohonen networks, Gram-
Charlier networks, Learning Vector Quantization, Hebb

networks, Adaline networks, Heteroassociative networks,
Recurrent Networks, and Hybrid Networks [15].

ANNs have recently been used to predict the amount
of solar radiation based on meteorological variables such as
sunshine ratio, temperature, and humidity [1]. However, up to
now, no one has used ANNs to find the correlation between
mean hourly solar radiation and mean daily solar radiation.
Therefore, in this paper, a generalized regression artificial
neural network (GRNN) is proposed for this purpose. The
GRNN is themost recommended type of ANN for solar radi-
ation prediction according to Khatib et al. in [16]. The gener-
alized regression neural network (GRNN) is a probabilistic
based network. This network makes classification where the
target variable is definite, andGRNNsmake regression where
the target variable is continuous. GRNN falls into the cate-
gory of PNNs. This neural network, like other PNNs, needs
only a fraction of the training samples an MLP would need.
The additional knowledge needed to obtain the fit in a satisfy-
ing way is relatively small and can be done without additional
input by a user. This makes GRNNs a useful tool for per-
forming prediction and comparison of system performance
in practice. The probability density function used in GRNNs
is the normal distribution. Each training sample, 𝑋𝑗, is used
as the mean of a normal distribution function given by the
following:

𝑦 (𝑥) =

∑

𝑛

𝑡=1
𝑌𝑖 exp (−𝐷𝑖

2
/2𝜎

2
)

∑

𝑛

𝑡=1
exp (−𝐷𝑖2/2𝜎2)

𝐷𝑖

2
= (𝑋 − 𝑋𝑖)

𝑇
⋅ (𝑋 − 𝑋𝑖) .

(19)

𝐷𝑖 is the distance between the training sample and the point
of prediction; it is used as a measure of how well each
training sample represents the position of prediction, 𝑋. If
the distance,𝐷𝑖, between the training sample and the point of
prediction is small, exp(−𝐷𝑖

2
/2𝜎

2
) becomes larger. For 𝐷𝑖 =

0, exp(−𝐷𝑖
2
/2𝜎

2
) becomes 1.0 and the point of evaluation is

represented best by this training sample. A larger distance to
all the other training samples causes the term exp(−𝐷𝑖

2
/2𝜎

2
)

to become smaller and therefore the contribution of the other
training samples to the prediction is relatively small.The term
𝑌𝑖 ∗ exp(−𝐷𝑖

2
/2𝜎

2
) for the 𝑖th training sample is the largest

and contributes strongly to the prediction. The standard
deviation or smoothness parameter, 𝑠, is subjected to a search.
For a large smoothness parameter, the possible representation
of the point of evaluation by the training sample is possible for
a wider range of 𝑋. For a small smoothness parameter, the
representation is limited to a narrow range of𝑋.

GRNNs consist of input, hidden, and output layers. The
input layer has one neuron for each predictor variable. The
input neurons standardize the range of values by subtracting
the median and dividing by the interquartile range.The input
neurons then feed the values to each of the neurons in the
hidden layer. In the hidden layer, there is one neuron for each
case in the training data set. The neuron stores the values of
the predictor variables for each case, along with the target
value. When presented with a vector of input values from
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Figure 2: Proposed model for hourly solar radiation prediction.

the input layer, a hidden neuron computes the Euclidean
distance of the test case from the neuron’s center point
and then applies the RBF kernel function using the sigma
value. The resulting value is passed to the neurons in the
pattern layer. However, the pattern (summation) layer has
two neurons: one is the denominator summation unit and
the other is the numerator summation unit.The denominator
summation unit adds the weights of the values coming from
each of the hidden neurons. The numerator summation unit
adds the weights of the values multiplied by the target value
for each hidden neuron. The decision layer divides the value
accumulated in the numerator summation unit by the value
in the denominator summation unit and uses the result as the
predicted target value [15].

Based on the previousmodels ((1), (9), and (11)), it is clear
that the hourly solar radiation value is a function of parame-
ters such as mean daily solar radiation, hour angle, and sun-
set/sunrise hour angle. Based on this, theGRNN illustrated in
Figure 2 is proposed for estimating mean hourly solar radia-
tion. The input layer of the network has three inputs: mean
daily solar radiation, hour angle, sunset hour angle. Mean-
while, the output layer has one node which is mean hourly
solar radiation.

