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This paper presents an application of vibration analysis to the monitoring of tie-rods. An algorithm for the axial load estimation
based on experimentally measured natural frequencies is introduced and its application to a case study is reported. The proposed
model of a tie-rod incorporates elastic bed-type boundary conditions that represent the contact between stonework and the tie-
rod. The weighed differences between experimentally and numerically determined frequencies are minimized with respect to the
parameters of the model, the main being the axial load and the stiffness at the tie-rod/wall interface. Thus, the multidimensional
optimization problem is solved. Results are analysed in comparison to a model with simple fixed-end boundary conditions. In
addition, the analytical formulation of the problem is delivered.

1. Introduction

The present paper reviews the applications of vibration
analysis to themonitoring of the so-called “tie-rods.” Tie-rods
are metal beams used in a wide range of civil constructions.
The main purpose of these structural elements is to provide
support for masonry arches and vaults in ancient buildings,
like churches, cathedrals, and castles, which are known to
lurch and founder in course of time. Tie-rods are subjected
to axial tension and, thus, help the building resist lateral loads
exerted by walls and facades. Figure 1 pictures a typical layout
of tie-rods supporting arches of the first floor terrace in the
medievalCastello di Torrechiara (Castle of Torrechiara) in the
province of Parma, Italy.

Over the years, deformations of masonry walls and
eventual displacements in the building may cause significant
changes in the axial loads of tie-rods. In the extremes, this
can lead to either of two scenarios: failure in structural
integrity of tie-rods (damages and cracks) or loss of loads
and subsequent performance decline, a phenomenon referred
to as the “laziness” of tie-rods. Both of the scenarios are
dangerous for the safety and integrity of buildings and can
lead to irretrievable harm to the precious historical heritage
of the human race. For this reason regular monitoring of tie-
rods’ condition is of a great importance.

Health monitoring of tie-rods includes two major steps.
The first one is identification of axial load and the second

one is damage identification. As for the first one, multiple
methods have been developed to accomplish this task and the
details on the state of art are provided in the next section.
Such experimental techniques should be as less invasive as
possible and at the same time provide sufficient data on the
beam condition. Generally this type of testing is referred to
as “nondestructive.”

In particular, nondestructive testing (NDT) is the process
of investigating structures and elements for characteristics,
discontinuities, changes in properties, and so forth without
harming the continuity and usability of the part under testing.
One of the relatively cheap, easily executable, and reliable
NDT techniques is vibration analysis (VA).This way of health
monitoring of the structures can be applied to testing whole
buildings as well as its smallest parts depending on the
scope and approach used. VA is based on investigation of
dynamics of a structure under a certain excitation: it can be
an impact hammer or a shaker.The response to the excitation
is registered via sensors: accelerometers, optic sensors, laser,
and so forth. Vibrational response contains information
about the main structural characteristics of the system: mass
and stiffness. Based on the knowledge of modal parameters,
conclusions are drawn on the loading and structural integrity
of the elements.

A reliable experimental technique helps to validate ana-
lytical and numerical models used for prediction of cracked
beam dynamics. The purpose of this research is to develop a
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Figure 1: Tie-rods in the Castle of Torrechiara in Langhirano,
Parma, Italy.

VA procedure based on quantitative and qualitative analysis
of frequency response functions.

The further sections describe a method for axial load
identification in tie-rods developed by the Department of
Industrial Engineering of the University of Parma. This
approach combines in situ dynamic tests and computations
that make use of a beam model with complex boundary
conditions.Themethod was tested and improved throughout
some years since it was applied for multiple case stud-
ies of monitoring such famous Italian historic buildings
as Duomo di Parma (Cathedral of Parma), Basilica della
Madonna dell’Umiltà in Pistoia (Church of Our Lady of
Humility), Rocca Sanvitale di Fontanellato (Sanvitale Fortress
of Fontanellato), and Casa Romei (Romèı House) in Ferrara,
as reported by the authors Collini et al. in [1–7].

2. State of the Art in Axial Load Identification
in Tie-Rods

The structural characterization of tie-rods is crucial for the
safety assessment of historical buildings. The main param-
eters that characterize the behaviour of tie-rods are the
tensile force, the modulus of elasticity of the material, and
the rotational stiffness at both restraints. In the last decades
several techniques for an indirect nondestructive evaluation
of such parameters have been proposed. The nondestructive
procedures currently available for the structural characteri-
zation of tie-rods can be grouped in static, static-dynamic,
and pure dynamic approaches. Pioneering static methods
presented, for instance, in works of Pozzati [8] and in [9,
10], in spite of minor differences, are based on measures of
displacement and/or strain at few cross-sections of the tie-
rod due to applied static loads. Bati and Tonietti introduced
a static approach for force identification that consisted of
measuring three vertical displacements and strains variations
at three sections of the tie-rod under a concentrated load [10].
Even if the data postprocessing is quite straightforward, these
methods are extremely sensitive to the experimental error
in the measures of displacement. In addition, since tie-rods

are usually positioned at considerable heights, the need of
measuring vertical deflections with respect to a reference
fixed base makes static methods difficult in practice.

