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The aim of this study is to propose a new pairwise multiple comparison adjustment procedure based on Genz’s numerical
computation of probabilities from a multivariate normal distribution. This method is applied to the results of two-sample log-
rank and weighted log-rank statistics where the survival data contained right-censored observations. We conducted Monte Carlo
simulation studies not only to evaluate the familywise error rate and power of the proposed procedure but also to compare the
procedure with conventional methods. The proposed method is also applied to the data set consisting of 815 patients on a liver
transplant waiting list from 1990 to 1999. It was found that the proposed method can control the type I error rate, and it yielded
similar power as Tukey’s and high power with respect to the other adjustment procedures. In addition to having a straightforward
formula, it is easy to implement.

1. Introduction

Survival analysis is based on making inferences from the
time-to-event data. It provides many statistical procedures
for studying the data, including the time from a correctly
identified origin until the occurrence of a certain event [1].
One of themain interests in survival analysis is evaluating the
equality of survival functions for different groups. Many tests
such as log-rank and weighed log-rank have been proposed
[2–8]. Although these tests made important contributions to
survival analysis, they can only provide overall or two-sample
comparison results. Researchers will fail if they use these tests
to compare one with another in a multigroup study design
because the probability of making at least one type I error will
be increased above the critical level. To prevent this mistake,
pairwise multiple comparison procedures are needed. In case
of the inequality of more than two groups, it is necessary to
correctly decide which groups are different from the others.
The appropriate way to control the type I error is to consider
the familywise error (FWE) rate, which is the probability of
making at least one type I error when making all pairwise
comparisons [9].

Adjustment methods such as Bonferroni, Holm, and
Sidakmethods are commonly used in the literature. However,

in survival analysis this topic has only recently been studied.
Adjustment methods are applied to the results of two-sample
log-rank and weighted log-rank tests. Bonferroni is the most
preferred method among the others. In a two-sided test,
Bonferroni assumes the significance level as (𝛼/2) × 𝑚,
where 𝑚 is the number of pairwise comparisons in the
study, but it fails when controlling the familywise error rate.
In spite of its simplicity, it has been determined to be a
conservative method in survival analysis [9, 10]. Logan et
al. proposed two different adjustment methods that consider
the correlation among the pairwise tests [9]. One of the
methods was derived from multivariate normal distribution,
while the other was obtained from a simulated martingales
approach. Koziol andReid used the Sidak adjustmentmethod
to calculate the pairwise comparisons results of weighted
log-rank tests. Although it generates more consistent results
than Bonferroni’s, it was also found to be conservative [11].
Not only were pairwise multiple comparisons proposed,
but comparisons against a single control group were also
proposed for survival functions with right-censored data in
the statistical literature. Chakraborti and Desu developed
linear rank tests, and Chen proposed a generalized Steel’s test
and an alternative method to the generalization of Steel’s test
[12–15].
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Theaimof this study is to propose a newpairwisemultiple
comparison adjustment procedure based on Genz’s numeri-
cal computation of probabilities from a multivariate normal
distribution [16, 17]. This method is applied to the results of
two-sample log-rank and weighted log-rank statistics where
the survival data contained right-censored observations. In
Section 2, some notations are given, and the construction
of the simulation study is detailed. In the simulation studies
SAS PROC LIFETEST and R package with mvtnorm library
were used. Moreover, all adjustment methods are applied to
a real life-time data set and they are compared with each
other. The results and discussion about other studies are
evaluated in Section 3. Finally, conclusions are mentioned in
Section 4.

2. Materials and Methods

2.1. Notation and Background. Let 𝑆𝑘(𝑡) be the survival
function of the 𝑘th group for 𝑘 = 1, . . . , 𝐾, where 𝐾 is the
number of groups.The null and alternative hypotheses for the
survival functions are

𝐻0: 𝑆1 (𝑡) = ⋅ ⋅ ⋅ = 𝑆𝐾 (𝑡)
𝐻1: at least one of the 𝑆𝑘 (𝑡) ’s is different for some 𝑡
≤ 𝜏,

(1)

where 𝜏 is the largest observed time.