With regard to the number of neurons in the hidden layer,
there is no way to determine the optimal number of hidden
neuronswithout training several networks and estimating the
generalization error of each.A lownumber of hiddenneurons
cause high training and generalization error due to underfit-
ting and high statistical bias, but a large number of hidden
neurons cause high generalization error due to overfitting and
high variance [17]. There are some rules of thumb for choos-
ing the number of the hidden nodes. Blum claims in [18] that
the number of neurons in the hidden layer ought to be some-
where between the input layer size and the output layer size.
Swingler in [19] and Berry and Linoff in [20] claim that the
hidden layer will never require more than twice the number
of the inputs. In addition, Boger and Guterman suggest in
[21] that the number of hidden nodes should be 70–90% of
the number of input nodes. Additionally, Caudill and Butler
recommend in [15] that the number of hidden nodes equals
the number of inputs plus the number of outputs multiplied
by (2/3). Based on these recommendations, the number of
neurons in the hidden layer of our model should be between
2 and 4. In this research, we used 4 hidden nodes.

2.3. Model Evaluation Criteria. To evaluate the proposed
GRNN model and the other models, two statistics errors are
used:mean absolute percentage error (MAPE) and rootmean

square error (RMSE). MAPE is an indicator of accuracy.
MAPE usually expresses accuracy as a percentage and is
defined by the following formula:

MAPE =

1

𝑛

𝑛

∑

𝑡=1

𝐼 − 𝐼𝑝

𝐼

, (20)

where 𝐼 is the measured value and 𝐼𝑝 is the predicted value.
The resultant of this calculation is summed for every fitted or
forecasted point in time and divided again by the number of
fitted points, 𝑛. This formula gives a percentage error, so one
can compare the error of fitted time series that differ in level.

In addition, prediction models were evaluated using
RMSE. RMSE provides information about the short-term
performance of the models and is a measure of the variation
of the predicted values around the measured data. RMSE
indicates the scattering of data around linear lines. Moreover,
RMSE shows the efficiency of the developed network in
predicting future individual values. A large positive RMSE
implies a large deviation in the predicted value from the
measured value. RMSE can be calculated as follows:

RMSE =
√

1

𝑛

𝑛

∑

𝑖=1

(𝐼𝑝𝑖
− 𝐼𝑖)

2

,

(21)

where 𝐼𝑝𝑖 is the predicted value, 𝐼𝑖 is the measured value, and
𝑛 is the number of observations [1].

2.3.1. Sensitivity Analysis. For any prediction model that
deals with stochastic data such as solar radiation, the sensi-
tivity analysis is important for many reasons such as testing
the robustness of the results in the presence of uncertainty.
Moreover, such an analysis can provide better understanding
of the relation between the model’s output(s) and input(s).
This understatingmay lead to a model enhancement by iden-
tifying themodel’s input(s) which case significant uncertainty
in the output. According to [22–25], the sensitivity analysis
can be defined as the study of how the uncertainty in the
output of amathematicalmodel or systemcan be apportioned
to different sources of uncertainty in its inputs. One of the
popular methods is automated differentiationmethod, where
the sensitivity parameters are found by simply taking the
derivatives of the output with respect to the input.

In this research, the hourly solar radiation can be
described as a function of daily solar radiation and sunrise or
sunset hour angle and hour as follows:

𝐺ℎ = 𝑓 (𝐺𝐷, 𝜔𝑠𝑠,𝑠𝑟, 𝜔) . (22)
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However, following the models presented in (1) and (9), the
presented model can be described as below:

𝑟ℎ =

𝐺ℎ

𝐺𝐷

= 𝑓 (𝜔𝑠𝑠,𝑠𝑟, 𝜔) . (23)

Assume that we are calculating the sensitivity of species 𝑟ℎ
with respect to every parameter in the model in (23). Thus,
it is required to calculate the time-dependent derivatives as
follows:

𝜕𝑟ℎ

𝜕𝜔𝑠𝑠,𝑠𝑟

,

𝜕𝑟ℎ

𝜕𝜔

. (24)