Mixed approaches try to identify the unknown param-
eters by combining static and dynamic measures. Blasi and
Sorace [11–13] modelled tie-rods as simply supported Euler
beams with rotational springs of similar stiffness added on
each edge. The stiffness of the spring and the force were the
two unknowns obtained from the system of equations, built
with a static equation for deflection and a dynamic equation
for natural frequencies.Thus, thismethod required data from
two separate experiments, that is, in situmeasurements of the
central deflection under static load and of the fundamental
natural frequency, which can be obtained by hammer impact
testing and Fourier transforming the recorded accelerations.
Testing of this method in laboratory conditions showed good
results; however, measurement errors can cause significant
deviation in results for the two unknowns. Even though
static-dynamic methods can exploit additional dynamic
information for the characterization, they are still affected by
the shortcomings related to deflection measurements.

Such drawbacks are avoided in pure dynamic procedures
[14–28], where, in general, the difference between the exper-
imental and the calculated natural frequencies of vibration is
minimized in order to identify the unknown parameters.

Lagomarsino and Calderini [14] developed an algorithm
to identify the axial tensile force in ancient tie-rods by using
the first three natural frequencies. The tie-rod was modelled
as an Euler beam of uniform cross-section, neglecting the
shear deformation and rotary inertia, and was assumed to
be simply supported at the ends with additional rotational
springs.

Recently Maes et al. introduced a method that enables
definition of axial loads in slender beams with unknown
boundary conditions, taking into account effects of rotational
inertia of the beam and masses of sensors [15]. However,
it requires data from five or more sensors along the length
of the beam to determine all the introduced unknowns of
the inverted problem. A similar technique of the axial force
identification was developed by Li et al. [16], focusing on
studies of Euler–Bernoulli beams and takes into account
bending stiffness effects.

Rebecchi et al. established an analytical method of pro-
cessing experimental data from five instrumented sections
of a prismatic slender beam, which showed excellent results
in estimation of the axial load in tie-rods [17]. The method
does not require any exact value of effective length of the
beam but neglects both rotary inertia and shear deformations
effects in the solution for beam vibrations. For cases of similar
beams their colleagues Tullini et al. proposed a static method
of axial force identification [18–20]. The analytical algorithm
makes use of any set of experimental data represented by
flexural displacements or curvatures measured at five cross-
sections of the beam subjected to an additional concentrated
lateral load. Gentilini et al. developed in [21] a procedure
that combines dynamical testing with FEM simulations
using added masses. The method was tested out for tie-
rods of various lengths and load intensity, showing reliable
results.



Shock and Vibration 3

l

L

Wall Winkler
foundationTie-rod

FF

x

y

O

III III

Kf

lflf

Figure 2: Tie-rod with elastic bed-type boundaries.

Livingston et al. identified the tensile force in prismatic
beams of uniform section by using modal data and assuming
rotational and vertical springs at each end of the beam
[22]. Shear deformation and rotary inertia were neglected
(according to the Euler beam model).

Another fully dynamic procedure has been proposed by
Kim and Park [23]. It allows identifying the tension force and
flexural and axial stiffness of the cable frommeasured natural
frequencies. Anyway this technique is not immediately appli-
cable to tie-rods since they cannot be modelled as cables and
present uncertain constraints due to the portion of the rod
inserted into the masonry wall or column.

Amabili et al. [1–6] developed a two-stepmethod consist-
ing of in situ measurements of tie-rods’ natural frequencies
and further elaboration of the data via an optimization algo-
rithmbased on the Rayleigh-Ritzmethod [7]. Varying certain
parameters, the main of which was the sought axial load, this
algorithm matched estimated sets of frequencies with those
determined from experiments. The considered numerical
models allowed analysis of ancient tie-rods affected by non-
perfect constraints, added masses, discontinuities, irregular
cross-sections, and complex boundary conditions. Different
importance of the natural frequencies can be as well taken
into account.The technique is of simple execution and allows
minimizing the measurement error. Its functionality and
reliability have been proved as it has been appliedwith success
to many case studies.

3. Dynamic Method for Load Identification

Thefirst step of the method is the in situ experimental identi-
fication of natural frequencies of the tie-rods by measuring
the frequency response functions (FRFs) via instrumented
hammer excitation. Precisely the testing technique used
for the investigation of tie-rods in Casa Romei located in
the city of Ferrara, Emilia-Romagna, Italy, was described
in [1–3]. The first four to six natural frequencies, which
can be extracted with high precision, were in the focus.
Subsequently, an axially loaded tie-rod wasmodelled in finite
elementmethod (FEM) softwareAbaqus 6.13 as a general case
of a Timoshenko beam, using three-dimensional beam ele-
ments retaining shear deformation and rotational inertia.The
parametric model enabled considering nonuniform cross-
sections of rods, since this is often the case for hand-made
tie-rods in old buildings.

The interface tie-rod/wall was assumed to be a continuous
elastic bed; that is, extremities of tie-rods inserted inside

masonry walls were modelled as resting on Winkler-type
foundation.This type of boundary has been used in dynamics
of particular cases, for example, for beams or rails subjected
to travelling loads, as reported by Farghaly and Zeid [29],
Ruge and Birk [30], and Koroma et al. [31]. In our case we
discretized the elastic bed into separate springs equispaced
along the length of the bed 𝑙𝑓, each of a stiffness 𝑘𝑓 (see
Figure 2).

