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This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four
common interpolation techniques (ANUDEM, Spline, IDW, and Kriging) were compared and assessed against station rainfall data
and modeled rainfall. The performance was assessed by the mean absolute error (MAE), mean relative error (MRE), root mean
squared error (RMSE), and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW)
method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS).
The IDW method was then used to produce forty-year (1990-2009 and 2040-2059) time series rainfall data at daily, monthly, and
annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR). The downscaled daily rainfall data have
been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and

planning of climate change impact and adaptation in local scale.

1. Introduction

Rainfall is a highly important piece of data which is fre-
quently required for water resource management, hydrologic
and ecologic modeling, recharge assessment, and irrigation
scheduling. Such data are normally recorded as observa-
tional data through comprehensively designed rainfall station
networks. However, rainfall records are often incomplete
because of missing rainfall data in the measured period or
insufficient stations in the study region.

More recently, global climate models (GCMs) are widely
used for assessing the responses of the climate system
to changes in atmospheric forcing. Projections of poten-
tial climate change are essential for sustainable natural
resources planning and management [1]. GCMs provide
information (e.g., rainfall, temperature) at a spatial resolution

(above 50km [2]) that is too coarse to be directly used
in local ground impact studies or regional planning. The
NSW Office of Environment and Heritage (OEH) and the
University of New South Wales (UNSW) have developed
finer-scale (10 km resolution) climate projections for south-
east Australia (SEA) as part of the NSW and ACT Regional
Climate Modeling (NARCIiM) project [3]. The NARCIiM
project also produced a higher resolution (2km) regional
climate projection from 2040 to 2059 for the Greater Sydney
Region (GSR). Time slices of recent climate (1990-2009) and
future climate (2040-2059) were simulated using the Weather
Forecasting and Research (WRF) model [4] and the outputs
include daily rainfall and temperature.

Climate projections at 2 km resolution provide increased
level of detailed information for fire and emergency man-
agement, water and energy management, agriculture, urban



planning, and biodiversity management which need to adapt
to a future climate [1]. Such projections are still considered
rather coarse in most hydrological and ecosystem modeling at
local scales which often require even high-resolution rainfall
data in both spatial and temporal contexts. Our current study
on climate change impact assessments on rainfall erosivity
and hillslope erosion across GSR required a spatial resolution
down to 30-100 m [5, 6]. Finer-resolution rainfall data can
be estimated through spatial interpolation techniques [7]
which are widely used to produce continuous rainfall surfaces
bridging the spatial gaps in the time series data.

There are many varieties of spatial interpolation tech-
niques and they can be classified into three categories based
on interpolation methods and scales of application. The
first category includes Nearest Neighbor (NN), Thiessen
polygons, Spline, and various forms of Kriging and Inverse
Distance Weighting (IDW) which are frequently used in
interpolating rainfall data from rain gauge stations [8-11].
These interpolation methods are relatively simple, require
relatively little input data, and are often used in small and
medium scale catchments or basins. The second category
uses ancillary data such as satellite imagery and digital
elevation models, along with rain gauge station data, in the
interpolation process for rainfall prediction at large scale [12—-
14]. The third category forecasts rainfall based on complex
interpolation models, such as fuzzy reasoning method, and
artificial neural networks [15-17].

Many studies have been dedicated to the comparison
and evaluation of different spatial interpolation methods at
various spatial scales. For example, Dirks et al. [18] compared
four spatial interpolation methods using rainfall data from a
network of 13 rain gauges on Norfolk Island, and the results
found that Kriging provided no significant advantage over
IDW, Thiessen, or areal-mean methods. Hsieh et al. [19] used
daily rainfall records from 20 rain gauges stations between
1990 and 2000 to predict the spatial rainfall distribution in the
Shih-Men Watershed in Taiwan using ordinary Kriging (OK)
and IDW. The results indicated that IDW produced more
reasonable representations than OK. Dong et al. [20] used
OK, Ordinary CoKriging (OCK), and IDW to interpolate
daily rainfall in Qingjiang river basin of China. Daily rainfall
data from 36 rainfall stations in June 2006 were analyzed, and
the result demonstrated that OCK was superior to OK and
IDW. Jeftrey et al. [21] derived a comprehensive archive of
Australian rainfall and climate data using a thin plate smooth-
ing spline to interpolate daily climate variables and ordinary
Kriging to interpolate daily and monthly rainfall. Li et al.
[22] analyzed the mean yearly rainfall of 59 meteorological
stations from 1971 to 2008 in Zhejiang, China. The combining
stepwise regression, IDW, Kriging, Spline, and Trend were
tested. The result demonstrated that the combination of
stepwise regression and IDW has the highest accuracy in
prediction and is better than the other three methods. Ly
et al. [23] used IDW, Thiessen polygons, and several Kriging
methods to interpolate daily rainfall at a catchment scale. The
results showed that integrating elevation into Kriging with
External Drift and OCK did not improve the interpolation
accuracy for daily rainfall. OK and IDW were considered
to be the suitable methods as they provided smallest RMSE
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FIGURE 1: Locational map of the Greater Sydney Region (GSR),
rainfall station sites, and state plan regions within GSR.