There are different methods to estimate the value of each
deferential part. One of these methods is Taylor method.This
method states that Taylor approximation of 𝑦 around a given
point (𝑥𝑜, 𝑦𝑜)—which stands for the first derivative—can be
given by the following:

𝑟ℎ1 = 𝑟ℎ𝑜 +

𝜕𝑟ℎ

𝜕𝜔𝑠𝑠,𝑠𝑟

(𝜔𝑠𝑠,𝑠𝑟1
= 𝜔𝑠𝑠,𝑠𝑟𝑜

) . (25)

Anyway, nowadays such a problem can be also solved by
many kinds of software such as MATLAB using functions
such as ParameterInputFactors and SensitivityAnalysis. How-
ever, in this research, we used simpler and popular method as
well which is the scatter plots method. This method is repre-
sented by scatter plots of the output against input(s) individu-
ally.Thismethod gives a direct visual indication of sensitivity.
Moreover, quantitative measures can also be provided by
measuring the correlation between the output and each
input.

3. Results and Discussion

In this research, the utilized solar radiation data were
measured using rugged solar radiation transmitter (model:
WE300, sensor size: 7.6 cm diameter. × 3.8 cm long). The
detector of this sensor is high-stability silicon photovoltaic
(blue enhanced). Meanwhile, the output range of this sensor
is 4 to 20mA and the measuring range is 0 to 1500W/m2
and the spectral response is in the range of 400 to 1100 nm.
The accuracy of this sensor is ±1% full scale with worming up
time up to 3 seconds. The operating voltage of this sensor is
in the range of 10 to 36𝑉DC. Using this sensor, solar radiation
data are measured and recorded every 5 minutes.Then, these
data have been converted to hourly averages with 43800 data
records. In this research, an hourly solar radiation data set
consisting of 43800 records (5 years) is used. 35040 records
(4 years) are used in training the proposed GRNN model.
Meanwhile, the 5th year data are used to test the developed
model.Themodel development and trainingwere done using
MATLAB line code which is provided in the Appendix of this
paper.

To test the proposed model, a control data set containing
8760 records of hourly solar radiation and hour angle is used.
The average daily solar radiation and the sunset hour angle are
calculated based on these records. The calculated daily solar
radiation, sunset hour angles, and hour angles are then used
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Figure 3: Correlation between generated andmeasured values using
the proposed model.
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Figure 4: Prediction results of the proposed GRNNmodel (Part A).

as inputs for the proposedGRNNmodel.Meanwhile, the out-
put of theGRNNmodel is compared to the actual hourly solar
radiation data. To ensure proper evaluation, the control data
set is not used in training the proposedGRNNmodel in order
to check the ability of the proposed model for predicting
future and foreign data. It is also worth mentioning that the
GRNN model has been tested repeatedly (up to 10 times) in
order to provide average performance of the proposedmodel.

Figure 3 shows the correlation between the predicted
and the measured data using the proposed GRNN model.
From the figure, it is clear that the correlation value is about
96%, which is considerably high. This high correlation value
implies that the proposed model makes accurate predictions.

In addition, Figure 4 shows the prediction results for a
whole year. From Figure 4, it can be noted that the proposed
GRNNmodel predicts the hourly solar radiation successfully.
However, to provide deeper analysis of the proposed GRNN
model, two zones, namely, A and B, are chosen from Figure 4
and illustratedmore clearly in Figure 5.The selection of these
zones is done based on the amount of cloud cover. These
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Figure 5: Prediction results of the proposed GRNNmodel (Part B).

zones represent cloudy days where the proposed model pre-
diction accuracy is expected to be low due to unstable solar
radiation levels. From Figure 5, the accuracy of the proposed
model for predicting the hourly solar radiation is acceptable
whereas the generated values of the hourly solar radiation
are close to the actual values even on totally overcast days.
However, there is a time shift in some cases. This time shift is
due to the difference between the calculated hour angle and
the read hour angle that the solar radiation is measured at.
This problem is usually solved by adding shifting constants to
themodels. It is assumed that each cycle in Figure 5 represents
a whole solar day, where the first cycle is day 1 and the last is
day 15. From Figure 5, it can be noticed that, on clear days
such as 1, 3, 5, 8, 10, 11, and 15, the prediction is accurate and
acceptable. On the other hand, for cloudy days such as 2, 6, 7,
12, 13, and 14, the prediction accuracy is lower than the
previous case but still acceptable asmost of the solar radiation
predictionmodels’ accuracies degraded on cloudy days [1–3].