Clearly, the foundation may have a nonuniformly dis-
tributed stiffness, which would result in different 𝑘𝑓 assigned
to each spring. The advantage of the Winkler bed compared
to other types of boundaries generally used for tie-rods is
that a number of springs placed closely exhibit more complex
behaviour than linear and/or rotational springs attached to
a single node. Hence, it is a reliable way of modelling a real
wall-rod contact condition. The optimization parameters in
this case were the unknown axial load, the stiffness of the
foundation, and the length of the rod inside the wall. In real
cases the lengths of the extremities inserted into the masonry
and the stiffness of the foundation most likely differ for each
end of the tie-rod. This complication has been avoided in the
reported case study; however, the method proposed hereby
is capable of taking into account other desired parameters of
the model.

3.1. Analytical Formulation of the Problem. As shown in
Figure 2, tie-rod was divided into three sections of length𝑙𝑓, section I; l, section II; and again 𝑙𝑓, section III, where𝑙𝑓 identifies the portion inserted into the wall and 𝑙 is the
measured “free” length. At the tips of the rod free-end
boundary conditions were applied and between the sections,
correspondingly, the conditions of congruence.

Assuming the hypotheses of Bernoulli-Euler beam theory
for the analytical formulation, we chose to neglect the
shear deformation and rotational inertia, because the subject
of this study was a slender rod, for which the ratio of
linear dimensions of cross-sections to length is a very small
number.

The energy approach was used to obtain the equations
of motion via Lagrangian of the system [1]. Thus, the energy
functionals were given by (1)–(4) as follows.

Kinetic energy is

𝑇 = 12 ∫𝐿
0
[𝜌𝐴(𝜕𝑤𝜕𝑡 )2 + 𝜌𝐼( 𝜕2𝑤𝜕𝑥𝜕𝑡)

2]𝑑𝑥. (1)
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Potential energy of elastic strain is

𝑈 = 12 ∫𝐿
0
[𝐸𝐼(𝜕2𝑤𝜕𝑥2 )

2]𝑑𝑥. (2)

Potential energy associated with the axial load is

𝑉𝐹 = 12 ∫𝐿
0
[𝐹(𝜕𝑤𝜕𝑥 )2]𝑑𝑥. (3)

Potential energy associated with the elastic foundation is

𝑉𝑤 = 12 ∫𝐿
0
𝐾𝑓𝑤2 [𝐻 (𝑙𝑓 − 𝑥) + 𝐻(𝑥 − 𝐿 + 𝑙𝑓)] 𝑑𝑥. (4)

Total potential energy is

Π = 𝑈 + 𝑉𝐹 + 𝑉𝑤. (5)

The Heaviside function 𝐻(𝑥) in (4) allows us to write down
a single expression for the whole tie-rod, taking into account
different conditions for its parts.

We proceeded defining the Lagrangian of the system,
which is equal to the difference between the overall kinetic
and potential energy:

𝐿(𝑤, 𝜕𝑤𝜕𝑥 , 𝜕𝑤𝜕𝑡 , 𝜕2𝑤𝜕𝑥2 , 𝜕2𝑤𝜕𝑥𝜕𝑡) = 𝑇 − Π. (6)

Applying Hamilton’s principle, we obtained the system of
Lagrange equations of motion (7), where 𝑞𝑘 indicated every
generalized coordinate (degree of freedom) and the number
of differential equations was equal to the number of dofs.
In our case the degree of freedom was represented by the
function 𝑤(𝑥, 𝑡).

𝜕𝜕𝑡 ( 𝜕𝐿𝜕 ̇𝑞𝑘) − 𝜕𝐿𝜕𝑞𝑘 = 0. (7)

Sequentially substituting (1)–(5) into (6) and then differ-
entiating the Lagrangian as shown in (7), we obtained the
equation of natural vibrations of the rod:

𝐸𝐼𝜕4𝑤𝜕𝑥4 + 𝜌𝐴𝜕2𝑤𝜕𝑡2 − 𝐹𝜕2𝑤𝜕𝑥2
+ 𝐾𝑓𝑤[𝐻(𝑙𝑓 − 𝑥) + 𝐻(𝑥 − 𝐿 + 𝑙𝑓)] = 0. (8)

As stated above, the ends of tie-rods (where 𝑥 = 0 and𝑥 = 𝐿) were considered free and between parts I-II and II-III

eight conditions of continuity emerged; this provides twelve
conditions that were expressed in form of the following:

𝑥 = 0 : {{{
𝑄I = 0
𝑀I = 0,

𝑥 = 𝐿 : {{{
𝑄III = 0
𝑀III = 0,

𝑥 = 𝑙𝑓 :
{{{{{{{{{{{{{{{

𝑤I = 𝑤II𝜕𝑤I𝜕𝑥 = −𝜕𝑤II𝜕𝑥𝑄I = 𝑄II𝑀I = 𝑀II,

𝑥 = 𝐿 − 𝑙𝑓 :
{{{{{{{{{{{{{{{

𝑤II = 𝑤III𝜕𝑤II𝜕𝑥 = −𝜕𝑤III𝜕𝑥𝑄II = 𝑄III𝑀II = 𝑀III.

