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The issues with downscaling the outputs of a global climate model (GCM) to a regional scale that are appropriate to hydrological
impact studies are investigated using the random forest (RF) model, which has been shown to be superior for large dataset analysis
and variable importance evaluation. The RF is proposed for downscaling daily mean temperature in the Pearl River basin in
southern China. Four downscalingmodels were developed and validated by using the observed temperature series from 61 national
stations and large-scale predictor variables derived from the National Center for Environmental Prediction–National Center for
Atmospheric Research reanalysis dataset.TheproposedRFdownscalingmodelwas compared tomultiple linear regression, artificial
neural network, and support vector machine models. Principal component analysis (PCA) and partial correlation analysis (PAR)
were used in the predictor selection for the other models for a comprehensive study. It was shown that the model efficiency of the
RF model was higher than that of the other models according to five selected criteria. By evaluating the predictor importance, the
RF could choose the best predictor combination without using PCA and PAR. The results indicate that the RF is a feasible tool for
the statistical downscaling of temperature.

1. Introduction

Global climatemodels (GCMs) are considered themost cred-
ible tools for the projection of future global climate change
[1]. However, there is a general mismatch between the spatial
and temporal resolution of the GCM output and regional
scale climate change impact studies. Various techniques have
been developed to downscale GCM outputs to finer scales.
These methods are widely divided into dynamic (physical)
and statistical (empirical) downscaling [2, 3]. Because of the
complexity in modeling and computing dynamic downscal-
ing, statistical downscaling techniques have been used widely
in climate change studies due to their simplicity and ease of
implementation.

Statistical downscaling techniques can be divided into
three categories: weather typing, weather generators, and re-
gression-based methods. Various models have been devel-
oped and applied in the downscaling of temperature, like
linear regression [4, 5], canonical correlation analysis (CCA)
[6, 7], artificial neural networks (ANN) [8], support vector

machines (SVM) [9], and so forth. Some comparison stud-
ies have been made in the past. Schoof and Pryor [10]
demonstrated that ANN models give better estimates than
multiple linear regression (MLR) models for daily temper-
ature downscaling at Indianapolis. Kostopoulou et al. [11]
demonstrated that MLR and CCA are superior to ANN in
the simulation ofminimumandmaximum temperatures over
Greece. Duhan and Pandey [12] compared MLR, ANN, and
the least square support vector machine (LS-SVM) models
to downscale the temperature of the Tons River basin in
India and demonstrated that LS-SVMmodels perform better
than ANN and MLR models. These comparison studies
indicate that none of the aforementioned methods can
assure an accurate estimate of temperature under different
situations.

The predictor selection is critical for developing a sta-
tistical downscaling model. Suitable predictors should be
informative, and the relationship between the predictors and
predictands should be stationary [13]. Informative predictors
can be identified using statistical measures, such as the
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Figure 1: Study area.

Pearson, Spearmen, and Kendall correlation analysis [9],
CCA [14], maximum covariance analysis (MCA) [15], partial
correlation (PAR) [16–18], and principal component analysis
(PCA) [19, 20]. Interactive model fitting approaches are also
used in predictor selection [21]. However, some limitations
are found during the application, such as the limited ability of
traditional correlation analysis for interpreting nonstationary
and nonlinear relationships [22]. Therefore, a precise statisti-
cal downscaling method with an inbuilt predictor selection
mechanism will be helpful for researchers studying climate
change impact.

The random forest (RF) model is an ensemble machine
learning technique based on a combination of classification
or regression methods and statistical learning theory [23].
RF models have been well applied in various fields, such as
risk analysis [24], ground water studies [25], remote sensing
analysis [26], and flood hazard assessment [27] and especially
show advantages in land cover classification [28–31]. There
are two important advantages of RF models. The first is the
ability to handle large datasets with correlated conditional
variables, because it includes precision in the prediction, is
nonparametric, and is robust in the presence of outliers,
noise, and overfitting [23, 32]. The second is the inbuilt
variable importance evaluation. By permuting the variables
randomly, each variable can be compared to the prediction
results and evaluated for its importance [33]. Based on this
body of knowledge, RF should be, in theory, highly appli-
cable to downscaling and able to rectify multivariable and
nonlinear issues. Eccel et al. [34] adopted RF with four linear
and nonlinearmodels in the postprocessing of two numerical

weather prediction models for the prediction of minimum
temperatures in an alpine region. However, the RF just served
as one of the comparativemodels in the study.The advantages
and disadvantages of the RF and its applicability in statistical
downscaling have not been studied in detail.