Let (𝑇𝑖, 𝛿𝑖, 𝑋𝑖, 𝑤𝑖), for 𝑖 = 1, . . . , 𝑛, indicates that an
independent sample for right-censored survival data where𝑇𝑖 is right-censored time, 𝛿𝑖 is the indicator variable for
censoring (𝛿𝑖 = 0 if 𝑇𝑖 is censored; 𝛿𝑖 = 1 if 𝑇𝑖 is an event
time),𝑋𝑖 is the group indicator of 1, . . . , 𝐾, and𝑤𝑖 is a weight
function. Let 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝐷 𝑗 = 1, . . . , 𝐷 be distinct
event times in the sample. At time 𝑡𝑗, for the 𝑘th group, let𝑌𝑗𝑘 = ∑𝑖:𝑇≥𝑡𝑗 𝐼(𝑋𝑖 = 𝑘) and 𝑑𝑗𝑘 = ∑𝑖:𝑇𝑖=𝑡𝑗 𝛿𝑖𝐼(𝑋𝑖 = 𝑘)
denote the number of individuals at risk and the number of
events, respectively. Let 𝑌𝑗 = ∑𝐾𝑘=1 𝑌𝑗𝑘 and 𝑑𝑗 = ∑𝐾𝑘=1 𝑑𝑗𝑘
denote the number individuals at risk and the number of
events, respectively. The weighted number of individuals at
risk in the 𝑘th group is 𝑌𝑤𝑗𝑘 = ∑𝑖:𝑇𝑖≥𝑡𝑗 𝑤𝑖𝐼(𝑋𝑖 = 𝑘), while
the weighted number of events in the 𝑘th group is 𝑑𝑤𝑗𝑘 =∑𝑖:𝑇𝑖=𝑡𝑗 𝑤𝑖𝛿𝑖𝐼(𝑋𝑖 = 𝑘). Let 𝑌𝑤𝑗 = ∑𝐾𝑘=1 𝑌𝑤𝑗𝑘 and 𝑑𝑤𝑗 = ∑𝐾𝑘=1 𝑑𝑤𝑗𝑘
indicate the weighted number of individuals at risk and the
weighted number of events, respectively.

For testing the null hypothesis, the test statistics have the
form of a 𝐾-vector R = (𝑟1, 𝑟2, . . . , 𝑟𝑘), where

𝑟𝑘 = 𝐷∑
𝑗=1

(𝑑𝑤𝑗𝑘 − 𝑌𝑤𝑗𝑘 𝑑𝑤𝑗𝑌𝑤𝑗 ) . (2)

Variance of 𝑟𝑘 and covariance for 𝑟𝑘 and 𝑟ℎ are as follows,
respectively:

V𝑘𝑘 = 𝐷∑
𝑗=1

(𝑑𝑗 (𝑌𝑗 − 𝑑𝑗)𝑌𝑗 (𝑌𝑗 − 1)
𝑌𝑗∑
𝑖=1

[[(
𝑌𝑤𝑗𝑘𝑌𝑤𝑗 )
2 𝑤2𝑖 𝐼 (𝑋𝑖 ̸= 𝑘) + (𝑌𝑤𝑗 − 𝑌𝑤𝑗𝑘𝑌𝑤𝑗 )2 𝑤𝑖2𝐼 (𝑋𝑖 = 𝑘)]]) (3)