(9)

The shearing force 𝑄 and the bending moment 𝑀 were
defined by

𝑄 = 𝐸𝐼𝜕3𝑤𝜕𝑥3 − 𝐹𝜕𝑤𝜕𝑥 ,
𝑀 = 𝐸𝐼𝜕2𝑤𝜕𝑥2 .

(10)

For each section of the tie-rod (see Figure 2 for the reference
system), a separate function 𝑤 was introduced: 𝑤I(𝑥, 𝑡),𝑤II(𝑥, 𝑡), 𝑤III(𝑥, 𝑡). The differential equation of motion (8)
was solved by means of the Fourier method (11), where𝑊𝑖(𝑥)
is the form function, 𝜏𝑖(𝑡) is the time function, and 𝑖 takes on
a value from 1 to 3 according to each section of the rod.

𝑤𝑖 (𝑥, 𝑡) = 𝑊𝑖 (𝑥) 𝜏𝑖 (𝑡) . (11)

It is evident that the parts vibrate with the same time
frequency; thus, we could get rid of the index 𝑖 in 𝜏𝑖(𝑡). For
the time function we obtained (12) for all three sections of
the rod, with 𝜔 being a natural frequency in rad/s and 𝐵1 and𝐵2 being coefficients defining the phase.

𝜏 (𝑡) = 𝐵1 cos𝜔𝑡 + 𝐵2 sin𝜔𝑡. (12)

After the substitution of (12) and (11) into (8), the form of (13)
for parts I, III, and II was delivered.

𝑑4𝑊II𝑑𝑥4 − 𝐹𝜌𝐴𝑐2 𝑑
2𝑊II𝑑𝑥2 − 𝜔2𝑐2𝑊II = 0,

𝑑4𝑊I,III𝑑𝑥4 − 𝐹𝜌𝐴𝑐2 𝑑
2𝑊I,III𝑑𝑥2 + ( 𝐾𝑓𝜌𝐴𝑐2 − 𝜔2𝑐2 )𝑊I,III = 0.

(13)
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Ordinary differential equations (13) were solved using the
general solution given as

𝑊I,II,III (𝑥) = 𝐶𝑒𝑠𝑥. (14)

Further, the algebraic equations (15) in coefficients 𝑠 were
obtained throughout substitution of the general solution (14)
into the differential equations (13).

𝑠4II − 𝐹𝜌𝐴𝑐2 𝑠2II − 𝜔2𝑐2 = 0,
𝑠4I,III − 𝐹𝜌𝐴𝑐2 𝑠2I,III + ( 𝐾𝑓𝜌𝐴𝑐2 − 𝜔2𝑐2 ) = 0. (15)

Each of equations in (15) provided correspondingly four
solutions for 𝑠: two complex 𝑠3 = ±𝑖𝑘3 and two real roots𝑠4 = ±𝑘4 for the first equation and four complex roots 𝑠1,2 =±𝑘1±𝑖𝑘2 for the secondone.All of the parameters 𝑠 in a certain
form contain 𝜔, 𝐹, and 𝐾𝑓. Still, to keep our expressions

simplified, we used parameters 𝑠 in the form functions for the
natural modes of the tie-rod:

𝑊I (𝑥) = 𝐶1𝑒𝑠1𝑥 + 𝐶2𝑒−𝑠1𝑥 + 𝐶3𝑒𝑠2𝑥 + 𝐶4𝑒−𝑠2𝑥,
𝑊II (𝑥) = 𝐶5𝑒𝑠3𝑥 + 𝐶6𝑒−𝑠3𝑥 + 𝐶7𝑒𝑠4𝑥 + 𝐶8𝑒−𝑠4𝑥,
𝑊III (𝑥) = 𝐶9𝑒𝑠1𝑥 + 𝐶10𝑒−𝑠1𝑥 + 𝐶11𝑒𝑠2𝑥 + 𝐶12𝑒−𝑠2𝑥.

(16)

Substituting the forms (16) into twelve conditions (9), we
hence obtained a homogeneous system of twelve equations
containing twelve unknowns 𝐶1 ⋅ ⋅ ⋅ 𝐶12 , which in amatrix
form is expressed as

[𝑀] {𝐶} = {0} . (17)

In order to provide a nontrivial solution the determinant of
the matrix 𝑀 in (17) was supposed to be equal to zero (18),
which resulted in a characteristic equation of the eigenvalue
problem.