The purpose of this study is to fully investigate the
applicability of RF for statistical downscaling of temperature.
The predictors are the 26 large-scale variables derived from
the National Center for Environmental Prediction (NCEP)
reanalysis daily dataset, and the predictands are the observed
temperatures at 61 national standard stations located in the
Pearl River basin. The RF is used to capture the complex
relationship between selected predictors from the NCEP data
and observed daily mean temperature from these stations. A
comparison study was conducted involving the application of
MLP, ANN, and SVM models. The PCA and PAR methods
were used in predictor selection for the comparative models
for a comprehensive study.

2. Study Area and Data Description

2.1. Study Area Description. The Pearl River (97∘39󸀠E∼
117∘18󸀠E; 3∘41󸀠N∼29∘15󸀠N) is the second largest river in China
with a drainage area of 4.54 × 105 km2, of which 4.42 ×
105 km2 is located in China [35, 36]. The Pearl River basin
(Figure 1) is located in tropical and subtropical climate
zones, the annual temperature is 14–22∘C, and the annual
precipitation is 1200–2200mm. The distribution of precipi-
tation is gradually reduced from east to west. This regional
distribution is significantly different, and the interannual
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Figure 2: Observed mean temperature and standard deviation at the meteorological stations.

change is large. The precipitation is concentrated during
April–September [36], accounting for 72–88% of the annual
precipitation [35].

The Pearl River basin is a rich water resource. The water
resource in the entire river basin is 4700 cubic meters per
capita, equivalent to 1.7 times the national per capita rate, but
the spatial and temporal distribution of the water resource
are uneven, and basin flooding, waterlogging, drought, and
saltiness create frequent natural disasters. The Pearl River
basin is a highly developed region, having a prominent
position in the economic development of China.

2.2. Data Description

2.2.1. Temperature Data. The observed meteorological data
used in this study are the daily mean temperatures at
61 national standard stations in the Pearl River basin. A
continuous data series for the period of 1961–2005 was
selected for the study. These observations were obtained
from the National Climate Center, which is in charge of
monitoring, collecting, compiling, and releasing high quality
hydrological data in China. The observed mean temperature
and standard deviation at the meteorological stations are
shown in Figure 2. The mean daily temperature shows an
increasing trend from the north to south in the period.
However, the standard deviation showed an opposite trend.

2.2.2. Large-Scale Atmospheric Variables. TheNCEP reanaly-
sis daily data were downloaded from the website, http://www
.cdc.noaa.gov, which included 26 large-scale atmospheric
variables at a scale of 2.5∘ × 2.5∘ that were derived from the
dataset over the period of 1961–2005.Thedetails of the predic-
tors are shown in Table 1. The NCEP data were interpolated

Table 1: NCEP reanalysis predictors.

Number Predictor Description
1 mslp Mean sea level pressure
2 p_f Surface airflow strength
3 p_u Surface zonal velocity
4 p_v Surface meridional velocity
5 p_z Surface vorticity
6 p_th Surface wind direction
7 p_zh Surface divergence
8 p5_f 500 hPa airflow strength
9 p5_u 500 hPa zonal velocity
10 p5_v 500 hPa meridional velocity
11 p5_z 500 hPa vorticity
12 p5th 500 hPa wind direction
13 p5zh 500 hPa divergence
14 p8_f 850 hPa airflow strength
15 p8_u 850 hPa zonal velocity
16 p8_v 850 hPa meridional velocity
17 p8_z 850 hPa vorticity
18 p8th 850 hPa wind direction
19 p8zh 850 hPa divergence
20 p500 500 hPa geopotential height
21 p850 850 hPa geopotential height
22 r500 500 hPa relative humidity
23 r850 850 hPa relative humidity
24 rhum Surface relative humidity
25 shum Surface-specific humidity
26 temp Mean temperature at 2m height

http://www.cdc.noaa.gov
http://www.cdc.noaa.gov
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Figure 3: Structure of a random forest model.

to each station using the bilinear interpolationmethodwhich
has been widely used in statistical downscaling [37–39].

