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We consider the problem of determining a least expected time (LET) path that minimizes the number of transfers and the expected
total travel time in a stochastic schedule-based transit network. A time-dependent model is proposed to represent the stochastic
transit network where vehicle arrival times are fully stochastically correlated. An exact label-correcting algorithm is developed,
based on a proposed dominance condition by which Bellman’s principle of optimality is valid. Experimental results, which are
conducted on the Ho Chi Minh City bus network, show that the running time of the proposed algorithm is suitable for real-time
operation, and the resulting LET paths are robust against uncertainty, such as unknown traffic scenarios.

1. Introduction

The routing problem in a schedule-based transit network
involves scheduling decisionsmade by a traveler, for example,
accessing to a stop (station), walking between stops, waiting
to board, traveling in-vehicle, alighting, and egressing. These
decisions guide the traveler from an origin to a destination
withminimum travel costs, such as number of transfers, total
travel time, walking time, and waiting time. The decisions of
the traveler are not only constrained by the network config-
uration, that is, transit routes (lines), but also constrained by
the schedules of transit vehicles. However, due to the stochas-
tic and time-varying nature of vehicle travel time, as well as
the effects of the arrival of a transit vehicle at upstream stop on
its arrivals at downstream stops, the arrival times of transit
vehicles usually do not follow their schedules. Therefore, the
determination of robust routing decisions can greatly affect
the quality of the routing service provided under uncertain
conditions.

Alongwith the stochasticity of vehicle travel times and the
relationship between vehicle arrival times on the same transit
route, there might also exist overlaps between transit routes
in the network.Therefore, the arrival times of transit vehicles
would be not only stochastic but also fully stochastically cor-
related. The routing problem with stochastically correlated

link travel times has been investigated intensively in highway
networks [1–6]. However, its counterpart in transit networks,
where vehicle arrival times are considered as stochastically
correlated, has not been addressed, while existing works in
literature assumed vehicle arrival times to be deterministic
[7–13] or statistically independent [14]. The main issue when
designing a routing algorithm in a schedule-based transit
network with correlated vehicle arrival times is to model the
stochastic correlation of vehicle arrival times. This issue is
related to the question of how to incorporate the correlation
of vehicle arrival times into the routing process, in which
not only constraints on transit routes but also constraints on
vehicle arrival times are taken into account:

(i) A time-dependent model is proposed for stochastic
schedule-based transit networks where the correla-
tion of all vehicle arrival times is presented as a
scenario. The graph model captures travelers’ deci-
sions, namely, boarding, traveling in-vehicle, alight-
ing, walking, and time constraints of these decisions
in each scenario.

(ii) A new dominance condition for paths is established
with respect to number of transfers and travel times
over a set of possible scenarios. Then a formal proof
that Bellman’s principle of optimality is valid with
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nondominated paths is presented. This theoretical
establishment enables the use of pretrip online infor-
mation to reduce uncertainties for more robust LET
paths.

(iii) An exact link-based routing algorithm is proposed for
efficiently determining LET paths, based on Bellman’s
principle of optimality.The results from experiments,
which are conducted using data from a real-size bus
network in Ho Chi Minh City, show that the running
time of the proposed algorithm is feasible for online
applications. Also, LET paths are shown to be robust
in the presence of unknown scenarios.

The remaining of the paper is organized as follows. We
present related researches on the routing problem in transit
networks in Section 2. In Section 3, we define components
used to develop the algorithm for our routing problem.Then
we propose the solution algorithm for determining the LET
path in Section 4. Various experiments are conducted, and
their results are discussed in Section 5. Finally, the conclusion
is given in Section 6.

2. Related Work

A transit routing algorithm in literature has been built on
the notion of path [7, 8, 15] or hyperpath [16–18]. A path
consists of fixed decisions made by a traveler at stops, which
are determined before he/she leaves the origin. In contrast, a
hyperpath represents routing strategies in which the traveler
is allowed to change his/her decision at each intermediate
stop, depending on the previous decisions and what are likely
to happen in the future. Routing based on hyperpath was
shown to make better travel costs under uncertainty but
requires the incorporation of online information and high
computational complexity [19].

Treatment for the routing problem in a transit network
can be different, depending on the type of transit services,
that is, either headway-based [15–17] or schedule-based [7, 8,
11, 12]. In the former, transit services are represented by transit
routes, and arrival/departure times of transit vehicles are not
explicitly considered. This results in an approximation in
calculating boarding times and in-vehicle travel times. In the
latter, transit services are explicitly specified in terms of trips
(runs), in which arrival/departure times of transit vehicles
at stops are considered. Meanwhile the routing algorithm in
a headway-based transit network can employ shortest path
algorithms, for example, Dijkstra’s algorithm [20], which are
the same as those used for highway networks. A schedule-
based transit network requires a time-dependent network
presentation where routing processes of travelers are not only
constrained by the network topology but also constrained
by scheduled arrival/departure times of transit vehicles.
Therefore, modeling transit services is the first and important
task in solving the routing problem in a schedule-based
transit network. As classified by Nuzzolo and Crisalli [21],
the representation of a schedule-based transit network can
be one of the three forms: the diachronic (time-expanded)
network [9, 10, 13], the dual network [22], and the mixed

line-based/database supply model (time-dependent model)
[11, 23, 24].

In the context where transit services are insufficiently
reliable, headways and arrival/departure times of transit vehi-
cles are commonly modeled as random variables with well-
known forms of probability distribution, for example, expo-
nentially distributed headways [25, 26], Gaussian distributed
headways [27, 28], and Gaussian distributed scheduled times
[14]. Along with the stochasticity of transit services, the
uncertainty in travelers’ perceptions on different types of
travel costs can be also regarded as a source of stochasticity in
a transit routing problem [8, 27, 28]. In these works, random
weights for different travel cost components, such as transfer
penalty, walking time, and waiting time, were incorporated
into the routing process.

The routing problem in transit networks has been inves-
tigated with various assumptions on many aspects, such
as capacity limitation, congestion and overcrowding issues,
vehicle capacity, and boarding failures [29]. Nuzzolo and
Crisalli [21] investigated various routing models for low-
and high-frequency schedule-based transit networks. In the
former, for example, in regional bus or railway networks,
routing processes are based on arrival/departure times of
transit vehicles [30, 31]. In the latter, typically in urban areas,
travelers usually have a large number of options at stops to
reach their destination. In this case, arrivals of travelers at
stops do not rely heavily on vehicle arrival/departure times
but are significantly affected by vehicle congestion, which
are defined in literature as situations in which a traveler
cannot board the first arriving vehicle and has to wait for
next vehicles. Vehicle congestion can bemodeled implicitly as
increasing discomfort functions [11, 12, 32] or explicitly with
vehicle capacity or set availability constraints [33–35].

3. Network Modeling

In this section, we define components used to develop the
algorithm for determining LET paths in stochastic schedule-
based transit networks.

3.1. Stochastic Schedule-Based Transit Network. We consider
transit network B = (S,R,T,Q,C), where S is the set
of stops and R is the set of routes. A route, 𝑟 ∈ R, is a
fixed sequence of stops through which transit vehicles run
periodically with fixed trips and defined by a set

S
𝑟
= {𝑆

𝑘

𝑟
: 𝑘 = 1, . . . , 𝐾

𝑟
} ⊆ S, (1)

where 𝑆𝑘
𝑟
is the 𝑘th stop and𝐾

𝑟
is the number of stops on route

𝑟. Let 𝐼
𝑟
be the number of trips of route 𝑟 over a set of time

intervalsT = {0, 𝜎, 2𝜎, . . . , 𝑇𝜎}, where 𝜎 is unit of time and𝑇

is the last time interval. The universal stochastic scenario set
Q is a set of all known possible scenarios in the network such
that

∑

𝑞∈Q

𝑝

𝑞

= 1, (2)
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Figure 1: A simple transit network.

where 𝑝

𝑞 is the occurrence probability of scenario 𝑞 ∈ Q.
Each scenario 𝑞 can be defined by a set of stop times

C
𝑞
= ⋃

𝑟∈R

𝐼
𝑟

⋃

𝑖=1

𝐾
𝑟

⋃

𝑘=1

{𝜃

𝑞

𝑟𝑖𝑘
} , (3)

where 𝜃𝑞
𝑟𝑖𝑘

∈ T denotes the stop time (scheduled arrival time
of a transit vehicle) at the 𝑘th stop of the 𝑖th trip on route 𝑟

in scenario 𝑞 andC is the universal set of all stop times in all
possible scenarios such that

C = ⋃

𝑞∈Q

C
𝑞
. (4)

In the context of transit networks, there might exist
overlaps among routes. A scenario presents a stochastic cor-
relation of not only stop times on the same route but also stop
times on routes sharing the same physical links. The proba-
bility of a scenario happening is the full joint probability of
all stop times taking place, and stop times are known for each
scenario a priori.This allows us explicitly to take into account
delays resulting from transfer failures due to late arrivals and
their effects on the total travel time in each scenario.