det

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

𝑠21 𝑠21 𝑠22 𝑠22 0 0 0 0 0 0 0 0
𝑠31 −𝑠31 𝑠32 −𝑠32 0 0 0 0 0 0 0 0
𝑒𝑠1𝑙𝑓 𝑒−𝑠1𝑙𝑓 𝑒𝑠2𝑙𝑓 𝑒−𝑠2𝑙𝑓 −𝑒𝑠3𝑙𝑓 −𝑒−𝑠3𝑙𝑓 −𝑒𝑠4𝑙𝑓 −𝑒−𝑠4𝑙𝑓 0 0 0 0
𝑠1𝑒𝑠1𝑙𝑓 −𝑠1𝑒−𝑠1𝑙𝑓 𝑠2𝑒𝑠2𝑙𝑓 −𝑠2𝑒−𝑠2𝑙𝑓 −𝑠3𝑒𝑠3𝑙𝑓 𝑠3𝑒−𝑠3𝑙𝑓 −𝑠4𝑒𝑠4𝑙𝑓 𝑠4𝑒−𝑠4𝑙𝑓 0 0 0 0
𝑠21𝑒𝑠1𝑙𝑓 𝑠21𝑒−𝑠1𝑙𝑓 𝑠22𝑒𝑠2𝑙𝑓 𝑠22𝑒−𝑠2𝑙𝑓 −𝑠23𝑒𝑠3𝑙𝑓 −𝑠23𝑒−𝑠3𝑙𝑓 −𝑠24𝑒𝑠4𝑙𝑓 −𝑠24𝑒−𝑠4𝑙𝑓 0 0 0 0
𝑠31𝑒𝑠1𝑙𝑓 −𝑠31𝑒−𝑠1𝑙𝑓 𝑠32𝑒𝑠2𝑙𝑓 −𝑠32𝑒−𝑠2𝑙𝑓 −𝑠33𝑒𝑠3𝑙𝑓 𝑠33𝑒−𝑠3𝑙𝑓 −𝑠34𝑒𝑠4𝑙𝑓 𝑠34𝑒−𝑠4𝑙𝑓 0 0 0 0

0 0 0 0 𝑒𝑠3(𝐿−𝑙𝑓) 𝑒−𝑠3(𝐿−𝑙𝑓) 𝑒𝑠4(𝐿−𝑙𝑓) 𝑒−𝑠4(𝐿−𝑙𝑓) −𝑒𝑠1(𝐿−𝑙𝑓) −𝑒−𝑠1(𝐿−𝑙𝑓) −𝑒𝑠2(𝐿−𝑙𝑓) −𝑒−𝑠2(𝐿−𝑙𝑓)
0 0 0 0 𝑠3𝑒𝑠3(𝐿−𝑙𝑓) −𝑠3𝑒−𝑠3(𝐿−𝑙𝑓) 𝑠4𝑒𝑠4(𝐿−𝑙𝑓) −𝑠4𝑒−𝑠4(𝐿−𝑙𝑓) −𝑠1𝑒𝑠1(𝐿−𝑙𝑓) 𝑠1𝑒−𝑠1(𝐿−𝑙𝑓) −𝑠2𝑒𝑠2(𝐿−𝑙𝑓) 𝑠2𝑒−𝑠2(𝐿−𝑙𝑓)0 0 0 0 𝑠23𝑒𝑠3(𝐿−𝑙𝑓) 𝑠23𝑒−𝑠3(𝐿−𝑙𝑓) 𝑠24𝑒𝑠4(𝐿−𝑙𝑓) 𝑠24𝑒−𝑠4(𝐿−𝑙𝑓) −𝑠21𝑒𝑠1(𝐿−𝑙𝑓) −𝑠21𝑒−𝑠1(𝐿−𝑙𝑓) −𝑠22𝑒𝑠2(𝐿−𝑙𝑓) −𝑠22𝑒−𝑠2(𝐿−𝑙𝑓)0 0 0 0 𝑠33𝑒𝑠3(𝐿−𝑙𝑓) −𝑠33𝑒−𝑠3(𝐿−𝑙𝑓) 𝑠34𝑒𝑠4(𝐿−𝑙𝑓) −𝑠34𝑒−𝑠4(𝐿−𝑙𝑓) −𝑠31𝑒𝑠1(𝐿−𝑙𝑓) 𝑠31𝑒−𝑠1(𝐿−𝑙𝑓) −𝑠32𝑒𝑠2(𝐿−𝑙𝑓) 𝑠32𝑒−𝑠2(𝐿−𝑙𝑓)0 0 0 0 0 0 0 0 𝑠21𝑒𝑠1𝐿 𝑠21𝑒−𝑠1𝐿 𝑠22𝑒𝑠2𝐿 𝑠22𝑒−𝑠2𝐿0 0 0 0 0 0 0 0 𝑠31𝑒𝑠1𝐿 −𝑠31𝑒−𝑠1𝐿 𝑠32𝑒𝑠2𝐿 −𝑠32𝑒−𝑠2𝐿

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

. (18)

Equation (18) is to be solved for the natural frequencies 𝜔
by means of, for instance, the Newton-Raphson method.
Furthermore, the dispersion between analytically and exper-
imentally determined frequencies can be minimized with
respect to parameters 𝐹 and 𝐾𝑓, following the optimization
procedure described in the next sections. This approach in a
closed form delivers solution for the sought axial load in tie-
rod.

3.2. Numerical Model and Optimization Procedure. Tie-rods
were modelled in FEM software using beam elements. In this
case the beam is represented with a one-dimension body, that
is, a wire (line, curve, polyline), and cross-section shapes and
dimensions are assigned to this body as one of the properties,
which allowed taking into account irregular cross-sections,
addedmasses, elastic supports, and so forth.The beammodel
shows good results for analyses of long slender beams. For
beam elements there is an option of modelling the axial
tensile load as a bolt pretension load. Tie-rods were modelled

using 50–60 B31 2-node linear beam elements in 3D space
implying Timoshenko’s beam theory.