3. Downscaling by Using the Random
Forest Method

3.1. Random Forest Method

3.1.1. Methodology. The random forest (RF) method is an
enhanced classification and regression tree (CART) method
proposed by Breiman in 2001, which consists of an ensemble
of unpruned decision trees generated through bootstrap
samples of the training data and random variable subset
selection.

As shown in Figure 3, the RF is composed of a set of
CARTs. The accuracy of the RF prediction depends on the
strength of the individual CARTs [23]. Each CART consists
of a root node, internal nodes, and leaves. Each internal node
is associated with a test function to split the incoming data.
For regression trees, splitting is made in accordance with
a squared residuals minimization algorithm, which implies
that the expected sum variances in the two resulting nodes
should be minimized, as shown in

argmin
𝑥𝑗≤𝑥
𝑅
𝑗
,𝑗=1,...,𝑀

[𝑝𝑙 var (𝑌𝑙) + 𝑝𝜏 var (𝑌𝜏)] . (1)

Here, 𝑝𝑙 and 𝑝𝜏 are fractions of samples in the left and
right nodes, var(𝑌𝑙) and var(𝑌𝜏) are response vectors for
corresponding left and right child nodes, and 𝑥𝑗 ≤ 𝑥𝑅𝑗 , 𝑗 =1, 2, . . . ,𝑀 are optimal splitting questions.

Compared to traditional CART methods that use whole
data sets, the RF trains each individual CART on bootstrap
resamples (𝑀 samples) of the total dataset. Instead of using
all the features, the RF uses a random selection of features to
split each node. The best split is chosen among a randomly
selected subset of Ntry input variables at each node. The tree
is then grown to the maximum size without pruning. In this
way,𝑀 CARTs are grown, and the final output is the average
of the predictions of those trees.

3.1.2. Importance of Variables. The RF performs an inbuilt
cross-validation in parallel to the training process by using
out-of-bag (OOB) samples, which are not chosen during the
bootstrap split. In the regression mode, the total learning
error is obtained by averaging the prediction error of each
individual tree using their OOB samples, as shown in

MSE ≈ MSEOOB = 1𝑛
𝑛∑
𝑖=1

[𝑌̂ (𝑋𝑖) − 𝑌𝑖]2 , (2)

where 𝑛 is the total number of OOB samples, 𝑌̂(𝑋𝑖) is the RF
output corresponding to a given input sample𝑋𝑖, and𝑌𝑖 is the
observed output.

The RF provides two methods of evaluating the impor-
tance of each variable [27]. The first method evaluates
the variable importance based on how much poorer the
prediction will be if the variable is permuted randomly.
The prediction errors of the OOB samples of each tree
(termed EOOB1) are calculated during the training procedure.
At the same time, each input variable in the OOB samples
is permuted one at a time. These modified datasets are
also predicted by the tree (termed EOOB2). At the end of
the training procedure, the importance of each variable is
obtained by averaging the difference between EOOB1 and
EOOB2. It is then normalized by the standard deviation. The
second method is based on the calculation of the node
impurity criterion. As illustrated in (1), we can calculate how
much the split decreases the node impurity. For regression
trees, the decrease of the node impurity can be calculated
using the difference between the residual sum of squares
(RSS) before and after the split. The importance of a variable
can be rapidly calculated by combining the decreases of node
impurity for the variable over all trees [40].