value for nearly all cases. These different models are usually
compared with each other through a validation procedure
in order to choose the process of reconstruction of the
historical data that leads to better results, that is, the model
characterized by the lower bias and the greater accuracy on
the validation set [24, 25]. The previous studies on spatial
interpolation techniques of rainfall suggest that each method
has its advantages and disadvantages based on its objectives,
and hence the optimal interpolation method to be adopted
varies depending on the specific purposes.

This study differs in several ways from previous ones.
It specifically aimed to compare spatial interpolation meth-
ods for rainfall time series predicted from regional climate
models (through the NARCIM project) for the current
climate period and determine the suitable method to produce
daily rainfall GIS layers for the future climate periods. The
interpolated daily rainfall data have been directly used in
rainfall erosivity and soil erosion risk modeling [6]. The
current and future rainfall variations and their potential
impacts on soil erosion are examined based on the state plan
regions so as to support the regional action plan as outlined
by New South Wales Government [26].

2. Materials and Methods

2.1. Study Area. We chose Greater Sydney Region (GSR) as
the study area because (1) there is considerable seasonal
variability in rainfall amount and intensity; (2) it is an area of
significance in the state plan; and (3) 2km projected rainfall
data are available for this area.

The boundary of the GSR is defined as 148.8°E to 152.4°E
and 35.7°S to 32.4°S and covers an area of 124,000 km®
(Figure 1). There are six state plan regions (SPRs) in GSR,
namely, Eastern/Inner, Northern, Northern Beaches, South-
ern, South Western, and Western. The SPRs are used in NSW
regional action plans which focus on immediate and future
actions the NSW Government will take to improve outcomes
in each region. The key actions include land use planning to
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protect both the local environment and prime agricultural
land. Our results are presented for SPRs so that the research
outcomes can be directly used in the regional action plans.
There are 72 rainfall station sites within GSR which can be
used for comparison and accuracy assessment. There are also
projected daily rainfall data for these sites for future periods
up to 2100 [27].

2.2. The AWAP Data. This dataset has been developed by the
Australian Water Availability Project (AWAP) and details on
the creation of AWAP can be found in Jones et al. [28] and
Raupach et al. [29]. The AWAP data were produced using
the WaterDyn model [29] for continental Australia and the
datasets include rainfall, maximum and minimum tempera-
ture, and vapour pressure surfaces obtained by interpolating
surface station measurements onto a 0.05° x 0.05° grid.
Climatological averages are gridded using three-dimensional
smoothing splines. The Barnes successive correction method
was used for analysis of the anomalies [29]. The number of
stations reporting data varies with time and by variable, with
rainfall interpolated from between 5,000 and 7,000 stations
across Australia. The AWAP daily rainfall products have
gone through several rounds of improvements and accuracy
assessments against daily accumulation from a NASA multi-
satellite rainfall product and Bureau of Meteorology ground-
based rain gauge stations. In this study, the most recent
AWAP rainfall product (Run26j) was used to assess model
performance.