The FEM simulation was divided into two steps: as a first
step a pretension load 𝐹was applied to the beam and as a sec-
ond step the modal analysis was performed. The FEMmodel
was parametric, since the tensile load and elastic foundation
parameters were unknown. The idea here was to “tune”
these parameters in order to match results of physical tests
and FEM simulations. Optimization criterion given by (19)
represented a residual error between 𝑛 natural frequencies
defined via experimental modal analysis {𝑓exp

1 , . . . , 𝑓exp
𝑛 } and

numerically {𝑓FEM
1 , . . . , 𝑓FEM

𝑛 }. The error function contained
weight coefficients 𝑝𝑘 arbitrary assigned to each natural
mode. Hence, the minimum of the multiparameter function𝑅 delivered the optimal solution.

𝑅 = √ 𝑛∑
𝑘=1

𝑝2
𝑘
(𝑓exp
𝑘

− 𝑓FEM
𝑘

)2. (19)
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Figure 3: Inner yard of Casa Romei and zoom of the ground floor tie-rods.

Ground floor

Figure 4: Our team during hammer excitation of a tie-rod; map of ground floor.

By using a parametric FEM model the representation of a
tie-rod became flexible and first 6 natural frequencies were
matched with overall accuracy up to 1%. Parameterisation
of the FEM model was achieved by direct coding of the
analysis input file, since parametric analysis is not enabled
inside the graphical interface ofAbaqus. Afterwards the script
was executed automatically inside the optimization program
coded in C. The latter program automatically extracted the
required results from the text files with analysis outputs
created by Abaqus.

As a first iteration we analytically investigated the func-
tion 𝑅 (19) for a tie-rod with fixed and/or simply supported
conditions, with length 𝐿 and axial load 𝐹 being optimization
parameters. On a reasonable range of optimization param-
eters the residual error (19) had only a forced minimum
at the minimal value of the length parameter. The found
absolute minimum was lying, however, below the measured
length of a tie-rod. This behaviour proved the necessity of
modellingmore complex boundary conditions.However, this
first iteration provided a rough idea of the sought axial load
and we could set the range for 𝐹 around this value.

Subsequently we modelled the elastic bed boundaries,
representing a general condition of translational and rota-
tional stiffness acting for the length 𝑙𝑓, as in the sketch
displayed in Figure 2. Elastic bed consists of equispaced linear

elastic springs each of stiffness 𝑘𝑓. Further the optimization
has been done with respect to the sought axial load and the
parameters of elastic foundation. We needed to provide sets
of experimentally obtained frequencies, ranges, and step sizes
of optimization parameters and sets of weight coefficients 𝑝𝑘
to the code in C that

(i) forms a matrix of parameters;

(ii) launches the FEM analysis for each nod of the
grid, extracts and filters natural frequencies from the
output;

(iii) calculates the value of residual error (19) for each step;

(iv) finds the local minimum of the function (19) and the
corresponding combination of parameters including
the sought tensile load;

(v) refines the grid of parameters and repeats the proce-
dure again.

3.3. Application to a Case Study. The method described
hereby was applied to investigation of tie-rods installed in
“Casa Romei” located in Ferrara, Italy (see Figures 3 and 4).
Romèı House is a perfect example of a 15th century palace, in
which you can see rich gothic decoration of the Late Middle
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Table 1: Experimental acquisitions.

Tie-rod number Cross-section 𝐴 [mm2] Length 𝑙 [mm] Natural frequencies [Hz]
I II III IV V VI

PT1 52 × 9 3178 15.30 — 49.00 — 92.30 —
PT2 51 × 9 3233 16.80 — 53.80 — 98.80 —
PT3 52 × 10 3228 16.30 — 53.80 — 103.00 —
PT4 51 × 10 3218 16.00 33.50 51.30 71.80 95.00 121.80
PT5 53 × 10 3188 5.50 — 28.30 — 65.50 91.00
PT6 50 × 20 2748 21.75 49.00 85.25 131.20 188.50 255.20
PT7 50 × 20 2768 20.00 45.50 80.00 123.80 179.20 242.20
PT8 50 × 20 3358 14.75 32.75 55.75 85.25 121.20 176.50
PT9 50 × 20 3248 15.50 34.25 58.75 90.00 128.00 173.00
PT10 50 × 20 3388 17.75 38.00 63.25 94.75 133.00 177.50
PT11 50 × 12 3440 13.25 29.75 51.25 78.25 111.50 150.80
PT12 50 × 12 3298 14.50 30.25 48.25 69.25 94.00 122.20
PT13 50 × 12 3140 13.75 — 47.25 — 95.75 —
PT14 50 × 12 2510 19.25 46.50 84.00 — 134.50
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X: 71.75
Y: 40.87

X: 16
Y: 114.3

X: 51.25
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Figure 5: FRF plot (acceleration amplitude versus frequency).

Ages combine with elements of the Early Renaissance. Tie-
rods have been placed in this building in different times
along its existence, differing in dimensions and cross-section
shapes.

First, measurements of geometrical characteristics and
of natural frequencies were performed for each tie-rod.
Then experimental acquisition was carried out to determine
the natural frequencies from the analysis of response to
dynamical excitation applied to tie-rods in horizontal plane;
as an example, a frequency response function (FRF) for a
ground floor tie-rod is shown in Figure 5.