V𝑘ℎ = 𝐷∑
𝑗=1

(𝑑𝑗 (𝑌𝑗 − 𝑑𝑗)𝑌𝑗 (𝑌𝑗 − 1)
𝑌𝑗∑
𝑖=1

[[
𝑌𝑤𝑗𝑘𝑌𝑤𝑗ℎ(𝑌𝑤𝑗 )2𝑤𝑖

2𝐼 (𝑋𝑖 ̸= 𝑘, ℎ) − (𝑌𝑤𝑗 − 𝑌𝑤𝑗𝑘) 𝑌𝑤𝑗ℎ(𝑌𝑤𝑗 )2 𝑤𝑖2𝐼 (𝑋𝑖 = 𝑘) − (𝑌𝑤𝑗 − 𝑌𝑤𝑗ℎ) 𝑌𝑤𝑗𝑘(𝑌𝑤𝑗 )2 𝑤𝑖2𝐼 (𝑋𝑖 = ℎ)]]) . (4)

Because the sum of 𝑟𝑘 is equal to 0, they are linearly
dependent. Accordingly, the general test statistic is con-
structed by selecting any 𝐾 − 1 of 𝑟𝑘’s. The test statistic,(𝑟1, 𝑟2, . . . , 𝑟𝐾−1)V−1(𝐾−1)×(𝐾−1)(𝑟1, 𝑟2, . . . , 𝑟𝐾−1), follows a Chi-
square distribution with 𝐾 − 1 degrees of freedom, where V
is the variance-covariance matrix.

Let 𝑚 be the number of all pairwise comparisons
where 𝑚 = 𝐾(𝐾 − 1)/2. The two-sided test statistic, 𝑍𝑘ℎ,
compares the groups 𝑘 and ℎ and follows a standard normal
distribution.

𝑍𝑘ℎ = 𝑟𝑘 − 𝑟ℎ√V𝑘𝑘 + Vℎℎ − 2V𝑘ℎ . (5)

The unadjusted 𝑝 value is 𝑝𝑘ℎ = 𝑃(𝜒21 > 𝑍2𝑘ℎ). The multiple
comparison procedures that are used to adjust the 𝑝 values in
this study are shown below:

Bonferroni: 𝑝𝑘ℎ = min[1, 𝑚 × 𝑃(𝜒21 > 𝑍2𝑘ℎ)].
Scheffé: 𝑝𝑘ℎ = 𝑃(𝜒2𝐾−1 > 𝑍2𝑘ℎ).

Sidak: 𝑝𝑘ℎ = 1 − [1 − 𝑃(𝜒21 > 𝑍2𝑘ℎ)]𝑚.
Studentized Maximum Modulus: 𝑝𝑘ℎ = 1 − [2 ×Φ(𝑍𝑘ℎ)]𝑚.
Tukey: 𝑝𝑘ℎ = 1 − ∫∞

−∞
𝐾𝜙(𝑢)[Φ(𝑢) − Φ(𝑢 −√2𝑍𝑘ℎ)]𝐾−1𝑑𝑢,

where 𝜙 andΦ are standard normal and cumulative standard
normal functions, respectively.

2.2. Proposed Adjustment Procedure. Z = [𝑍12, . . . , 𝑍1𝐾, 𝑍23,. . . , 𝑍2𝐾, . . . 𝑍𝐾−1,𝐾]𝑚 has a multivariate normal distribution
with a mean of zero and a variance-covariance matrix Σ.
Under the null hypothesis, the elements of Σ follow a rule
which is Cov(𝑍𝑘ℎ, 𝑍𝑘ℎ) = 0.5, Cov(𝑍𝑘ℎ, 𝑍𝑘ℎ) = 0, and
Cov(𝑍𝑘ℎ, 𝑍ℎ𝑘) = −0.5, where 1 ≤ 𝑘 ̸= ℎ ̸= 𝑘 ̸= ℎ ≤ 𝐾
[9, 14, 15].
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The function of (a, b, Σ) is
Φ (Z | a, b, Σ)
= 1√|Σ| (2𝜋)𝑚 ∫

𝑏1

𝑎1

∫𝑏2
𝑎2

⋅ ⋅ ⋅ ∫𝑏𝑚
𝑎𝑚

𝑒−(1/2)ZΣ−1Z𝑑𝑧,
−∞ ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ ∞, 𝑖 = 1, . . . , 𝑚.