For example, consider the transit network shown in
Figure 1 withS = {𝐴, 𝐵, 𝐶} andR = {1, 2, 3}. In this network,
there are three routes in which routes 1 and 2 provide services
from stop 𝐴 to stop 𝐵 with 𝑆

1

1
= 𝑆

1

2
= 𝐴 and 𝑆

2

1
= 𝑆

2

2
= 𝐵, and

route 3 provides services from stop 𝐵 to stop 𝐶 with 𝑆

1

3
= 𝐵

and 𝑆

2

3
= 𝐶. The stop times of transit vehicles in the network

are shown in Table 1 with T = {0, . . . , 16}, Q = {𝑞
1
, 𝑞
2
, 𝑞
3
},

and C = {C
1
,C
2
,C
3
} in which each of the routes has two

trips and each scenario 𝑞 ∈ Q has an occurrence probability
of 𝑝𝑞 = 1/3.

In this network, a traveler, who starts from origin stop 𝐴

at time 𝑡 = 0, has two choices of routes to reach destination
stop 𝐶, namely, 𝑝

1
: 𝐴

route 1
→ 𝐵

route 3
→ 𝐶 and 𝑝

2
: 𝐴

route 2
→

𝐵

route 3
→ 𝐶. With Assumption (4), the choices of trips for

the earliest arrival time at stop 𝐶 in different scenarios are
shown in Table 2. In particular, if the traveler uses the choice
of routes 𝑝

1
, his/her expected arrival time at stop 𝐶 equals

(11 + 12 + 16)/3 = 13. In this case, the choice of trips for 𝑝
1

can be interpreted that, at stop 𝐵, the traveler transfers to trip
1 of route 3 successfully in scenarios 𝑞

1
and 𝑞
2
but misses this

trip in scenario 𝑞
3
. This leads to a later arrival time, that is,

16 instead of 10, at stop 𝐶, which contributes to the expected
arrival time of the choice of routes 𝑝

1
. Similarly, we have the

expected arrival time at stop 𝐶 of the choice of routes 𝑝
2
that

equals 12.66. Note that transfer failures might spread over
several later trips, depending on scenario.

Table 1: Stop times of trips in the network presented in Figure 1 over
three possible scenarios each of which has an occurrence probability
of 1/3.

Route Trip Stop C
1

C
2

C
3

1
1 A 1 1 1

B 5 5 7

2 A 4 4 4
B 7 8 9

2
1 A 1 1 1

B 7 7 5

2 A 4 4 4
B 10 9 11

3
1 B 6 6 6

C 11 12 10

2 B 10 10 10
C 14 14 16

Table 2: The choices of trips for the earliest arrival time from stop
𝐴 to stop𝐶 at time 𝑡 = 0 in different scenarios in the network shown
in Figure 1 and the schedules shown in Table 1.

Choice
of
routes

Scenario Choice of trips Arrival time

𝑝
1

𝑞
1

𝐴

trip 1,route 1
→ 𝐵

trip 1,route 3
→ 𝐶 11

𝑞
2

𝐴

trip 1,route 1
→ 𝐵

trip 1,route 3
→ 𝐶 12

𝑞
3

𝐴

trip 1,route 1
→ 𝐵

trip 2,route 3
→ 𝐶 16

𝑝
2

𝑞
1

𝐴

trip 1,route 2
→ 𝐵

trip 2,route 3
→ 𝐶 14

𝑞
2

𝐴

trip 1,route 2
→ 𝐵

trip 2,route 3
→ 𝐶 14

𝑞
3

𝐴

trip 1,route 2
→ 𝐵

trip 1,route 3
→ 𝐶 10

In this paper, the following assumptions are adopted:

(1) Actual travel times of transit vehicles between stops
on a given route are nonnegative; that is,

𝜃

𝑞

𝑟𝑖𝑘
< 𝜃

𝑞

𝑟𝑖,𝑘+1
, ∀𝑟, 𝑖, 𝑘, 𝑞. (5)

(2) Actual arrival times of transit vehicles for later trips
cannot be earlier than those of earlier trips; that is,

𝜃

𝑞

𝑟𝑖𝑘
< 𝜃

𝑞

𝑟,𝑖+1,𝑘
, ∀𝑟, 𝑖, 𝑘, 𝑞. (6)

(3) Arrival times of transit vehicles in different scenarios
are statistically independent.

(4) Vehicle capacity, overcrowding, and fare issues are
not considered. In other words, it is assumed that
passengers always board any arriving transit vehicle
successfully.

(5) There is a similar perception for passengers on differ-
ent time components, such as waiting time, walking
time, and in-vehicle time.

Assumptions (1) and (2) are expected to be valid in prac-
tice where it is conventional that transit vehicles serving trips
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on the same route keep away from each other at certain dis-
tance and their travel times are always positive. Assumption
(3) is equivalent to the assumption used in the routing prob-
lem in highway network with correlated link travel times [4–
6]; that is, link travel times in different scenarios are stochasti-
cally independent. Assumptions (4) and (5) have been widely
adopted in literature, for example, [14, 18, 19, 25, 26].

3.2. Time-Dependent Model. A time-dependent graph model
(similar to [24]) is used to present the transit network as a
directed graph whose arcs model travelers’ decisions, namely,
boarding, traveling in vehicles, alighting, and walking.

LetG = (N,A,T) denote the graphmodeling the transit
network B, where the set of nodes N and the set of arcs A
are defined as

(i) N = (⋃
𝑟∈R N

𝑟
) ∪N

𝑆
,

(ii) A = (⋃
𝑟∈R A

𝑟
) ∪A
𝐵
∪A
𝐷
∪A
𝑊
,

in which subsets ofN andA are defined as follows:

N
𝑆
is the set of stop nodes—anode𝑉

𝑠
∈ N
𝑆
represents

the location of stop 𝑠 ∈ S.
N
𝑟
is the set of route nodes associated with route 𝑟 ∈

R—anode𝑉𝑟
𝑠
∈ N
𝑟
represents a transfer point where

route 𝑟 ∈ R visits stop 𝑠 ∈ S
𝑟
.

A
𝐵
is the set of boarding arcs—arc ⟨𝑢, V⟩ ∈ A

𝐵
, where

𝑢 ≡ 𝑉
𝑠
∈ N
𝑆
and V ≡ 𝑉

𝑟

𝑠
∈ N
𝑟
, represents the action

of a traveler boarding an arriving vehicle of route 𝑟 at
stop 𝑠.
A
𝑟
is the set of in-vehicle arcs of route 𝑟 ∈ R—arc

⟨𝑢, V⟩ ∈ A
𝑟
, where 𝑢 ≡ 𝑉

𝑟

𝑠
∈ N
𝑟
and V ≡ 𝑉

𝑟

𝑠
 ∈ N

𝑟
,

represents the action of a traveler being in-vehicle of
route 𝑟 from stop 𝑠 to stop 𝑠

.
A
𝑊
is the set ofwalking arcs—arc ⟨𝑢, V⟩ ∈ A

𝑊
, where

𝑢 ≡ 𝑉
𝑠
∈ N
𝑆
and V ≡ 𝑉

𝑠
 ∈ N

𝑆
, represents the action

of a traveler walking from stop 𝑠 to stop 𝑠

.
A
𝐷
is the set of alighting arcs—arc ⟨𝑢, V⟩ ∈ A

𝐷
, where

𝑢 ≡ 𝑉

𝑟

𝑠
∈ N
𝑟
and V ≡ 𝑉

𝑠
∈ N
𝑆
, represents the action

of a traveler alighting the current vehicle of route 𝑟 at
stop 𝑠.