For further analysis, first four to six natural frequencies
were identified for each tie-rod. Six eigenmodes were con-
sidered sufficient, since identification of higher modes might
appear inaccurate due to larger possible measurement errors.

Having performed multiple experimental studies of tie-
rods, the authors concluded that the variation of the material
was less significant than in the boundary conditions. Thus,
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Figure 6: Residual error function as function of elastic bed stiffness
and axial load.

the material properties were kept constant in this case study:
material was assumed to be general iron with characteristics:𝐸 = 210GPa, ] = 0.3, 𝜌 = 7850 kg/m3.
3.4. Load Identification Results. Table 1 summarizes the data
on cross-section A, free length 𝑙, and natural frequencies of
the ground floor tie-rods (see Figure 4 for layout). Some of
the frequencies in Table 1 are missing, due to the eventual
position of the accelerometer over a modal node; in these
cases higher frequencies were considered in the optimization
process.

A typical graphic scenario of the optimization process is
depicted in Figure 6. Here several values of the function 𝑅
(19) were plotted versus axial load 𝐹 and distributed stiffness
of the elastic bed𝐾𝑓, for the tie-rod PT2.The length of elastic
bed 𝑙𝑓 (see Figure 2) was kept constant. It is notable that
many minima are present in correspondence to certain 𝐹-𝐾𝑓 couples and one of them is a local minimum. The grid
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Table 2: Summary of results.

Tie-rod number Axial load 𝐹 [kN] Stress [MPa] Bed stiffness 𝐾𝑓 [107MN/m2] Residual error
PT1 29.40 62.82 50.00 0.31
PT2 46.90 102.18 0.48 6.04
PT3 37.50 72.12 253.00 3.95
PT4 38.70 75.88 3.75 0.77
PT5 1.00 1.89 26.75 1.17
PT6 66.50 66.50 113.00 0.48
PT7 54.50 54.50 57.50 1.43
PT8 46.30 46.30 60.00 6.60
PT9 44.50 44.50 62.50 7.33
PT10 79.90 79.90 76.00 2.22
PT11 30.10 50.17 99.50 6.53
PT12 37.20 62.00 4.25 0.48
PT13 28.20 47.00 5.50 0.27
PT14 38.00 63.33 2.13 5.58
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Figure 7: Influence of the elastic bed on the axial load determina-
tion.

of parameters 𝐹 and𝐾𝑓 was then reduced around it, in order
to refine the search of the optimal values.

Naturally, the so-definedminima of the residual error (19)
were not independent; nevertheless, once themain parameter
(axial load 𝐹) was optimized, the influence of stiffness of
constraints on the first parameter was nearly negligible.

The model with elastic foundation boundaries delivered
improvement of results as illustrated in Figure 7. The plot
shows residual error curves for the tie-rod PT4 at different
values of stiffness 𝐾𝑓 compared to the clamped boundaries.
It indicates that theminimumof the error (19) decreases from
6.59 (encastré BCs) to 0.77 for the optimal stiffness 𝐾𝑓 =

3.75×107N/m2.The corresponding optimal value of the axial
load in this tie-rod increases by 20% from 32.20 kN (encastré
BCs) to 38.70 kN (elastic bed).We presume that a model with
simple clamped boundaries underestimated the axial load;
thus, the proposed method reveals to be conservative for the
load estimation.

Table 2 summarizes the results of the computation pro-
cess of the reported case study.

3.5. Analysis of the Results. Tensile loads cause normal
stresses that need to be estimated for evaluation of reliability
and integrity of tie-rods.This safety assessment can be carried
out based on the values of average axial stress 𝜎𝑘,𝑁, to which
each tie-rod is subjected. The stress was calculated with
respect to the optimal axial load 𝐹𝑘,opt and the minimum
cross-section area 𝐴𝑘,min:

𝜎𝑘,𝑁 = 𝐹𝑘,opt𝐴𝑘,min
. (20)

This stress (20) is average since it assumes a uniform sec-
tion without taking into consideration such local effects as
screws, fillets, holes, joints, and so forth that tie-rods might
incorporate. However, these stress concentrators should be
considered, if present, for correct local strength verification,
eventually via FEM analysis.

In Figure 8 the stresses in rods PT1–PT14 are plotted.
Apart from PT5, all tie-rods worked properly and below the
allowable stress of 120MPa for ancient iron. Rod PT5 was
evidently unloaded, which indicated that there was either
some damage or malfunction at the anchorages; the issue has
been stated in the appropriate technical report of the case
study. For comparison, Figure 8 reports also average stresses
calculated for the case of encastré boundary conditions: safety
improvement was definitely confirmed.

In Section 3.2 we introduced the residual error (19) to
compute “distance” between experimental and numerical fre-
quencies. In the formula the difference (in Hz) between each
couple of frequencies is multiplied by a weight coefficient
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Figure 8: Average stress state in tie-rods: comparison between encastré and elastic foundation boundaries.

Table 3: Results of computation with three sets of weights for the tie-rod PT4.