In order to validate the proposedmodel, we did two types
of comparison; first, a comparison is between the proposed
model and some location dependent models. From the con-
ducted literature review, we found two location dependent
models which are presented in (16) and (18). The model
presented in (16) assumes that the hourly solar radiation can
be described by trigonometric functions. In the meanwhile,
the model presented in (18) assumes that the averages hourly
ratios of hourly solar radiation to daily solar radiation in aver-
age can be described by a polynomial function of the second
degree. In this research, we used the same data used to train
the proposed model in developing these models. Figure 6
shows the development of these models.

In general, both models show good fitting of the average
daily hourly 𝑟𝑑 ratios with 𝑅-square values of 0.9413 for the
model presented in (16) and 0.9721 for themodel presented in
(18). Despite these high𝑅-square values, thesemodels are not
expected to predict hourly solar radiation accurately for two
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Figure 7: Prediction results of location dependent models.

reasons; the assumption of describing the hourly solar radi-
ation by these mathematical functions is not accurate. Sec-
ondly, the developed models fit perfectly the average day but
theymay be unable to fit individual days. Figure 7 shows three
days prediction results of these location dependent models.

From Figure 7, it is very clear that the prediction of
these random days was inaccurate. Anyway, after ignoring
the extreme underestimations of these models in Figure 7, we
found that the average MAPE for the model presented in (16)
is about 60% while it is about 40% for the model presented in
(18).

However, for more fair comparison, the proposed model
is compared with more accurate empirical models. A com-
parison between the proposed model and Liu-Jordan and
Collares-Pereira models is conducted in this research. Fig-
ure 8 shows a sample of the comparison conducted for 8 solar
days. From Figure 8, it is clear that the three models can pre-
dict hourly solar radiation data accurately in clear sky days.
However, Liu-Jordanmodel generated underestimated values
sometimes. In addition, the generated curves are slightly
shifted in somedayswhich caused overestimated values in the
morning and underestimated value in the afternoon. On the
other hand, generated profiles using Collares-Pereira model
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Figure 8: Comparison between the proposed model and other
models.

are sometimes narrower that the actual one which caused
underestimations in the afternoon. As for the proposed
model, it can be seen that it is more accurate than the other
twomodels. However, the threemodels are not able to predict
the solar radiation accurately in the cloudy days as compared
to their ability in the clear sky days.

Based on the results of the whole testing year, the gener-
ated synthetic solar radiation data profiles by the threemodels
seem to be shifted from the actual solar radiation profile in
somedays.This is due to the difference between the calculated
hour angle and the hour angle at which the solar radiation is
measured.Therefore, the prediction accuracy of thesemodels
can be significantly improved by adding a shifting coefficient
to the original models depending on the climate zone. This
conclusion has been previously found by the authors of [4]
whereas such a practice (adding a shifting coefficient) has
been proposed to the original Liu-Jordan model [4]. The
authors of [4] discussed the validity of Liu-Jordan model in
predicating hourly solar radiation utilizing actual data for dif-
ferent sites with close latitude values. The authors concluded
that, for hourly diffuse solar radiation prediction, the model
presented by Erdinc and Uzunoglu in [3] performed accu-
rately as the ratio of hourly diffuse to daily diffuse radiation
is insensitive to the shade ring correction. On the other hand,
this model showed some inaccuracy when predicting hourly
global solar radiation because of the increase of beam radia-
tion with incidence angle caused by the atmospheric attenua-
tion.Therefore, the authors of [4] decided to combine the new
data they have used with corresponding points from [3] in
which each data base is weighted according to the number of
years of observation. This fitting process resulted in correla-
tion term added to the model presented by [3].The proposed
model by [4] was tested using data for countries with
different latitudes and found relatively accurate. However,
the authors suggested that latitude independence is a good
correlation practice for improving the prediction accuracy of
the model presented by Erdinc and Uzunoglu in [3].

Table 1 shows an evaluation of the three models using
MAPE and RMSE. It is clear that the proposed model has the
best accuracy prediction whereas it exceeds the other models

Table 1: Evaluation of the proposed GRNNmodel.