Figure 2 presents the graph model for the transit network
as shown in Figure 1. Let𝑃

𝑜V denote all paths connecting node
𝑜 ∈ N and node V ∈ N in graph G or all 𝑜-V paths in short.
A well-defined 𝑜-V path 𝑝, defined in Definition 1, in graphG
represents a choice of routes when he/she travels from origin
stop 𝑆

𝑜
∈ S to destination stop 𝑆

𝑑
∈ S within the transit

networkB.

Definition 1 (well-defined 𝑜-V path). Path 𝑝 = ⟨𝑜 ≡

V
1
, . . . , V

𝑛
≡ V⟩ ∈ 𝑃

𝑜V is well-defined if 𝑜, V ∈ N
𝑆
and

⟨V
𝑖
, V
𝑖+1

⟩ ∈ A, 𝑖 = 1, . . . , 𝑛 − 1, 𝑛 > 2.

3.3. Arc Time and Transfer Weights. Note that only trav-
elers’ decisions are captured in Section 3.2. For modeling
constraints on times when the schedules of transit vehicles
are taken into account, times are then assigned to arcs as arc
weights.

V1
A

VA

V1
B

VB

V3
C

VC

V3
B

V2
A

V2
B

Figure 2: The graph that models the network shown in Figure 1.

Let 𝜏𝑞
𝑢V(𝑡) be the time weight on arc ⟨𝑢, V⟩ ∈ A with time

𝑡 ∈ T at node 𝑢 in scenario 𝑞 ∈ Q. Depending on the type of
arc ⟨𝑢, V⟩, the timeweight is either boarding penalty, in-vehicle
travel time, alighting penalty, or walking time. In particular,
𝜏

𝑞

𝑢V(𝑡) can be assigned according to the four following cases.

Case 1. If ⟨𝑢, V⟩ ∈ A
𝐵
, where 𝑢 ≡ 𝑉

𝑆
𝑘

𝑟

and V ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

, the
traveler stands at the 𝑘th stop at time 𝑡 and boards a vehicle
of arriving trip of route 𝑟. Due to unlimited vehicle capacity
assumption, the boarded trip is commonly the first arriving
one [24, 36, 37]. For boarding an arriving trip, the traveler
must be at the stop before the bus of that trip leaves the stop
by at least 𝜀𝑘

𝑟𝑖
units of time (note that herein 𝜎 is set to one

and will be omitted for convenience in the rest of the paper).
The boarding penalty for the first arriving trip if the traveler
stands at the 𝑘th stop of route 𝑟 at time 𝑡 is expressed by

𝜏

𝑞

𝑢V (𝑡) = min {𝜃

𝑞

𝑟𝑖𝑘
≥ 𝑡 + 𝜀

𝑘

𝑟𝑖
: 𝑖 = 1, . . . , 𝐼

𝑟
} − 𝑡,

𝑢 ≡ 𝑉
𝑆
𝑘

𝑟

, V ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

.

(7)

Case 2. If ⟨𝑢, V⟩ ∈ A
𝑟
, 𝑟 ∈ R, where𝑢 ≡ 𝑉

𝑟

𝑆
𝑘−1

𝑟

and V ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

, the
traveler rides on a vehicle serving a certain trip, for example,
the 𝑖th trip, and travels from the (𝑘 − 1)th stop to 𝑘th stop
on route 𝑟. The time weight on arc ⟨𝑢, V⟩ is therefore the in-
vehicle travel time of the 𝑖th trip from the (𝑘−1)th to 𝑘th stop.
The in-vehicle travel time of the 𝑖th trip from the (𝑘−1)th stop
to 𝑘th stop on route 𝑟 is

𝜏

𝑞

𝑢V (𝑡) = 𝜃

𝑞

𝑟𝑖𝑘
− 𝜃

𝑞

𝑟𝑖,𝑘−1
, 𝑢 ≡ 𝑉

𝑟

𝑆
𝑘−1

𝑟

, V ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

, 𝑡 = 𝜃

𝑞

𝑟𝑖,𝑘−1
, (8)

where the traveler’s arrival time 𝑡 at the (𝑘 − 1)th stop is the
stop time 𝜃

𝑞

𝑟𝑖,𝑘−1
of the vehicle in scenario 𝑞.

Case 3. If ⟨𝑢, V⟩ ∈ A
𝐷
, where𝑢 ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

and V ≡ 𝑉
𝑆
𝑘

𝑟

, the traveler
alights from a vehicle serving a trip, for example, the 𝑖th trip,
at the 𝑘th stop of route 𝑟.The arc timeweight can be expressed
by

𝜏

𝑞

𝑢V (𝑡) = 𝜀

𝑘

𝑟𝑖
, 𝑢 ≡ 𝑉

𝑟

𝑆
𝑘

𝑟

, V ≡ 𝑉
𝑆
𝑘

𝑟

, (9)

where 𝜀

𝑘

𝑟𝑖
is the alighting time for the 𝑖th trip at the 𝑘th stop

on route 𝑟.

Case 4. If ⟨𝑢, V⟩ ∈ A
𝑊
, where 𝑢 ≡ 𝑉

𝑠
and V ≡ 𝑉

𝑠
 , the traveler

walks from stop 𝑠 to stop 𝑠

. Let 𝜔
𝑠𝑠
 be the minimum time
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Table 3: Arc time weights with boarding penalty 𝜀

𝑘

𝑟𝑖
= 1 and alighting penalty 𝜀

𝑘

𝑟𝑖
= 0 in the network shown in Figure 2.

Time ⟨𝑉
𝐴
, 𝑉

1

𝐴
⟩ ⟨𝑉

𝐴
, 𝑉

2

𝐴
⟩ ⟨𝑉

𝐵

, 𝑉

1

𝐵
⟩ ⟨𝑉

𝐵
, 𝑉

2

𝐵
⟩ ⟨𝑉

𝐵
, 𝑉

3

𝐵
⟩ ⟨𝑉

𝐶
, 𝑉

3

𝐶
⟩ ⟨𝑉

1

𝐴
, 𝑉

1

𝐵
⟩ ⟨𝑉

2

𝐴
, 𝑉

2

𝐵
⟩ ⟨𝑉

3

𝐵
, 𝑉

3

𝐶
⟩

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

𝑞
1

𝑞
2

𝑞
3

0 1 1 1 1 1 1 5 5 7 7 7 5 6 6 6 11 12 10 — — — — — — — — —
1 3 3 3 3 3 3 4 4 6 6 6 4 5 5 5 10 11 9 4 4 6 6 6 4 — — —
2 2 2 2 2 2 2 3 3 5 5 5 3 4 4 4 9 10 8 — — — — — — — — —
3 1 1 1 1 1 1 2 2 4 4 4 2 3 3 3 8 9 7 — — — — — — — — —
4 — — — — — — 1 1 3 3 3 1 2 2 2 7 8 6 3 4 5 6 5 7 — — —
5 — — — — — — 2 3 2 2 2 6 1 1 1 6 7 5 — — — — — — — — —
6 — — — — — — 1 2 1 1 1 5 4 4 4 5 6 4 — — — — — — 5 6 4
7 — — — — — — — 1 2 3 2 4 3 3 3 4 5 3 — — — — — — — — —
8 — — — — — — — — 1 2 1 3 2 2 2 3 4 2 — — — — — — — — —
9 — — — — — — — — — 1 — 2 1 1 1 2 3 1 — — — — — — — — —
10 — — — — — — — — — — — 1 — — — 1 2 6 — — — — — — 4 4 6
11 — — — — — — — — — — — — — — — 3 1 5 — — — — — — — — —
12 — — — — — — — — — — — — — — — 2 2 4 — — — — — — — — —
13 — — — — — — — — — — — — — — — 1 1 3 — — — — — — — — —
14 — — — — — — — — — — — — — — — — — 2 — — — — — — — — —
15 — — — — — — — — — — — — — — — — — 1 — — — — — — — — —
16 — — — — — — — — — — — — — — — — — — — — — — — — — — —