Sets of weight coefficients Axial load 𝐹 [kN] Bed stiffness𝐾𝑓 [107MN/m2] Natural frequencies [Hz]
I II III IV V VI𝑊1 = {1, 1, 1, 1, 1, 1} 39.00 3.50 16.03 32.91 51.37 72.03 95.32 121.53𝑊3 = {4, 1, 0.5, 0.25, 0.1, 0.05} 38.60 4.50 16.04 32.95 51.48 72.25 95.69 122.13𝑊2 = {10, 1, 1, 1, 1, 1} optimal values 38.70 3.75 16.00 32.85 51.31 71.97 95.28 121.55𝑊2, encastré BCs 32.20 ∞ 15.68 32.47 51.33 72.97 97.91 126.50

Experimentally defined frequencies 16.00 33.50 51.30 71.80 95.00 121.80

𝑝𝑘 in order to attribute higher or lower importance to some
frequencies rather than others. The set of weight coefficients
was arbitrary chosen, but generally higher importance has
been given to the first frequencies.

A sensitivity analysis has been conducted to evaluate
the influence of weight coefficients on our results. The
plot in Figure 9 shows three residual error functions for
the tie-rod PT4 corresponding to three different sets of
weight coefficients. The sets taken into consideration were𝑊1 = {1, 1, 1, 1, 1, 1}, 𝑊2 = {10, 1, 1, 1, 1, 1}, and 𝑊3 ={4, 1, 0.5, 0.25, 0.1, 0.05}. We see that each set generated a
different interpolated surface; however, the error reached
minimum around the same value of the sought axial load,
as reported in Table 3. Many other reasonable sets of weight
coefficients have been tested, confirming their low influence
on the resulting axial load, which proved the stability of our
model with respect to these arbitrary assigned parameters.

4. Conclusions

In this paper a procedure for axial load identification in
structural tie-rods was demonstrated and approved via an
experimental study of an ancient mansion. The method is
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Figure 9: Residual error functions for sets of weight coefficients𝑊1,𝑊2,𝑊3.
based on a tie-rod model represented by a beam with ends
supported by an elastic Winkler-type foundation. The elastic
bed was used to simulate the contact condition between a
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tie-rod and a masonry wall. The proposed method consisted
of an experimental and a computational stage. The experi-
mental part was a relatively simple vibrational test for natural
frequencies identification. The computational part was an
optimization procedure for axial load estimation based on
finite element modelling. The optimization has been done
with respect to two parameters: the sought axial load and
the distributed stiffness of the elastic bed at the boundaries.
The technique provided a solution for uncertain boundary
conditions and is capable of identifying axial load with high
accuracy.

Investigation of the behaviour of natural frequencies
depending on the parameters showed that axial load tends to
shift the set of frequencies (the higher the load the higher the
frequencies), while the elastic foundation stiffness changes
the “distance” between natural frequencies.

As a result, consideration of elasticity at anchorages
exhibited increase in axial load by up to 40%.Thismeans that
assumption of simple boundary conditions is not sufficient
for modelling a tie-rod dynamic response. The sensitivity
analysis has proved that the optimization result was stable
to variation of weight coefficients and was converging to the
same axial load. Thus, the method has been approved in
practice and is suitable for in situ identification of axial load
in ancient tie-rods.

Nomenclature

A: Cross-section area of the tie-rod𝐵1, 𝐵2: Coefficients in the time function of the
solution for tie-rod deflection

C: Coefficient of the general solution for
the form function𝐶1, . . . , 𝐶12: Coefficients of the solution for tie-rod
deflection that satisfy the specific
boundary conditions

C: Constant equal to the ratio√𝐸𝐼/𝜌𝐴
E: Elastic modulus of the tie-rod material
F: Axial load acting on the tie-rod𝑓exp
𝑘

: Natural frequency number 𝑘
determined experimentally𝑓FEM

𝑘 : Natural frequency number 𝑘
determined from FEM𝐻(𝑥): Heaviside function

I: Moment of inertia of the cross-section
about 𝑧-axis𝐾𝑓: Distributed stiffness of the elastic bed𝑘𝑓: Stiffness of the separate springs that
discretize the elastic bed𝑘1, . . . , 𝑘4: Real constants used in the expressions
for 𝑠

L: Total length of the tie-rod𝑙𝑓: Lengths of the tie-rod portion inserted
into the wall, sections I and III

L: “Free” length of the tie-rod, section II
M: Matrix of the system of linear algebraic

equations for the unknowns 𝐶1, . . . , 𝐶12
N: Poisson’s ratio

Π: Total potential energy𝑝𝑘: Weight coefficient of a frequency
number 𝑘

R: Residual error between two sets of 𝑛
natural frequencies

P: Density of the tie-rod material𝑠, 𝑠I,II,III, 𝑠1, . . . , 𝑠4: Coefficients in the exponent of the
solution for tie-rod deflection

T: Kinetic energy𝜏𝑖(𝑡), 𝜏(𝑡): Time function in the Fourier solution
for tie-rod deflection

U: Potential energy of elastic strain𝑉𝐹: Potential energy associated with the
axial load𝑉𝑤: Potential energy associated with the
elastic foundationΩ: Natural frequency in rad/s𝑤(𝑥, 𝑡): Tie-rod deflection in xOy plane𝑤I,II,III(𝑥, 𝑡): Deflection for each section of the tie-rod𝑊(𝑥): Form function of the tie-rod deflection𝑊I,II,III(𝑥): Form functions for each section of the
tie-rod.
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