(6)

For the integration shown above, we used “mvtnorm” library,
released February 2, 2016, for numerical computation in R
program. There are three algorithms available for evaluating
normal probabilities: The default is the randomized Quasi-
Monte-Carlo procedure by Genz (1992, 1993). We used this
approach because it is easy to use and calculate with R
program.

The proposed multiple adjustment procedures for the
pairwise comparison of the 𝑘th and ℎth groups are obtained
usingΦ and shown below:

𝑝𝑘ℎ = min [1, 2 × 𝑃 (1 −Φ (Z | a, b, Σ))] , (7)

where a = [−∞, . . . , −∞]𝑚 and b = [𝑍𝑘ℎ, . . . , 𝑍𝑘ℎ]𝑚.
Additionally, the critical value for the pairwise compari-

son can be evaluated with

𝑍𝑐 = Φ−1 (1 − 𝛼2 ) . (8)

2.3. Simulation Study. We performed Monte Carlo simu-
lation studies to examine the proposed and conventional
adjustment procedures. The FWE rate and power of the
adjustment procedures were obtained through the simulation
results. In this study, the number of groups was determined
as 𝐾 = 4; 𝑋𝑖 = 1, . . . , 4. The sample sizes were considered
equal for each group as 𝑛 = 50, 150, and 250 to estimate
the FWE rate, while it was just 250 in the power study.
The right-censored survival times 𝑇𝑖 were derived from the
exponential 𝑇𝑖 ∼ exp(𝜆𝑋𝑖) and lognormal distribution 𝑇𝑖 ∼
lognormal(𝜇𝑋𝑖 , 𝜎2). The censoring rate was considered to be
30%. Therefore, the censoring variable was generated from a
Bernoulli distribution 𝛿𝑖 ∼ Bernoulli(𝑝 = 0.70). Note that
the censoring rate was fixed for each group in the FWE rate
and power study. To obtain the adjusted 𝑝 values, Bonferroni,
Scheffé, Sidak, SMM, Tukey, and the proposed adjustment
procedure were applied to the pairwise comparison results of
log-rank and weighted log-rank tests. For each scenario 1000
data sets were simulated independently.

To compare the FWE rates of the adjustment proce-
dures, the survival times for each group were generated
from the standard exponential distribution with 𝜆𝑘 = 1
and the lognormal distribution with a mean of 𝜇𝑘 = 0
and scale parameter 𝜎𝑘 = 0.5. The estimated FWE rates
of the adjustment procedures were evaluated with respect
to the critical value 𝛼 = 0.05. In the power study,
we used exponential distributions with various parame-
ters 𝜆𝑘 and lognormal distributions with 𝜎𝑘 = 0.5 but
different values of 𝜇𝑘. For power calculation, we calcu-
lated the probability of making a correct decision only
for unequal pairs. Note that the exponential distribution

provides a proportional hazards model while the lognormal
distribution corresponds to location shifts in log survival
times. The lognormal distributions with various means were
used because they have different hazards at early times
[15].

2.4. ApplicationData. Thedata set was obtained from the free
data sets used in the R package, “survival” [18, 19]. It consisted
of 815 patients on a liver transplant waiting list from 1990 to
1999 with six variables: age at the addition to the waiting list,
sex, blood type, year in which a patient entered the waiting
list, and time from the entry to end point. The final disposi-
tion of the patients was categorized as received a transplant,
diedwhile waiting, withdrew from the list, or censored. Blood
type is a crucial factor which affects the waiting time for
transplantation. Although the liver donation from subjects
with blood typeOcanbe used by patientswith all blood types,
a patient with blood type O can only receive donation from
the subjects with blood type O. Thus, patients with O blood
type on the waiting list have a disadvantage. These data is of
historical interest and provides a useful example of competing
risks, but it has little relevance to current practice. We used
these data as an example to demonstrate the comparison of
the proposed and conventional adjustment techniques on a
real data set. We considered that the event is receiving a
transplant, while the other categories of final disposition are
censored.