3.2. Model Implementation and Validation. TheRF is utilized
to simulate the nonlinear relationship between the NCEP
predictors and the observed temperatures at the 61 stations.
In this study, the RF algorithm is implemented in the R
programming language with a package “random forest,”
which has built-in functions to measure variable importance.
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Figure 4: Relative significance of the predictors at Guangzhou Station and Nanning Station.

As illustrated previously, 𝑀 and Ntry are two sensitive
parameters in the RF models. Ntry is the square root of the
total number of variables [41].𝑀 influences the convergence
of the RF and can be determined through the OOB error.

For model development, the daily mean temperature
series from the national standard stations and the large-scale
atmospheric variables of the NCEP data are divided into two
datasets.The first 31 years (1961–1991) are used for calibrating
the regression model, while the remaining 14 years of data
(1992–2005) are used to validate the model. For testing the
performance of the proposedmodel, two data-drivenmodels,
ANN and SVM, are selected for model comparison, which
are commonly used in statistical downscaling.The three-layer
backpropagation artificial neural network (BP-ANN) and
LS-SVM are adopted, which have been applied successfully
in downscaling temperature [12]. The MATLAB functions,
“newff” and “tunelssvm,” are employed for obtaining the
values of the models parameters. Multiple linear regression
analysis is adopted for the MATLAB implementation. The
PAR [18] and PCA [19, 20] methods are used in predictor
selection for the MLR, ANN, and SVMmodels.

3.3. Model Performance Analysis. Five criteria are selected to
evaluate the performance of the RF and comparative models,
including the Nash–Sutcliffe model efficiency index (Nash),
root mean square error (RMSE), mean absolute error (MAE),
correlation coefficient (𝑅), and model Bias (Bias), which are
defined as

Nash = 1 − ∑𝑛𝑖=1 (𝑦𝑖,obs − 𝑦𝑖,sim)2∑𝑛𝑖=1 (𝑦𝑖,obs − 𝑦obs)2 ,

RMSE = √∑𝑛𝑖=1 (𝑦𝑖,obs − 𝑦𝑖,sim)2𝑛 ,

MAE = ∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝑦𝑖,obs − 𝑦𝑖,sim󵄨󵄨󵄨󵄨𝑛 ,
𝑅 = ∑𝑛𝑖=1 (𝑦𝑖,obs − 𝑦obs) (𝑦𝑖,sim − 𝑦sim)√∑𝑛𝑖=1 (𝑦𝑖,obs − 𝑦obs)2 (𝑦𝑖,sim − 𝑦sim)2

,

Bias = ∑𝑛𝑖=1 (𝑦𝑖,sim − 𝑦𝑖,s)𝑛 .
(3)

Here,𝑦obs is the vector of the observed predictands,𝑦obs is
themean of the observed predictands, 𝑦sim is the vector of the
simulated predictands, and 𝑦sim is the mean of the simulated
predictands. In general, a higher Nash and 𝑅 indicate better
model efficiency. In contrast, smaller values of RMSE, MAE,
and Bias indicate higher accuracy in the model prediction.

4. Result Analysis and Discussion

4.1.The Choice of Predictors. One of themost important steps
in the development of downscaling models is the choice of
appropriate predictors [42]. The RF can evaluate the relative
contribution of each predictor for downscaling results by
combining the RSS decreases over all trees, which makes it
convenient in choosing predictors for the RF.Using two of the
stations as examples, Figure 4 shows the relative importance
of the predictors for the predictands at Guangzhou and
Nanning Stations, where the number of the predictor has
been given as indicated in Table 1. For a comprehensive
investigation of the predictor’s importance in the Pearl River
basin stations, the rank (the most important predictor is
indicated as 1) of the relative importance of the predictor in
each station is calculated and indicated in Figure 5.
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According to Figures 4 and 5, the number 26 predictor,
the mean temperature at 2m height, is the most important
predictor for all RF models at the 61 stations. Similarly, the
number 25 predictor, the surface-specific humidity, ranked
second for predictor importance at all stations. In contrast,
the number 5 predictor, surface vorticity, is the least impor-
tant predictor for all stations. The ranks of the other predic-
tors vary for the different stations, whichmay be caused by the
meteorological and geographical differences of the stations.