Time ⟨𝑉

1

𝐴
, 𝑉
𝐴
⟩ ⟨𝑉
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𝐶
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𝐶
⟩ ⟨𝑉

𝐴
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𝐵
⟩ ⟨𝑉

𝐵
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𝐴
⟩
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𝑞
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𝑞
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𝑞
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0 — — — — — — — — — — — — — — — — — — 11 11 11 11 11 11
1 0 0 0 0 0 0 — — — — — — — — — — — — 11 11 11 11 11 11
2 — — — — — — — — — — — — — — — — — — 11 11 11 11 11 11
3 — — — — — — — — — — — — — — — — — — 11 11 11 11 11 11
4 0 0 0 0 0 0 — — — — — — — — — — — — 11 11 11 11 11 11
5 — — — — — — 0 0 — — — 0 — — — — — — 11 11 11 11 11 11
6 — — — — — — — — — — — — 0 0 0 — — — 11 11 11 11 11 11
7 — — — — — — 0 — 0 0 0 — — — — — — — 11 11 11 11 11 11
8 — — — — — — — 0 — — — — — — — — — — 11 11 11 11 11 11
9 — — — — — — — — 0 — 0 — — — — — — — 11 11 11 11 11 11
10 — — — — — — — — — 0 — — 0 0 0 — — 0 11 11 11 11 11 11
11 — — — — — — — — — — — 0 — — — 0 — — 11 11 11 11 11 11
12 — — — — — — — — — — — — — — — — 0 — 11 11 11 11 11 11
13 — — — — — — — — — — — — — — — — — — 11 11 11 11 11 11
14 — — — — — — — — — — — — — — — 0 0 — 11 11 11 11 11 11
15 — — — — — — — — — — — — — — — — — — 11 11 11 11 11 11
16 — — — — — — — — — — — — — — — — — 0 11 11 11 11 11 11

required for walking between stops 𝑠 and 𝑠

, and the walking
time weight is given by

𝜏

𝑞

𝑢V (𝑡) = 𝜔
𝑠𝑠
 , 𝑢 ≡ 𝑉

𝑠
, V ≡ 𝑉

𝑠
 . (10)

Let 𝑓
𝑢V be the weight for the number of transfers on arc

⟨𝑢, V⟩. Note that 𝑓
𝑢V does not depend on time and scenario.

The arc weight for number of transfers equals one if the arc is
a boarding arc and zero for otherwise. Therefore,

𝑓
𝑢V =

{

{

{

1 if ⟨𝑢, V⟩ ∈ A
𝐵
,

0 otherwise.
(11)

In summary, Table 3 shows the arc time weights in the
example graph model in Figure 2 after applying (7), (8), (9),
and (10) with boarding penalty 𝜀

𝑘

𝑟𝑖
= 1 and alighting penalty

𝜀

𝑘

𝑟𝑖
= 0. Each arc with symbol “—” at a given time and in

a given scenario means the traveler’s action associated with
that arc is restricted at that time and scenario. For example,
considering arc ⟨𝑉

𝐵
, 𝑉

2

𝐵
⟩, in scenario 𝑞

1
, from times 0 to 9 the

arc represents the traveler’s action of boarding route 2 at stop
𝐵 with different boarding penalties; that is, from times 0 to 6
the traveler boards trip 1 with penalties from 7 to 1, and from
times 7 to 9 the traveler boards trip 2 with penalties from 3
to 1. After time 9 the traveler’s boarding action is restricted
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since no trip of route 2 will arrive at stop 𝐵 in scenario 𝑞
1
(see

the timetable in Table 1). Note that only walking arcs, that is,
⟨𝑉
𝐴
, 𝑉
𝐵
⟩ and ⟨𝑉

𝐵
, 𝑉
𝐴
⟩, are available at any time since travelers

can walk freely. For shortest path problems, restricted actions
can be set with very large integer weights.

4. Least Expected Time (LET) Path Problem

In Section 3, we propose and explain the graph model-
ing transit network that captures travelers’ actions, namely,
boarding, in-vehicle, alighting, and walking, and time con-
straints associated with travelers’ decisions. Below we will
study the LET path problem in stochastic schedule-based
transit networks using the graph model.

4.1. Problem Definition. The LET path problem in this paper
is studied from one origin node 𝑜 ∈ N for a fixed departure
time 𝑡 to all destination nodes V ∈ N over a scenario set Ω ⊆

Q. The criteria used for evaluating a path include the number
of transfers and the expected total travel time across the set
of scenariosΩ.

Let 𝜏𝑞
𝜆
(𝑢, 𝑡) be the travel time on 𝑜-𝑢 path 𝜆, 𝑢 ∈ N, in

scenario 𝑞 ∈ Ω. Let us consider 𝑜-V path 𝜆

 that is expanded
from 𝑜-𝑢 path 𝜆 via arc ⟨𝑢, V⟩ ∈ A, denoted by 𝜆



= 𝜆♢⟨𝑢, V⟩.
The relationship between travel time on path 𝜆

 and that of
its subpath 𝜆 for departure time 𝑡 in scenario 𝑞 is given by

𝜏

𝑞

𝜆

(V, 𝑡) = 𝜏

𝑞

𝜆
(𝑢, 𝑡) + 𝜏

𝑞

𝑢V (𝑡 + 𝜏

𝑞

𝜆
(𝑢, 𝑡)) , (12)

where 𝜏𝑞
𝑢V(𝑡) is the timeweight on arc ⟨𝑢, V⟩ at time 𝑡. Depend-

ing on the type of arc ⟨𝑢, V⟩, arc weight 𝜏𝑞
𝑢,V(𝑡) is determined

by one of (7), (8), (9), and (10). When Assumption (3) holds,
the expected (mean) travel time of 𝑜-V path 𝜆

 with departure
time 𝑡 over scenario setΩ, denoted by 𝑇

𝜆
(V, 𝑡, Ω), is given by

𝑇
𝜆
 (V, 𝑡, Ω) =

1

∑
𝑞∈Ω

𝑝

𝑞
∑

𝑞∈Ω

𝜏

𝑞

𝜆

(V, 𝑡) 𝑝𝑞, (13)

where 𝑝

𝑞 is the occurrence probability of scenario 𝑞 and
𝑇
𝜆
(𝑜, 𝑡, Ω) = 0.
We also have the relationship between the number of

transfers on path 𝜆

, that is, 𝑓
𝜆
(V), and the number of

transfers on its subpath 𝜆, that is, 𝑓
𝜆
(𝑢), in the following:

𝑓
𝜆
 (V) = 𝑓

𝑢V + 𝑓
𝜆
(𝑢) , (14)

where weight 𝑓
𝑢V for the number of transfers on arc ⟨𝑢, V⟩ is

given by (11), and 𝑓
𝜆
(𝑜) = 0.

From the transit travelers’ perspective, it is more useful
thatwe aim tominimize the number of transfers first and then
the expected travel time across the scenario set.The LET path
is given by Definition 2.

Definition 2 (LET 𝑜-V path). The LET 𝑜-V path 𝜆

∗ with depar-
ture time 𝑡 ∈ T over scenario setΩ ⊆ Q, ∀V ∈ N, is given by

𝜆

∗

= arg min
𝜆∈𝑃
𝑜V

{𝑇
𝜆
(V, 𝑡, Ω)} ,

s.t. 𝑓
𝜆
∗ (V) = min

𝜆∈𝑃
𝑜𝑣

{𝑓
𝜆
(V)} .

(15)

4.2. Dominance Condition. A LET 𝑜-V path problem with
departure time 𝑡 ∈ T over scenario set Ω ∈ Q defined
in (15) can be solved by enumerating all possible 𝑜-V paths
𝑃
𝑜V and then minimizing the number of transfers and the

expected travel time of each 𝑜-V path in𝑃
𝑜V for departure time

𝑡 over Ω using (12) and (14). Such a brute force algorithm
is inefficient. We therefore propose a dominance condition
by which the optimal LET path is satisfied. First, we define a
dominance condition in Definition 3.Then, the LET 𝑜-V path
for departure time 𝑡 over scenario setΩ is found in the set of
nondominated 𝑜-V paths at time 𝑡 overΩ by Proposition 4.