Model MAPE RMSE (W/m2) RMSE (%) 𝑅

2

Liu-Jordan 27.4% 64.7 22.1 80.3
Collares-Pereira 22.5% 59.1 20.7 85.7
GRNN (training) 11.4% 45.0 14.8 98.3
GRNN (testing) 11.8% 46.1 15.1 96.0
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Figure 9: 𝜔 versus 𝑟ℎ for Liu-Jordan model.

by the MAPE and RMSE. This implies that the proposed
model is more powerful in predicting hourly solar radiation
according to the MAPE value. Moreover, it has the ability to
predict future data based on the RMSE value.

As for the sensitivity analysis, in this research, the
proposed model as well as Liu-Jordan and Collares-Pereira
models is tested in terms of sensitivity by plotting scatter plots
for each model with respect to hour angle factor (𝜔 versus
𝑟ℎ). Then, the correlation value for each data set is provided.
Figures 9–11 show the scatter plots of the three models as
described in (23).

FromFigures 9–11, it can be seen that the proposedmodel
is more efficient in considering the uncertainty of the solar
radiation for this case. In Figure 9, the values of 𝑟ℎ factor are
more concentrated around specific points with some deviated
extreme points. These extreme points are the unexpected
values of solar radiation due to some reasons such as clouds
and dust particles. Moreover, there is no symmetric nature
of these values which means that the uncertainty problem of
such data is relatively overcome by the proposed model. On
the other hand, both Liu-Jordan and Collares-Pereira models
resulted in symmetric behavior of the data regardless of any
external conditions which caused prediction inaccuracy in
some cases. Table 2 shows the 𝑅-square values of each model.

From Table 2, it is also clear that the proposed model
exceeds the other empirical models. In general, the advantage
of the proposed model as compared to the empirical models
is that it is amachine with the ability of learning and handling
huge data sets with stochastic nature. As a fact, heuristic
techniques such as GRNN are more efficient in handling
stochastic data subject to a prior concrete training. However,
the empirical models exceed the proposed model in case of
having short historical data that is not enough to train the
proposed model.
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Table 2: Sensitivity analysis of the proposed GRNNmodel.

Scatter plot 𝑅-square values Fitting function
Liu-Jordan Collares-Pereira GRNNmodel

𝜔 versus 𝐺ℎ/𝐺𝐷 0.78 0.75 0.90 Polynomial/quadratic
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Figure 10: 𝜔 versus 𝑟ℎ for Collares-Pereira model.
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Figure 11: 𝜔 versus 𝑟ℎ for the proposed GRNNmodel.

Finally, utilizing such a large data set (5 years, 43800
records) is not a must to develop such a model. It is all about
utilizing available data to develop accurate model with excel-
lent ability to predict future data. As amatter of fact, there are
two important issues to be considered when deciding the size
of a training data set for a solar radiation prediction model.
These issues are the uncertainty nature of solar radiation and
the day number nature of the year. In other words, it is possi-
ble to predict hourly solar radiation in January (winter) using
a model that is trained based on data for June (summer).
However, it will not be accurate as compared to a model
that is trained based on the whole year time with small step
records data. In order to address this issue, we have trained
the proposedmodel using data sets with three relatively small
sizes 84, 348, and 684 records. Figures 12(a), 12(b), 13(a),
13(b), 14(a), and 14(b) show the result of this practice. The
first part of Figures 10, 11, and 12 shows the prediction per-
formance of the model by comparing its output to the actual
values. It is worth mentioning that in these figures the days
where there is no red line during them mean that the model
generated values of zero only (the model failed to predict
the solar radiation profile). On the other hand, the second
part of Figures 12, 13, and 14 shows model accuracy using the
correlation factor 𝑅2.

Table 3: Impact of training data set size on model’s accuracy.