Because the OOB samples can provide unbiased esti-
mation of the RF model performance, the rationality of
including each factor can be tested using the MSEs of the
OOB (indicated by EOOB).The predictors of each station are
screened using the ranks of relative importance, which were
evaluated in previous step.Then theMSE of theOOB samples
in each station is calculated with the increase of the predictor
combination and plotted in Figure 6.

The results show that EOOB generally decreases, but
at a decreasing rate as more predictors are included. This
indicates that the RF avoids overfitting successfully. However,
the improvement of model performance by including more
predictors is slight when the predictor number exceeds a
certain number, which is seven in this study. With enough
computation resources, all predictors are chosen in the RF
modeling to downscale the temperature for these stations.

4.2. Comparative Study. The performance of the RF model
is compared with that of the MLR, ANN, and SVM models.

Partial Correlation Analysis
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Figure 7: Rank of partial correlation of predictors in the 61 stations.

Two predictor selection methods, PAR and PCA, are applied
in the four models.

The partial correlations of the 26 predictors with the
predictands are shown in Figure 7. It can be observed that the
ranks of the predictors’ partial correlation vary in different
stations. In general, the number 1 predictor, mean sea level
pressure, has the largest partial correlation in most of the
stations. However, the number 5 and number 8 predic-
tors, corresponding to surface vorticity and 500 hPa airflow
strength, have the smallest partial correlations in themajority
of the stations.

The partial correlation coefficients are used to decide the
variables that are included in the input combination. Based on
former studies [18, 43, 44], a combination of seven predictors
with the highest partial correlation coefficients are selected
and applied in the MLR, ANN, and SVM models. These
results are marked as MLR-par, ANN-par, and SVM-par.

PCA, which was commonly used by previous researchers,
is also used in the comparative study. Before PCA, the
predictors are standardized by subtracting themean from the
original values and then dividing the results by the standard
deviation of the original variables. The PCA method is then
applied to the standardized NCEP predictor variables to
extract principal components (PCs) that are orthogonal. The
obtained PCs preservemore than 90% of the variance present
at each station. Then, the PCs are used in the MLR, ANN,
and SVM modeling, and these results are marked as MLR-
pca, ANN-pca, and SVM-pca.

The calibration and validation results of the RF and
comparative models are summarized in Table 2, and the
average Nash in the calibration and validation periods for all
models are plotted in Figure 8.

The results showed that the RF is superior to the com-
parative models in the calibration and validation periods.
According to the average values of Nash, RMSE,MAE,𝑅, and
Bias, the RF for the 61 stations are 0.98, 0.80, 0.58, 0.99, and
0.00 in the calibration period and 0.94, 1.46, 1.12, 0.97, and
0.21 in the validation period, respectively. All of these criteria
are superior to those of the comparativemodels. It can also be
observed in Figure 8 that the RF shows higher precision and
more stability over the other models in the study area.

The results of the two parameter selection are also
compared for the MLR, ANN, and SVM models. The PAR is
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Figure 8: Average Nash in calibration and validation period for all models.

Table 2: Performance assessment for predictands in calibration and validation.

Models Periods Nash RMSE MAE 𝑅 Bias

MLR-par Calibration 0.92 1.76 1.35 0.96 0.00
Validation 0.92 1.66 1.29 0.96 0.01

MLR-pca Calibration 0.90 1.96 1.51 0.95 0.00
Validation 0.88 2.00 1.55 0.94 0.31

ANN-par Calibration 0.93 1.56 1.19 0.97 0.00
Validation 0.93 1.52 1.17 0.97 0.07

ANN-pca Calibration 0.92 1.68 1.28 0.96 0.00
Validation 0.91 1.72 1.32 0.96 0.35

SVM-par Calibration 0.92 1.76 1.34 0.96 −0.09
Validation 0.92 1.66 1.28 0.96 −0.06