Note that the dominance condition in Definition 3 is not
as strict as the one with at least one scenario 𝑞 ∈ Q such
that 𝜏

𝑞

𝜆

(V, 𝑡) < 𝜏

𝑞

𝜆
(V, 𝑡). This is because, in the constructed

graph described in Section 3.2, there might exist many
nondominated paths, which present the same choice of routes
and are only different from each other in transfer locations.

Definition 3 (nondominated 𝑜-V path). Given a departure
time 𝑡 ∈ T, 𝑜-V path 𝜆

, ∀V ∈ N, dominates another 𝑜-V
path over the scenario setΩ ⊆ Q, if

𝑓
𝜆
 (V) < 𝑓

𝜆
(V) , or (16)

𝑓
𝜆
 (V) = 𝑓

𝜆
(V) ,

𝜏

𝑞

𝜆

(V, 𝑡) ≤ 𝜏

𝑞

𝜆
(V, 𝑡) , ∀𝑞 ∈ Ω.

(17)

Then 𝑜-V path 𝜆

 is nondominated in 𝑃
𝑜V for departure time 𝑡

over scenario set Ω if 𝜆 is not dominated by any 𝑜-V path at
time 𝑡 overΩ.

Proposition 4. Given a departure time 𝑡 ∈ T and a set of
scenarios Ω ⊆ Q, the LET 𝑜-V path at time 𝑡 over Ω, ∀V ∈ N,
belongs to the set of nondominated 𝑜-V paths at time 𝑡 over Ω.

By Definition 3, the problem of determining nondom-
inated 𝑜-𝑑 paths can be treated as multicriteria shortest
path problem with (|Q| + 1) independent criteria, namely,
number of transfers, as well as travel times corresponding
to |𝑄| scenarios. Theorem 7 below implies that Bellman’s
principle of optimality is valid when nondominated paths
are defined with respect to their nondominated subpaths. We
later develop a forward label-correcting algorithm to solve the
LET path problem based onTheorem 7. Note thatTheorem 7
is established on the grounds of Lemmas 5 and 6, being only
valid when Assumptions (1) and (2) hold.

Lemma 5. For any given arc ⟨𝑢, V⟩ ∈ A, 𝑓
𝑢V ≥ 0, and 𝜏

𝑞

𝑢V(𝑡) ≥

0, ∀𝑡 ∈ T, ∀𝑞 ∈ Q.

Lemma 6. For any given arc ⟨𝑢, V⟩ ∈ A, if 𝑡
1
≤ 𝑡
2
,

𝑡
1
+ 𝜏

𝑞

𝑢V (𝑡1) ≤ 𝑡
2
+ 𝜏

𝑞

𝑢V (𝑡2) , ∀𝑡
1
, 𝑡
2
∈ T, ∀𝑞 ∈ Q. (18)

Theorem 7. Given departure time 𝑡 ∈ T and a set of scenarios
Ω ⊆ Q, every nondominated 𝑜-V path 𝜆

∗ is made up from
nondominated 𝑜-𝑢 subpaths, where 𝑢 is any intermediate node
on path 𝜆.
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The set of all o-v paths 

The set of nondominated o-v paths for departure time t over 
scenario set 𝒬 

The set of nondominated o-v paths 

x

x
x

LET o-v path at time t over 
scenario set Ω

The fastest o-v path 

The LET o-v path at 

set 𝒬 

x

⊆ 𝒬

scenario set Ω ⊆ 𝒬

q ∈ Ω

q ∉ Ω

The fastest o-� path

time t over scenario

time t in scenario

time t in scenario

for departure time t over 

Figure 3:The relationship between nondominated and LET and the
fastest 𝑜-V paths for departure time 𝑡 over the universal scenario set
Q and its subset Ω.

4.3. Relationship between Nondominated, LET, and
the Fastest Paths

Definition 8 (the fastest 𝑜-V path). Given departure time 𝑡 ∈

T and scenario 𝑞 ∈ Q, the fastest 𝑜-V path 𝛾

∗ at time 𝑡 in
scenario 𝑞, ∀V ∈ N, is given by

𝛾

∗

= arg min
𝜆∈𝑃
𝑜V

{𝜏

𝑞

𝜆
(V, 𝑡)} ,

s.t. 𝑓
𝛾
∗ (V) = min

𝜆∈𝑃
𝑜V

{𝑓
𝜆
(V)} .

(19)

Proposition 9. Given the fastest 𝑜-V path 𝛾

∗ at time 𝑡 in
scenario 𝑞 ∈ Q, ∀V ∈ N, and a set of nondominated 𝑜-V paths
at time 𝑡 over the scenario set Ω ⊆ Q, if 𝑞 ∈ Ω, 𝛾∗ belongs to
the set of nondominated 𝑜-V paths at time 𝑡 over Ω.

Proposition 10. Given departure time 𝑡 and two sets of
scenarios Ω,Ω



⊆ Q, if Ω ⊆ Ω

, the set of nondominated 𝑜-
V paths at time 𝑡 over Ω is a subset of the set of nondominated
𝑜-V paths at time 𝑡 over Ω, ∀V ∈ N.

By Propositions 4, 9, and 10, we can establish the relation-
ship between nondominated, LET, and the fastest 𝑜-V paths
for departure time 𝑡 over universal scenario set Q and its
subset Ω as shown in Figure 3. By determining the set of
nondominated 𝑜-V paths over the universal scenario set Q at
departure time 𝑡, we can obtain LET 𝑜-V path at time 𝑡 over
any subset of Q. The relationship is beneficial when prejour-
ney online information is used to determine these subsets.

4.4. Label-Correcting Algorithm. The algorithm for deter-
mining the LET paths is based on the link-based approach,
using the optimality condition stated in Theorem 7, which is
only valid as Assumptions (1) and (2) hold. Since the pro-
posed approach helps avoid enumerating all possible origin-
destination paths, it is feasible in real-time applications. Note

that Theorem 7 can be still valid with simple modifications
in the dominance condition when other criteria, such as fare
andwalking distance, are taken into account as long as the arc
weights for these criteria are positive and time-independent.
Consequently, we can incorporate travelers’ weightings on
different criteria, such as number of transfers, total travel
time, fare, and walking distance, in the routing process.

Nevertheless, one drawback of our approach is that it
does not allow taking into account travelers’ weightings on
different time components, such as boarding time and in-
vehicle travel time, since the arc weights for these time
components are time-dependent. Several works in literature
solved this issue using the path enumeration method [27, 28]
or the branch and boundmethod [8].However, these solution
approaches are infeasible for real-time applications, espe-
cially in stochastic transit networks herein considering the
stochastic correlation among stop times of transit vehicles.
Our proposed algorithm is developed as follows.

Given departure time 𝑡, for each node 𝑢 ∈ N and each
𝑜-𝑢 path 𝜆, the algorithm maintains a vector label

Λ
𝜆
(𝑢) = (𝑓

𝜆
(𝑢) , 𝜏

𝑞

𝜆
(𝑢, 𝑡) , ∀𝑞 ∈ Q) . (20)

Let L(𝑢) be the set of nondominated labels corresponding
to the set of nondominated 𝑜-𝑢 paths at time 𝑡 over the set
of scenarios Q. According to Theorem 7, each label Λ

𝜆
(𝑢) ∈

L(𝑢) contains the information of nondominated 𝑜-𝑢 path 𝜆

that has potential to be a nondominated origin-destination
path at time 𝑡 over Q when the algorithm terminates, where
label Λ

𝜆
(𝑢) is nondominated inL(𝑢) at time 𝑡 over Q if 𝜆 is

a nondominated 𝑜-𝑢 path at time 𝑡 over Q (see Definition 3).
At each iteration of the algorithm, label Λ

𝜆
(𝑢) is selected

from queueX that contains a nondominated candidate path
𝜆. Path 𝜆 is expanded via arc ⟨𝑢, V⟩ ∈ A. Depending on the
type of arc ⟨𝑢, V⟩, a temporary label Λ

𝜆
(V) for path 𝜆



=

𝜆♢⟨𝑢, V⟩ is constructed with weights calculated by (12) and
(14). To determine if a new label Λ

𝜆
(V) is nondominated, it

is compared with the nondominated labels L(V) at node V.
Details for the algorithm are presented in Algorithm 1.