Training data set size (records) Av. overall MAPE 𝑅

2

84 (7 solar days) 64.3% 0.1354
348 (29 solar days) 36.8% 0.2263
684 (57 solar days) 24.1% 0.6583
35,040 (1460 solar days) 11.8% 0.9595

From Figures 12(a), 12(b), 13(a), 13(b), 14(a), and 14(b), it
is clear that the proposedmodel did not performwell when it
is trained using only 84 records (7 solar days). However, the
modelwas able to predict a number of days accurately accord-
ing to Figure 12(a).These results are seconded by Figure 12(b)
where the correlation value between the generated and the
measured values is very low due to the high rate of model
shortages (the days where the model generates values of zero
only). The mean absolute percentage error of the model that
developed based on 84 records is very highwhere it is 100% in
70% of the generated days. Meanwhile, the prediction accu-
racy of the other days where the model was able to generate
synthetic solar radiation data was fine with MAPE in the
range of 10–13%. In general, the average wholeMAPE for this
model is 64.3% with 𝑅

2 value of 0.1354. Here, the empirical
models show superior performance as these models do not
need any prior training.

On the other hand, according to Figures 13(a) and 13(b),
the performance of the proposed model was significantly
enhanced when it is trained using 348 records (29 solar
days). Meanwhile, Figures 14(a) and 14(b) show that the
performance of the model was further improved when 684
records (57 solar days) were used in the training. The model
which has been trained based on 348 records was able to work
probably during 72%of the testing days, while the 684 records
based model was able to work probably during 86% of the
testing days.The average whole MAPE values of both models
are 36.8% and 24%, respectively. These results can be also
concluded from Figures 13(b) and 14(b) where 𝑅2 values are
significantly increased.𝑅2 values for 348 records basedmodel
and 684 records based model are 0.2263 and 0.6583, respec-
tively. Finally, by comparing all of these figures to Figure 3,
it can be realized that the correlation value is much better
than all the previous models and consequently the model is
supposed to be more accurate in predicting solar radiation
values. Table 3 summaries the aforementioned results.

As a conclusion, as far as the model is trained using more
data, the accuracy will be better. However, such a model can
be developed using a relatively small data set (about 70 solar
days) which is usually not difficult to obtain. As mentioned
before, the proposedmodel has the advantage of avoiding the
complex calculation of the empirical and statistical model’s
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Figure 12: (a) Proposed model performance considering small sizes of training data set. (b) Correlation between generated and measured
values using training data set size of 7 solar days.
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Figure 13: (a) Proposed model performance considering small sizes of training data set. (b) Correlation between generated and measured
values using training data set size of 29 solar days.

Actual data
Liu and Jordan model

Collares-Pereira model
Proposed model

50 100 150 200 2500
Time (sample number)

0
100
200
300
400
500
600

So
la

r r
ad

ia
tio

n 
(W

/m
2
) 700

800
Training set size: 684 records

(a)

Training data set size: 684 records (57 solar days)
R
2
= 0.006583

100 200 300 400 500 600 7000

Predicted values

0

200

400

600

800

1000

M
ea

su
re

d 
va

lu
es

(b)

Figure 14: (a) Proposed model performance considering small sizes of training data set. (b) Correlation between generated and measured
values using training data set size of 57 solar days.
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% Start
clc
clear
close all
% %———————Input Data——————
fileName='Site.xlsx';
sheetName='hourly Solar radiation data';
L=; % add a latitude value
LOD=; % add a longitude value
% T means testing data
SRi=xlsread(fileName, sheetName, 'C3:C4358'); % hourly solar radiation
Wi=xlsread(fileName, sheetName, 'D3:D4358'); % hour angle
Wsi=xlsread(fileName, sheetName, 'E3:E4358'); % sun set angle
GD=xlsread(fileName, sheetName, 'G3:G4358'); % daily solar radiation
DN=xlsread(fileName, sheetName, 'F3:F4358'); % day number (day & month)
h=xlsread(fileName, sheetName, 'I3:I4358'); % hour
SRi T=xlsread(fileName, sheetName, 'C4359:C8546');
Wi T=xlsread(fileName, sheetName, 'D4359:D8546');
Wsi T=xlsread(fileName, sheetName, 'E4359:E8546');
GD T=xlsread(fileName, sheetName, 'G4359:G8546');
DN T=xlsread(fileName, sheetName, 'F4359:F8546');
h T=xlsread(fileName, sheetName, 'I4359:I8546');
SR=SRi∗1000;
SR T=SRi T∗1000;
W=(Wi T∗(pi/180));
Ws=(abs(Wsi T∗(pi/180)));
%=============Proposed GRNNModel=================
inputs=[L LODWi, Wsi, GD DN h];
I=inputs';
targets=SR;
T=targets';
net=newgrnn(I,T);
test=[L LODWi T, Wsi T, GD T DN T h T];
Test=test';
x predicted=sim(net,Test);
X P=x predicted';
%============Liu and Jordan Model==================
R LiuJordan=((((pi)/24)∗(cos(W)-cos(Ws)))./(sin(Ws)-((pi∗Ws)/180).∗cos(Ws)));
SR LiuJordan=R LiuJordan.∗GD T
%============Collares-Pereira and Rabel Model======
a=0.409+(0.5016∗sin(Ws-60));
b=0.6609+(0.4767∗sin(Ws-60));
R Collares=((a + (b.∗cos(W))).∗((((pi/24))∗(cos(W)-cos(Ws))))./(sin(Ws)-((pi∗Ws)/180).∗cos(Ws)));
SR Collares=R Collares.∗GD T;
%=================Plot data===========================
plot (SR T)
xlim([0 100])
hold on
plot (SR LiuJordan, 'k')
xlim([0 100])
hold on
plot (SR Collares, 'g')
xlim([0 35])
hold on
plot (X P, 'red')
xlim([0 100])
%————Models evaluation————————