3. Results and Discussion

Table 1 shows the simulation results for the estimated FWE
rates of the proposed and conventional adjustment proce-
dures for exponential survival distribution with different
sample sizes. Under the null hypothesis, FWE rates are
expected to be 0.05. As the sample size increases, estimates get
closer to the targeted value in all adjustment procedures. It is
obvious that the Scheffémethod is themost inefficient among
the others. The proposed adjustment procedure and Tukey’s
present similar results. It can be seen that both adjustment
procedures can control the type I error even for small
samples. Their performance is followed by Sidak, SMM, and
Bonferroni procedures. In Table 2, the estimates of the FWE
rates for the survival times from the lognormal distribution
with the parameters 𝜇𝑘 = 0 and 𝜎𝑘 = 0.5 are given. Unlike the
previous simulation results, not all procedures give estimates
that are close to the targeted value. The proposed adjustment
procedure and Tukey’s provide the most efficient results. The
decrease in the performance of the adjustment procedures
could depend on the type of distributions. Because an expo-
nential distribution provides amore appropriate proportional
hazard model than a lognormal distribution, this affects
the performance of the log-rank and the weighted log-rank
tests. Therefore, the adjustment procedures tend to cause
errors.

Next, the simulation results are calculated for the power
of the proposed and conventional adjustment procedures
for the exponential survival distribution. Under a variety
of hypothesis configurations denoted by 𝜆𝑘, the estimated
power results are given in Table 3. As the values of 𝜆𝑘 become
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Table 1: FWE rates of the proposed and conventional adjustment procedures for 𝐾 = 4 and 𝛼 = 0.05 and exponential survival distribution
with 𝜆𝑘 = 1.
Sample size Tests Proposed and conventional adjustment techniques

Unadjusted Bonferroni Scheffé Sidak SMM Tukey Proposed

50

Fleming 0.194 0.039 0.031 0.040 0.040 0.053 0.053
Log-rank 0.187 0.040 0.024 0.040 0.040 0.046 0.046
ModPeto 0.196 0.040 0.031 0.043 0.043 0.054 0.054
Peto 0.194 0.039 0.031 0.042 0.042 0.054 0.054

Tarone 0.193 0.041 0.027 0.041 0.041 0.053 0.053
Wilcoxon 0.204 0.043 0.029 0.044 0.044 0.052 0.052

150

Fleming 0.206 0.034 0.022 0.035 0.035 0.039 0.039
Log-rank 0.185 0.036 0.019 0.037 0.037 0.044 0.044
ModPeto 0.204 0.033 0.023 0.034 0.034 0.038 0.038
Peto 0.206 0.034 0.022 0.034 0.034 0.038 0.038

Tarone 0.198 0.035 0.020 0.035 0.035 0.045 0.045
Wilcoxon 0.211 0.038 0.023 0.038 0.038 0.045 0.045

250

Fleming 0.214 0.045 0.032 0.046 0.046 0.057 0.057
Log-rank 0.209 0.043 0.030 0.044 0.044 0.049 0.049
ModPeto 0.214 0.045 0.032 0.046 0.046 0.057 0.057
Peto 0.214 0.045 0.032 0.046 0.046 0.057 0.057

Tarone 0.210 0.047 0.033 0.047 0.047 0.054 0.054
Wilcoxon 0.209 0.044 0.029 0.045 0.045 0.056 0.056

Table 2: FWE rates of the proposed and conventional adjustment procedures for 𝐾 = 4 and 𝛼 = 0.05 and log-normal survival distribution
with 𝜇𝑘 = 0 and 𝜎𝑘 = 0.5.
Sample size Tests Proposed and conventional adjustment techniques

Unadjusted Bonferroni Scheffé Sidak SMM Tukey Proposed

50

Fleming 0.188 0.035 0.023 0.035 0.035 0.041 0.041
Log-rank 0.199 0.038 0.021 0.038 0.038 0.043 0.043
ModPeto 0.187 0.036 0.023 0.036 0.036 0.041 0.041
Peto 0.189 0.035 0.023 0.036 0.036 0.041 0.041