Algorithm 1 is equivalent to multicriteria shortest path
algorithm for (|Q| + 1) independent criteria and terminates
after a finite number of steps with a set of nondominated
paths at each node [38]. The algorithm is computationally
intractable as the number of nondominated paths examined
by the algorithm grows exponentially in the worst case [39].
However, the experiments in Section 5 show that the number
of examined nondominated paths in a typical transit network
is much smaller than that of the worst case.

4.5. Illustrative Example. Consider the transit network in
Figure 1 and its schedules as shown in Table 1. The time-
dependent graph and its arc times are shown in Figure 2 and
Table 3, respectively, with boarding penalty 𝜀𝑘

𝑟𝑖
= 1 and alight-

ing penalty 𝜀

𝑘

𝑟𝑖
= 0. Figure 4 shows nondominated vector

labels at all nodes in the time-dependent graph for origin
node 𝑜 = 𝑉

𝐴
, destination node 𝑑 = 𝑉

𝐶
, and departure time
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Input: the origin 𝑜, the destination 𝑑, the departure time 𝑡, and the universal set of scenarios Q
Output: the LET 𝑜-𝑑 path at time 𝑡 over Ω ⊆ Q, where Ω is the realized scenarios at time 𝑡

(1) Create an initial path 𝜆
0
with the origin node 𝑜;

(2) L(𝑢) = 0 for all 𝑢 ∈ N;
(3) Create label Λ

𝜆
0

(𝑜) with 𝜏

𝑞

𝜆
0

(𝑜, 𝑡) = 0, ∀𝑞 ∈ Q, and 𝑓
𝜆
0

(𝑜) = 0;
(4) L (𝑜) = {Λ

𝜆
0

(𝑜)};
(5) X = {Λ

𝜆
0

(𝑜)};
(6) while Q ̸= 0 do
(7) Extract and remove a label Λ

𝜆
(𝑢) from queueX;

(8) for V ∈ Γ(𝑢), Γ(𝑢) = {V : ⟨𝑢, V⟩ ∈ A} do
(9) Create a new path 𝜆



= 𝜆♢⟨𝑢, V⟩;
(10) Depending on the type of ⟨𝑢, V⟩, calculate travel time weight 𝜏𝑞

𝑢V(𝑡), ∀𝑞 ∈ Q, using one of (7)–(10), and calculate
transfer weight 𝑓

𝑢V using (11);
(11) Calculate 𝜏

𝑞

𝜆

(V, 𝑡), ∀𝑞 ∈ Q, using (12), and calculate 𝑓

𝜆
 (V) using (14);

(12) Create a new label Λ
𝜆
 (V) with 𝑓

𝜆
 (V), and 𝜏

𝑞

𝜆

(V, 𝑡), ∀𝑞 ∈ Q;

(13) if label Λ
𝜆
 (V) is non-dominated inL(V) then

(14) Remove all labels Λ
𝜆
 (V) ∈ L(V) dominated by Λ

𝜆
 (V);

(15) L (V) = L (V) ∪ {Λ
𝜆
 (V)};

(16) X = X ∪ {Λ
𝜆
 (V)};

(17) Let Ω ⊆ Q be the scenarios realized at time 𝑡;
(18) Apply (13) and (15) for the set of non-dominated pathsL(𝑑) over the set of scenariosΩ to obtain the LET 𝑜-𝑑 path;

Algorithm 1: LET-Path search.
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Figure 4: Illustration of vector labels at nodes in the graph shown in Figure 2 after the termination of LET-Path algorithm. In each vector
label, each value at 𝑡𝑓 is the number of transfers, and each value at each of the scenarios 𝑞

1
, 𝑞
2
, 𝑞
3
is the travel time of path from origin 𝑉

𝐴

to the current node in that scenario. Each sequence of solid arrows from origin to destination represents 𝑜-𝑑 path, and each sequence of
dashed-line arrows represents the travel times from origin to intermediate nodes along the path in each scenario.

𝑡 = 0 over the universal scenario set Q = {𝑞
1
, 𝑞
2
, 𝑞
3
} and two

nondominated 𝑜-𝑑 paths:

𝜆
1
= ⟨𝑜 = 𝑉

𝐴
, 𝑉

1

𝐴
, 𝑉

1

𝐵
, 𝑉
𝐵
, 𝑉

3

𝐵
, 𝑉

3

𝐶
, 𝑉
𝐶
= 𝑑⟩ ,

𝜆
2
= ⟨𝑜 = 𝑉

𝐴
, 𝑉

2

𝐴
, 𝑉

2

𝐵
, 𝑉
𝐵
, 𝑉

3

𝐵
, 𝑉

3

𝐶
, 𝑉
𝐶
= 𝑑⟩ ,

(21)

after the termination of the LET-Path Algorithm 1. Each
sequence of dashed-line arrows in Figure 4 gives travel times
along a nondominated path in the corresponding scenario.
Note that each path corresponds to a choice of routes and
each sequence of dashed-line arrows corresponds to a choice
of trips as shown in Table 2.

Table 4 gives the summary of the obtained LET 𝑜-𝑑 paths
with respect to subsets Ω of Q. As the relationship shown in
Figure 3, the set of nondominated 𝑜-𝑑 paths over Q is the
superset of all sets of nondominated 𝑜-𝑑 paths over Ω ⊆ Q
and also contains the fastest 𝑜-𝑑 paths when each of scenarios
𝑞
1
, 𝑞
2
, and 𝑞

3
occurs.

Table 4: Summary of nondominated 𝑜-𝑑 path sets and LET 𝑜-𝑑
paths in the graph shown in Figure 2 with respect to subsets Ω of
Q.

Scenario setΩ Nondominated
𝑜-𝑑 path set

LET 𝑜-𝑑 path
𝜆

∗ 𝑇
𝜆
∗ (𝑑, 𝑡, Ω)

{𝑞
1
} {𝜆

1
} 𝜆

1
11

{𝑞
2
} {𝜆

1
} 𝜆

1
12

{𝑞
3
} {𝜆

2
} 𝜆

2
10

{𝑞
1
, 𝑞
2
} {𝜆

1
} 𝜆

1
11.5

{𝑞
1
, 𝑞
3
} {𝜆

1
, 𝜆
2
} 𝜆

2
12

{𝑞
2
, 𝑞
3
} {𝜆

1
, 𝜆
2
} 𝜆

2
12

{𝑞
1
, 𝑞
2
, 𝑞
3
} {𝜆

1
, 𝜆
2
} 𝜆

2
12.66

5. Experiments

In this section we conduct large numerical experiments
aiming to investigate (1) the average running time of the
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Figure 5:The experimental area ofHCMCbus network that consists
of 1,340 stops (red), 40 routes (blue), and 1,445 direct stop links.

proposed LET-Path algorithm; (2) the set of nondominated
𝑜-𝑑 paths; and (3) the robustness of LET paths in the presence
of unknown scenarios.

5.1. Experiment Setups. The experiments are conducted on
Ho Chi Minh City (HCMC) bus network (Figure 5). The
network consists of 1,340 stops, 40 routes, and 1,445 physical
links, that is, direct links connecting pairs of consecutive
stops on routes.Walking shortcuts are available between stops
in a radius of less than 500 meters, and the average walking
speed is approximately 2 km/h. Intervals between consecutive
trips are 15 minutes and scheduled stop times are generated
from 7:00 am to 4:00 pm. The graph model has 5,943 nodes
and 13,227 arcs with boarding penalty 𝜀

𝑘

𝑟𝑖
= 1 minute and

alighting penalty 𝜀

𝑘

𝑟𝑖
= 0minutes.

The data set for experiments ismade up from 500 random
user requests (𝑜, 𝑑, 𝑡)where 𝑜-𝑑 pairs are generated randomly
with the constraint that the distance between origin and
destination is at least 5 km, and departure time 𝑡 is generated
from 7:30 am 1:00 pm to make sure that path times are not
later than the ending time at 4:00 pm. The experimental
environment is 2.6GHz dual-core Intel Xeon ES405 2.00Hz,
3GB RAM, on CentOS under Java Runtime Environment 1.6
(JRE 1.6) and MySQL 5.2 database.

For studying the robustness of the proposed scenario-
based approach, we compare the path found by our approach
with that of certain equivalence (CE) approximation [5], in
which stop times of transit vehicles are deterministic.