SVM-pca Calibration 0.89 1.97 1.50 0.95 −0.10
Validation 0.88 1.99 1.53 0.94 0.22

RF Calibration 0.98 0.80 0.58 0.99 0.00
Validation 0.94 1.46 1.12 0.97 0.21

superior to PCA in theMLR, ANN and SVMmodels. For the
ANNmodels, the average𝑅 are similar in both the calibration
and validation period; however, the average Nash, RMSE,
MAE, and Bias of the results using PAR are superior to those
of PCA with decreases of 0.01, 0.12, 0.08, and 0 in the cali-
bration period and 0.02, 0.20, 0.15, and 0.28 in the validation
period, respectively. For the SVM models, the increases in
average Nash and𝑅 are 0.03 and 0.01 in the calibration period
and 0.04 and 0.02 in the validation period, respectively. The
decreases of average RMSE, MAE, and Bias are 0.21, 0.16,
and 0.01 in the calibration period and 0.33, 0.25, and 0.28

in the validation period, respectively. For the same, the PAR
is superior to PCA for MLR for most of the criteria, with
increases in Nash and 𝑅 and decreases in RMSE and MAE.

The spatial distributions of model precision of the RF
and the comparative models are shown in Figure 9, in
which Nash is selected as the evaluating criteria. For the
comparative results, the PAR was used in the MLR, ANN,
and SVM modeling. It is shown that the RF is superior to
the comparative models at most of the individual stations. In
addition, it can be observed that the precision of the RF in
stations located in the plain region is higher than that in the
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Figure 9: Continued.
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Figure 9: The spatial distribution of Nash for different models.

mountain regions, which indicates the limited applicability in
complex terrains.

5. Summary and Conclusions

Statistical downscaling models are effective in solving the
mismatch between large-scale climate models and local scale
hydrological responses. In this study, a statisticalmodel based
on the random forest method was proposed and applied
to the Pearl River basin. The objective of this study was to
investigate whether the RF approach could successfully sim-
ulate the complicated relationship between the predictors and
predictands. The daily mean temperature observations from
61 stations in the Pearl River Basin and the NCEP reanalysis
daily data from 1961 to 2005were selected in order to compare
the results of the RF model with those of the MLR, ANN,
and SVM models. The following summarizes the discussion
points and provides conclusions derived from this analysis:

(1) The RF model successfully simulated the relation-
ship between the predictors and predictands and
performed better than the MLR, ANN, and SVM
models. According to five statistical criteria, the RF
showed the highest model efficiency in both the
calibration and validation periods. In addition, it was
observed that themodel efficiency of the RF increased
continuously by considering more predictors. In this
study, all 26 predictors from the NCEP were consid-
ered in the RF modeling. By taking full advantage
of the information in the predictors and avoiding
the influence of noise, the RF model performance
dominated the other results.

(2) The built-in variable importance evaluation process
and the OOB samples in the RF made predictor
selection convenient. The built-in variable impor-
tance evaluation process ranked the importance of

each predictor for the prediction of the predictands.
The OOB samples gave the unbiased estimation of
the model efficiency. Both of these were helpful in
the predictor selection. Although all predictors were
considered in this study, they will be most valuable
when the RF is used in more complex downscaling
problems, such as precipitation downscaling.

(3) The spatial distribution of model precision at the
individual stations for the RF and the comparative
models was also discussed. Although the RF was
superior to the comparative models for most of the
stations, there was still room for improvement for the
prediction accuracy in mountainous areas.

As this studymainly discussed the development and com-
parison of temperature downscalingmethods, future projects
in the Pearl River basin were not further explored. We will
pursue further research in the application of the RF to addi-
tionalmeteorological elements, such as the precipitation.This
will be helpful in understanding the strength and limitation
of the RF method. Furthermore, the surface parameters, like
the elevation, slope, vegetation, and so forth, also influence
the distribution of these meteorological elements, especially
in complex terrain [45]; wewill explore further in considering
these parameters as part of model input.
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