Tarone 0.182 0.032 0.022 0.033 0.033 0.041 0.041
Wilcoxon 0.182 0.038 0.019 0.038 0.038 0.047 0.047

150

Fleming 0.202 0.046 0.025 0.046 0.046 0.051 0.051
Log-rank 0.220 0.043 0.030 0.043 0.043 0.050 0.050
ModPeto 0.200 0.045 0.025 0.046 0.046 0.051 0.051
Peto 0.201 0.045 0.025 0.046 0.046 0.051 0.051

Tarone 0.210 0.041 0.029 0.043 0.043 0.051 0.051
Wilcoxon 0.196 0.044 0.023 0.044 0.044 0.051 0.051

250

Fleming 0.196 0.040 0.024 0.041 0.041 0.049 0.049
Log-rank 0.201 0.037 0.023 0.037 0.037 0.044 0.044
ModPeto 0.197 0.040 0.024 0.040 0.040 0.049 0.049
Peto 0.196 0.040 0.024 0.041 0.041 0.049 0.049

Tarone 0.195 0.045 0.023 0.046 0.046 0.049 0.049
Wilcoxon 0.202 0.032 0.021 0.034 0.034 0.042 0.042

different from each other, the power of all of the adjustment
procedures decreases rapidly. The proposed adjustment pro-
cedure and Tukey’s provide similar results with the highest
power. We also conducted additional simulations where the
survival times were derived from a lognormal distribution.
The estimates of power under alternative configurations of

𝜇𝑘 are given in Table 4. Inefficient power results are only
seen when all of the 𝜇𝑘 values are different. Moreover, the
performance of all of the adjustment procedures gives very
similar results. In all the simulation results, it can be seen
that there is no notable difference between the log-rank and
weighted log-rank tests.
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Table 3: Power of the proposed and conventional adjustment procedures for 𝐾 = 4 and 𝛼 = 0.05,and exponential survival distribution with
different 𝜆𝑘.
Parameters Tests Proposed and conventional adjustment techniques(𝜆1, 𝜆2, 𝜆3, 𝜆4) Unadjusted Bonferroni Scheffé Sidak SMM Tukey Proposed

(2.25, 1.50, 1.50, 1.50)

Fleming 0.765 0.594 0.523 0.597 0.597 0.618 0.618
Log-rank 0.858 0.785 0.726 0.784 0.784 0.802 0.802
ModPeto 0.763 0.593 0.521 0.593 0.593 0.618 0.618
Peto 0.764 0.593 0.522 0.597 0.597 0.618 0.618

Tarone 0.789 0.654 0.595 0.657 0.657 0.676 0.676
Wilcoxon 0.725 0.506 0.428 0.507 0.507 0.535 0.535

(2.25, 2.25, 1.50, 1.50)

Fleming 0.757 0.514 0.437 0.516 0.516 0.541 0.541
Log-rank 0.823 0.627 0.555 0.629 0.629 0.665 0.665
ModPeto 0.756 0.512 0.436 0.516 0.516 0.539 0.539
Peto 0.757 0.513 0.436 0.516 0.516 0.541 0.541

Tarone 0.789 0.558 0.490 0.560 0.560 0.588 0.588
Wilcoxon 0.713 0.442 0.358 0.447 0.447 0.468 0.468

(2.25, 1.75, 1.75, 1.25)

Fleming 0.243 0.032 0.017 0.033 0.033 0.045 0.045
Log-rank 0.368 0.063 0.034 0.064 0.064 0.080 0.080
ModPeto 0.243 0.032 0.017 0.033 0.033 0.044 0.044
Peto 0.243 0.032 0.017 0.033 0.033 0.044 0.044

Tarone 0.290 0.046 0.024 0.047 0.047 0.055 0.055
Wilcoxon 0.186 0.026 0.009 0.026 0.026 0.031 0.031

(2.50, 2.00, 1.50, 1.00)