The CE approximation replaces every stop time random
variable by its expected value over the margin distribution.
In particular, the expected stop time for the 𝑖th trip at the 𝑘th
stop on route 𝑟 over the scenario set Ω ⊆ Q is calculated by

𝐸 [𝑋

Ω

𝑟𝑖𝑘
] =

1

∑
𝑞∈Ω

𝑝

𝑞
∑

𝑞∈Ω

𝜃

𝑞

𝑟𝑖𝑘
𝑝

𝑞

, (22)

where 𝑋

Ω

𝑟𝑖𝑘
is the independent random stop time for the 𝑖th

trip at the 𝑘th stop on route 𝑟 overΩ.Thus, the stochastic net-
work with |Q| scenarios is transformed into a deterministic
network with only one scenario.

So far, we assume that exact information on the probabil-
ity distribution of stop times is not available, and therefore it

is impossible to build a sufficient number of scenarios that can
precisely describe the uncertainty of schedules. Suppose that
𝑞 ∈ Q is the unknown scenario that will actually happen and
Ω = Q \ {𝑞} is the set of known scenarios. For a given 𝑜-𝑑 pair
and departure time 𝑡, let𝜆∗ and 𝛾

∗ be the LET 𝑜-𝑑path at time
𝑡 over scenariosΩ and the fastest 𝑜-𝑑 path at time 𝑡 in scenario
𝑞, where paths 𝜆

∗ and 𝛾

∗ are given by (19) and (15), respec-
tively. Then, when scenario 𝑞 actually happens, the desired
optimal path will be 𝛾

∗. However, since only scenario set Ω
is known, the proposed approach is robust if the expected
travel time of path𝜆

∗ does not deviatemuch from that of path
𝛾

∗. Hence, the robustness of proposed approach is evaluated
using the deviation of travel times of paths 𝜆

∗ and 𝛾

∗ in all
unknown scenarios 𝑞 ∈ Q for all triples (𝑜, 𝑑, 𝑡).The evaluated
criteria (or considered performance metrics) are as follows:

(1) Precision, the ratio between the number of cases in
which LET 𝑜-𝑑 path 𝜆

∗ is also the fastest 𝑜-𝑑 path 𝛾

∗

and the number of total cases.
(2) Mean absolute percentage error (MAPE), the average

deviation percentage between the actual and expected
travel time of the LET 𝑜-𝑑 path 𝜆

∗.
(3) The fastest path mean absolute percentage error

(FMAPE), the average deviation percentage between
the actual travel time of the fastest 𝑜-𝑑 path 𝛾

∗ and the
actual travel time of LET 𝑜-𝑑 path 𝜆

∗.

The metrics Precision, MAPE, and FMAPE are given by

Precision =

1

|Q| 𝑁

∑

(𝑜,𝑑,𝑡)

∑

𝑞∈Q

𝑚(𝜏

𝑞

𝛾
∗ (𝑑, 𝑡) , 𝜏

𝑞

𝜆
∗ (𝑑, 𝑡)) , (23)

where𝑚(𝑥, 𝑦) = 1 if 𝑥 = 𝑦 and𝑚(𝑥, 𝑦) = 0 otherwise, and

MAPE =

1

|Q| 𝑁

∑

(𝑜,𝑑,𝑡)

∑

𝑞∈Q






𝑇
𝜆
∗ (𝑑, 𝑡, Ω) − 𝜏

𝑞

𝜆
∗ (𝑑, 𝑡)






𝜏

𝑞

𝜆
∗ (𝑑, 𝑡)

,

FMAPE =

1

|Q| 𝑁

∑

(𝑜,𝑑,𝑡)

∑

𝑞∈Q








𝜏

𝑞

𝛾
∗ (𝑑, 𝑡) − 𝜏

𝑞

𝜆
∗ (𝑑, 𝑡)








𝜏

𝑞

𝜆
∗ (𝑑, 𝑡)

,

(24)

where𝑁 is number of triples (𝑜, 𝑑, 𝑡) being experimented, and
Ω = Q \ {𝑞}.

5.2. Schedule Generations. To generate scheduled stop times
of transit vehicles (or buses), for each time interval 𝑡 ∈ T and
each scenario 𝑞 ∈ Q, a direct link between two stops 𝑠 and 𝑠



is assigned a random integer speed V(𝑠, 𝑠, 𝑡, 𝑞), which follows
the normal probability distribution ∼ 𝑁(𝜇 = 18, 𝜎

2

=

5

2

) km/h. The number of generated scenarios is |Q| = 400,
which is equivalent to 400 days of tracking trajectories of all
buses in the network, and the scenarios are assumed to be
uniformly distributed. The stop time for the 𝑖th trip at the
(𝑘 + 1)th stop on route 𝑟 in scenario 𝑞 is calculated by

𝜃

𝑞

𝑟𝑖,𝑘+1
= 𝜃

𝑞

𝑟𝑖𝑘
+

𝑑 (𝑆

𝑟

𝑘
, 𝑆

𝑟

𝑘+1
)

V (𝑆𝑟
𝑘
, 𝑆

𝑟

𝑘+1
, 𝜃

𝑞

𝑟𝑖𝑘
, 𝑞)

, 1 < 𝑘 ≤ 𝐾
𝑟
, (25)
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Table 5: Summary of experimental results of LET paths with different subsets of Q.

Number of scenarios
1 50 100 150 200 250 300 350 400

Expected travel time (min) 68.10 69.90 70.78 71.18 71.25 71.54 71.62 71.83 71.92
Travel time standard deviation (min) 0 6.19 6.40 6.41 6.42 6.46 6.46 6.52 6.50
Number of transfers 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98
Waiting time (min) per transfer 6.16 7.63 7.66 7.73 7.72 7.81 7.79 7.78 7.81
Travel distance (meter) 12,285 12,658 12,845 12,949 12,943 12,988 13,008 13,059 13,067
Walking distance (meter) 267 253 252 248 249 250 252 254 255
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m
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(b) Trajectories for all trips in one scenario from 7:00 am to 4:00 pm

Figure 6: Illustration of generated stop times.

where 𝑑(𝑠, 𝑠



) is the travel distance between stops 𝑠 and 𝑠



and stop time 𝜃

𝑞

𝑟𝑖(1)
is a perscheduled value at the begining

of the trip. Assumption (1) is always true with (25). To make
sure Assumption (2) holds, we use the following constraint
for each time a new stop time is being calculated by (25):

𝜃

𝑞

𝑟,𝑖+1,𝑘
= max {𝜃𝑞

𝑟𝑖𝑘
, 𝜃

𝑞

𝑟,𝑖+1,𝑘
} . (26)

Figures 6(a) and 6(b) plot trajectories generated for one
trip under 400 scenarios and for all trips in one scenario,
respectively.

Note that no stochastic dependency is applied to stop time
generations and link speeds independently fluctuate within a
range [3, 33] km/h underpinned by the normal distribution
∼ 𝑁(𝜇 = 18, 𝜎

2

= 5

2

). However, by (25) and (26), only stop
times of trips on the same route or on routes with shared links
are correlated which is also observable in practice.

5.3. Results. To give an overview of LET paths found in the
experiments, we first examine the impact of different sets of
scenarios on LET 𝑜-𝑑 paths. We conduct the experiments on
random subsets of the universal scenario set Q with different
numbers of sampled scenarios being 1, 50, . . . , 400. Table 5
shows that, due to (15), numbers of transfers of LET 𝑜-𝑑 paths
are always minimized and do not depend on the scenario
set. This also implies that the number of transfers of LET 𝑜-𝑑
path only depends on the topology of the network. Similarly,
different subsets of Q do not cause significant impacts on
waiting times, as well as travel and walking distances.
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Number of scenarios
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Figure 7: Average CPU running time of the LET-Path algorithm
with different subsets of Q per 𝑜-𝑑 pair.