Pseudocode 1: Continued.
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n=length(X P);
E3 Hour=SR T-X P;
GRNN MAPE=abs(E3 Hour./SR T);
GRNN meanMAPE1=sum(GRNN MAPE)/n;
GRNN meanMAPE=GRNN meanMAPE1∗100;
GRNN RMSE=sqrt(sum((X P-SR T).∧2/n))
GRNN MBE=sum(X P-SR T)/n
SUM=(sum(X P)./n);
liner RMSE Percentage=(GRNN RMSE/SUM)∗100
liner MBE Percentage=(GRNN MBE/SUM)∗100
% End

Pseudocode 1

parameters.Moreover, in case of training the proposedmodel
well, the model will be able to handle the uncertainty issue in
solar radiation much better than the empirical and statistical
models.

4. Conclusion

In this research, a generalized regression artificial neural
network based model was presented for predicting hourly
solar radiation using daily solar radiation. This model has
three inputs, namely, mean daily solar radiation, hour angle,
and sunset hour angle. The output layer has one node, which
is the generated mean hourly solar radiation. Five years of
data for hourly solar radiation were used to train and develop
the model running under MATLAB. The results showed
that the proposed model has better prediction accuracy
as compared to existing empirical and statistical models
especially in dealing with special location dependent cases.
The average prediction accuracy of the proposed model is
about 11% with 𝑅-square value of 0.96. Furthermore, the
proposed model showed superiority in terms of prediction
sensitivity as compared to some empirical models. However,
the results showed that the proposedmodel needed a concrete
prior training in order to show prediction superiority. It is
also concluded that such a model can be developed with
relatively accepted prediction accuracy (24%) using about
two months’ data with an hourly step. Finally, the proposed
model can be used in predicting the performance of solar
energy systems such as photovoltaic system and solar water
heater. Moreover, it can be used to generate long term data
in order to be used in optimal sizing and planning of solar
energy systems.

Appendix

See Pseudocode 1.

Nomenclature

ANNs: Artificial neural networks
AST: Apparent or true solar time
𝛿: Angle of declination
𝑁: Day number
GD: Distributed generation

EoT: Equation of time
𝐺𝐷: Mean daily solar radiation
𝐺ℎ: Mean hourly solar radiation
GRNN: Generalized artificial neural network
𝜙: The latitude
LLP: Loss of load probability
LOD: Longitude
LSMT: Local standard meridian time
LST: Local standard time
MAPE: Mean absolute percentage error
MLP: Multilayer Perceptron Network
PNNs: Probabilistic Neural Networks
PV: Photovoltaic
RBF: Radial Basis Function Networks
RMSE: Root mean square error
𝑟𝑡: The ratio of hourly to daily global solar radiation
𝑡𝑠𝑟: Sunrise time
𝑡𝑠𝑠: Sunset time
𝜔: Hour angle
𝜔𝑠𝑠,𝑠𝑟: Sunset/sunrise hour angle.
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