Fleming 0.168 0.010 0.002 0.010 0.010 0.014 0.014
Log-rank 0.269 0.023 0.006 0.024 0.024 0.035 0.035
ModPeto 0.167 0.009 0.002 0.010 0.010 0.013 0.013
Peto 0.167 0.010 0.002 0.010 0.010 0.014 0.014

Tarone 0.204 0.012 0.006 0.013 0.013 0.018 0.018
Wilcoxon 0.121 0.005 0.000 0.005 0.005 0.005 0.005
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Figure 1: Kaplan-Meier estimates of not receiving a transplant for each blood type group.

Descriptive statistics of the application data set are given
in Table 5 and the survival functions of the groups are shown
in Figure 1. The overall comparison of blood type groups is
conducted with log-rank test. The result is found to be highly
significant (𝜒2 = 45.5, df = 3, and 𝑝 < 0.001). Thus, pairwise
comparisons followed by multiple adjustment procedures
were conducted, and the results are given in Table 6. All
of the adjustment procedures had the same conclusions and
present results that are similar to those thatwe observed in the

simulation studies. The comparison results show that, with
the exception of the pair of B and AB, all of the blood types
are highly different from each other. The 𝑝 values obtained
for each comparative test for the application data showed
significant differences (𝑝 < 0.001) between the survival
times of the blood groups except for the comparison of
AB and B groups (𝑝 > 0.05). The results can be seen in
Kaplan-Meier curves represented in Figure 1. The survival
curves show a proportional structure until the middle of the
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Table 4: Power of the proposed and conventional adjustment procedures for 𝐾 = 4 and 𝛼 = 0.05 and log-normal survival distribution with
different 𝜇𝑘 and 𝜎𝑘 = 0.5.
Parameters Tests Proposed and conventional adjustment techniques(𝜇1, 𝜇2, 𝜇3, 𝜇4) Unadjusted Bonferroni Scheffé Sidak SMM Tukey Proposed

(0.5, 0, 0, 0)

Fleming 0.871 0.978 0.985 0.978 0.978 0.976 0.976
Log-rank 0.901 0.995 0.996 0.995 0.995 0.991 0.991
ModPeto 0.871 0.978 0.985 0.978 0.978 0.976 0.976
Peto 0.871 0.978 0.985 0.978 0.978 0.976 0.976

Tarone 0.880 0.979 0.989 0.978 0.978 0.973 0.973
Wilcoxon 0.869 0.978 0.985 0.977 0.977 0.973 0.973

(0.5, 0.5, 0, 0)

Fleming 0.922 0.987 0.992 0.987 0.987 0.984 0.984
Log-rank 0.923 0.988 0.995 0.988 0.988 0.985 0.985
ModPeto 0.923 0.987 0.992 0.987 0.987 0.984 0.984
Peto 0.923 0.987 0.992 0.987 0.987 0.984 0.984

Tarone 0.928 0.987 0.994 0.987 0.987 0.986 0.986
Wilcoxon 0.931 0.986 0.992 0.986 0.986 0.983 0.983

(0.3, 0, 0, −0.3)
Fleming 0.962 0.982 0.980 0.982 0.982 0.984 0.984
Log-rank 0.947 0.940 0.906 0.940 0.940 0.949 0.949
ModPeto 0.962 0.982 0.980 0.982 0.982 0.984 0.984
Peto 0.962 0.982 0.980 0.982 0.982 0.984 0.984

Tarone 0.958 0.979 0.974 0.979 0.979 0.980 0.980
Wilcoxon 0.962 0.985 0.979 0.985 0.985 0.984 0.984

(0.5, 0.3, −0.3, −0.5)
Fleming 0.716 0.332 0.245 0.336 0.336 0.373 0.373
Log-rank 0.551 0.260 0.199 0.262 0.262 0.293 0.293
ModPeto 0.716 0.329 0.244 0.337 0.337 0.371 0.371
Peto 0.716 0.332 0.245 0.337 0.337 0.371 0.371

Tarone 0.712 0.345 0.278 0.347 0.347 0.395 0.395
Wilcoxon 0.698 0.266 0.191 0.271 0.271 0.304 0.304

Table 5: Descriptive statistics for the liver transplant waiting list data.