For investigating the average running time of LET-Path
algorithm, Figures 7 and 8 show the average running time
of the LET-Path algorithm and the average number of
nondominated paths at all nodes after the termination of
algorithm.Note that the algorithmfinds nondominated paths
from one origin to all nodes. Hence, the running time of
the algorithm increases when the number of nondominated
paths at each node increases. In particular, as the scenario set
increases, by Definition 3 the condition for a path dominated
by another path in all scenarios is looser. This results in an
increase in the number of nondominated paths. The results
also show that the number of nondominated paths generated
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Figure 8: Average number of nondominated paths generated by the
LET-Path algorithm with different subsets of Q per 𝑜-𝑑 pair.
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Figure 9: Average number of nondominated 𝑜-𝑑 paths per 𝑜-𝑑 pair.

is not exponential as proved in the worst case, and running
times are feasible for real-time applications.

For studying the impact of scenario sets on the number
of nondominated 𝑜-𝑑 paths, Figure 9 shows that the number
of nondominated 𝑜-𝑑 paths is proportional to the size of
scenario set.The result also comes from the looser dominance
condition when the size of the scenario set increases.

Table 6 compares the robustnesses of scenario-based
approach and the certain equivalence approach. The results
show that scenario-based approach is superior to the certain
equivalence approach in all the evaluated criteria, namely,
Precision, MAPE, and FMAPE. In addition, despite a high
MAPE (8.52%), which is still less than that of certain
equivalence approach (11.59%), the difference between actual
travel time of the LET 𝑜-𝑑 path and that of the fastest 𝑜-𝑑 path
for the same departure time and scenario set is only 1.82%,
and in up to 86.58% of queries the LET 𝑜-𝑑 path is also the
fastest 𝑜-𝑑 path. Although scenario-based approach produces
a large error in travel time prediction (8.52%)when the actual
scenario is unknown, the travel time of found LET 𝑜-𝑑 path
and the travel time of the fastest path in the actual scenario
do not deviatemuch (1.82%).These results prove that LET 𝑜-𝑑
paths are robust even when the actual scenario is unknown.

6. Conclusions

The LET path problem, which minimizes the expected travel
time between a given origin-destination pair for a given

Table 6: Comparison of robustnesses of scenario-based (SB) and
certain equivalence (CE) approach.

CE SB
Avg. expected travel time of LET paths 66.63min 67.82min
Avg. actual travel time of LET paths 72.37min 68.31min
Precision 66.04% 86.58%
MAPE 11.59% 8.52%
FMAPE 8.22% 1.82%

departure time across a set of known scenarios, has been
investigated. A dominance condition was established and a
formal proof has been provided that Bellman’s principle of
optimality is valid with the established dominance condition.
An exact label-correcting algorithm was developed based on
Bellman’s principle. Comprehensive computational studies
have been conducted using the real-size bus network in Ho
Chi Minh City (HCMC, Vietnam). The experimental results
show that the running time of LET-Path algorithm is suitable
for real-time applications and LET paths are robust. However,
scenario-based approach has two major issues:

(1) It is impossible to build a sufficient number of scenar-
ios that can precisely describe the uncertainties due to
the lack of information on probability distribution of
stop times.

(2) Even if all stop time information is available, the
number of scenarios will grow exponentially. In par-
ticular, 𝐿∑𝑟∈R 𝐼𝑟×𝐾𝑟 scenarios are required to present
all possible scenarios, which are generated from
independent stop times, where 𝐿 is average number
of support points of marginal probability distribution
of one stop time.

For the first issue, the computational results from Table 6
proved the robustness of LET paths found by scenario-based
approach when unknown scenarios happen. Regarding the
second issue, as results shown in Table 5, the number of
transfers of a LET path does not depend on the scenario
set, but on the network topology, and the average number
of transfers is small, that is, approximately 2. In addition, the
average size of set of nondominated origin-destination paths
over 400 scenarios is less than 6 (Figure 9). That means in
average onlymaximum 2×6 routesmake up a nondominated
origin-destination path set. Hence, for a given origin-
destination pair, we can determine the set of routes that cover
nondominated origin-destination paths. Then we can treat
these routes as an impact area of the origin-destination pair
and generate stop time scenarios for this area instead of the
complete network.

Appendix

Proof of Proposition 4. Suppose 𝜆

∗ is LET 𝑢-V path at time 𝑡

and over Ω. According to (15), 𝑇
𝜆
∗(V, 𝑡,Q) is minimum for

time 𝑡 over Q with condition 𝑓
𝜆
∗(V) being minimum. Since

𝑓
𝜆
∗(V) is minimum, there is no 𝑜-V path that dominates 𝜆∗ by
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condition in (16). At the same time, since 𝑇
𝜆
∗(V, 𝑡, Ω) is mini-

mumat time 𝑡 overΩ, for any nondominated 𝑜-V path𝜆, there
exists at least one scenario 𝑞 ∈ Ω such that 𝜏𝑞

𝜆
∗(V, 𝑡) < 𝜏

𝑞

𝜆
(V, 𝑡).

So there is no 𝑜-V path that dominates𝜆∗ by condition (17). By
satisfying conditions in (16) and (17), LET 𝑜-V path𝜆

∗ belongs
to the set of nondominated 𝑜-V paths at time 𝑡 overΩ.

Proof of Lemma 5. According to (11), we have 𝑓
𝑢V ≥ 0,

∀⟨𝑢, V⟩ ∈ A. According to (7), (9), and (10), we have 𝜏

𝑞

𝑢V(𝑡) ≥

0, ∀⟨𝑢, V⟩ ∈ A, ∀𝑡 ∈ T, ∀𝑞 ∈ Q, in Cases 1, 3, and 4.
According to (8), the proof is complete in Case 2 due to
Assumption (1).

Proof of Lemma 6. We prove the following possible cases.

Case 1. According to (7), if 𝑡
1

≤ 𝑡
2
, the boarding trip for

arriving time 𝑡
1
is earlier than or at least equals the boarding

trip for arriving time 𝑡
2
. Due to Assumption (2), the proof is

complete.

Case 2. According to (8), if 𝑡
1
≤ 𝑡
2
, the trip for stop time 𝑡

1
+

𝜏

𝑞

𝑢V(𝑡1) is earlier than or at least equals that of stop time 𝑡
2
+

𝜏

𝑞

𝑢V(𝑡2). Due to Assumption (2), the proof is complete.

Cases 3 and 4. According to (9) and (10), the proof is trivial.

Proof ofTheorem 7. Suppose𝜆∗ is a nondominated 𝑜-V path at
time 𝑡 overΩ, ∀V ∈ N, and 𝜆 is extended fromdominated 𝑜-𝑢
path 𝜆 via arc ⟨𝑢, V⟩ ∈ A, as then there exists a nondominated
𝑜-𝑢 path 𝜆

 that dominates 𝜆 at time 𝑡 over Ω. Suppose
̂
𝜆 = 𝜆



♢⟨𝑢, V⟩. According to Lemmas 5 and 6, 𝑜-V path ̂
𝜆

dominates nondominated 𝑜-V path 𝜆. The theorem is proved
by contradiction.

Proof of Proposition 9. If 𝑜-V path 𝛾

∗ is the fastest 𝑜-V path at
time 𝑡 in scenario 𝑞 ∈ Ω, according to (15), there are no other
𝑜-V paths 𝜆 such that 𝑓

𝜆
(V) < 𝑓

𝛾
∗(V) and 𝜏

𝑞

𝜆
(V, 𝑡) < 𝜏

𝑞

𝛾
∗(V, 𝑡).

This alsomeans no other 𝑜-V paths dominate 𝛾∗ at time 𝑡 over
Ω. Therefore, 𝜆∗ is nondominated 𝑜-V path at time 𝑡 over Ω.

Proof of Proposition 10. For any non-dominated 𝑜-V path 𝜆

at time 𝑡 over Ω, there is no other 𝑜-V path 𝜆

 such that
𝑓
𝜆
(V) < 𝑓

𝜆
(V) and 𝜏

𝑞

𝜆

(V, 𝑡) ≤ 𝜏

𝑞

𝜆
(V, 𝑡), ∀𝑞 ∈ Ω. Due toΩ ⊆ Ω

,
there is also no other 𝑜-V path 𝜆

 such that 𝑓
𝜆
(V) < 𝑓

𝜆
(V) and

𝜏

𝑞

𝜆

(V, 𝑡) ≤ 𝜏

𝑞

𝜆
(V, 𝑡), ∀𝑞 ∈ Ω

. According to Definition 3, the
proof is complete.
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