Blood groups LTX Censored Total Percent censored Median follow-up
(days)

95% confidence interval
Lower Upper

A 269 56 325 0.172 100 95 108
AB 33 8 41 0.195 84 52 202
B 78 25 103 0.243 173 116 212
0 256 90 346 0.260 223 193 276
Total 636 179 815 0.219

0–500-day interval. Also, the survival curves of AB and B
blood groups are closer to each other compared to the other
groups.

A statistician can use this method in usual data analysis
procedure as follows. For example, to calculate the adjusted 𝑝
value for the comparison of the groups 𝑘 and ℎ,

(1) calculate 𝑍𝑘ℎ and Σ defined in Section 2.1,

(2) use pvnorm command in mvtnorm library in R as
follows:

𝑙 = rep(−Inf , 𝑚).
𝑢 = rep(𝑍𝑘ℎ, 𝑚).

𝑎 = pmvnorm(lower = 𝑙, upper = 𝑢, mean =0, corr = sigma).𝑝 = 2 ∗ (1 − (𝑎[1] + attributes(𝑎)$error)),
where𝑚 is the number of all comparisons, and sigma
is Σ.

4. Conclusions

In this study, we proposed a multiple adjustment procedure
for the pairwise comparisons of survival functions with
right-censored data. We conducted Monte Carlo simulation
studies not only to evaluate the FWE rate and power of
the proposed procedure but also to compare the procedure
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Table 6: Test statistics and the adjusted 𝑝 values of the proposed and conventional adjustment techniques for the liver transplant waiting list
data.

Tests Blood groups Test statistics Proposed and conventional adjustment techniques|𝑍| Unadjusted Bonferroni Scheffé Sidak SMM Tukey Proposed

Fleming

A AB 5.106 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 5.236 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 7.570 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.639 0.1012 0.6070 0.4424 0.4727 0.4727 0.3565 0.4297
AB 0 7.039 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.826 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Log-rank

A AB 4.543 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 4.519 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 6.483 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.258 0.2084 1.0000 0.6634 0.7539 0.7539 0.5898 0.7716
AB 0 5.924 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.088 <0.0001 0.0003 0.0008 0.0003 0.0003 0.0003 <0.001

ModPeto

A AB 5.103 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 5.233 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 7.570 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.638 0.1015 0.6089 0.4433 0.4738 0.4738 0.3573 0.4303
AB 0 7.042 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.829 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Peto

A AB 5.102 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 5.231 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 7.567 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.637 0.1016 0.6094 0.4435 0.4741 0.4741 0.3576 0.4312
AB 0 7.040 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.827 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Tarone

A AB 5.131 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 5.153 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 7.480 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.480 0.1388 0.8330 0.5338 0.5921 0.5921 0.4495 0.5594
AB 0 6.887 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.776 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Wilcoxon

A AB 5.100 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A B 5.264 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
A 0 7.598 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
AB B 1.688 0.0915 0.5488 0.4156 0.4376 0.4376 0.3301 0.3944
AB 0 7.084 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
B 0 4.840 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

with conventional methods. It was found that the proposed
method can control the type I error rate, and it yielded
similar power as Tukey’s and high power with respect to
the other adjustment procedures. In addition to having a
straightforward formula, it is easy to implement.

This study has some limitations. The main issue was
that the simulations were performed by using proposed
and conventional methods. However, comparisons can be
extended including the methods such as that of Logan et
al. (2005) in the comparison. Logan et al. proposed two
different adjustment methods that consider the correlation
among the pairwise tests. One of the methods was derived
from multivariate normal distribution, while the other was

obtained from a simulated martingales approach. These
models may work well for the data with proportional hazard
structure. Future researches should take into account the
models for comparisons.
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