2.3. The NARCIiM Data. The New South Wales Office of
Environment and Heritage (OEH) and the Climate Change
Research Centre at the University of New South Wales
(UNSW) are developing an ensemble of future climate
projections using regional climate models. The NARCIiM
project provides projected climate data for adaptation to a
future climate for NSW and the Australian Capital Territory.
The Sydney climate projections used in this study have been
developed by UNSW as a pilot study using the GCM (CSIRO
MK 3.5) and regional climate models. This model is just one
of a suite of GCMs available for the GSR and was chosen
because it performed best in replicating observed climate
despite uncertainties in the downscaling sourced from the
GCMs [30, 31]. CSIRO MK3.5 is considered a “wetter” model,
projecting higher rainfall compared with the other GCMs
(e.g., CCCMA3.1, ECHAMS5, and CSIRO-MK3.0). CSIRO
MK 3.5 was then dynamically downscaled to 2km using
the Weather Research and Forecasting (WRF) model [4] for
two time slices of recent climate (1990-2009) and future
climate (2040-2059) at daily temporal resolution. In this
study, all daily rainfall data at both time slices were spatially
interpolated, but only the rainfall data of recent time period
were used for evaluation.

2.4. Interpolation Methods. Four different interpolation
methods (IDW, Kriging, ANUDEM, and Spline) were tested
in this study to interpolate the 2 km data from the NARCIiM
project to a finer resolution of 100m. We chose these
methods as they are representative of available interpolation

procedures, widely used in rainfall interpolation, and easy to
implement in GIS (e.g., ESRI’s ArcGIS).

IDW interpolation determines cell values using a
weighted combination of a set of sample points. The weight
is a function of the inverse distance [32]. The surface
being interpolated should be that of a locational dependent
variable [33]. Nearby data will have the most influence in
the interpolation, and the surface will have more detail (be
less smooth). IDW function in ArcGIS was used for IDW
interpolation with a moderate weighting value (2) to control
the significance of known points upon the interpolated
values, based upon their distance from the output point. A
radius of 6000 m was used in the interpolation.

Kriging is perhaps the most distinctive interpolation
method [34, 35]. The term is derived from the name of D. G.
Krige who introduced the use of moving averages to avoid
systematic overestimation of reserves. Kriging is based on
the regionalized variable theory which assumes the statistical
surface to be interpolated has a certain degree of continuity.
It is an advanced and complex geostatistical procedure that
generates an estimated surface from a scattered set of points.
Kriging interpolation offers several types of surface esti-
mators; examples are ordinary Kriging (OK) and universal
Kriging (UK). OK assumes that the variation in z values is
free of any structural component and can be represented by
the Spherical, Circular, Exponential, Gaussian, and Linear
methods. UK assumes that the spatial variation in z values
is the sum of three components: a structural component,
a random but spatially correlated component, and random
noise representing the residual error [36]. Generally, OK
has more restrictive assumptions but fewer computational
problems, whereas the assumptions of UK are more general
but difficulties of calculation are greater [37]. For this study,
we chose the ordinary Kriging method. We chose exponential
semivariogram model using 12 neighboring samples and
maximum radius of 6000 m.

ANUDEM was developed at the Australian National
University [38] and it was implemented in the ESRI’s ArcGIS
(TOPOGRID program). It produces a regular grid of eleva-
tion data from relatively small and sparse sets of elevation and
streamline data. The interpolation procedure of ANUDEM
imposes an automatic drainage enforcement algorithm that
removes spurious sinks or pits. This is of particular advantage
in hydrological related studies. The interpolation procedure
has been designed to take advantage of the types of input
data and the known characteristics of elevation surfaces. The
method uses an iterative finite difference interpolation tech-
nique and it is optimized to have the computational efficiency
of “local” interpolation methods such as IDW, without losing
the surface continuity of global interpolation methods such as
Kriging and Spline. As ANUDEM is specifically designed for
hydrological correction, we only used boundary (GSR) and
cell size (100 m) as input parameters (no other subcommands
used) so as to keep consistent with other methods.

Spline performs a two-dimensional minimum curvature
spline interpolation on a point dataset resulting in a smooth
surface that passes exactly through the input points [39].
Spline interpolation is preferred over polynomial interpola-
tion because the interpolation error can be made small even



when using low degree polynomials for the splines. The basic
minimum curvature technique is also referred to as thin plate
interpolation. It ensures a smooth (continuous and differen-
tiable) surface together with continuous first-derivative sur-
faces. Rapid changes in gradient or slope (the first derivative)
may occur in the vicinity of the data points; hence, this model
is not suitable for estimating second derivative (curvature).
We used the “regularized” option that ensures a smooth
surface together with smooth first-derivative surfaces, with
12 points per region and a cell size of 100 m.

2.5. GIS Operations and Implementation. The above spatial
interpolation techniques were implemented in ESRI’s ArcGIS
with the following procedures: (1) convert daily ASCII
rainfall data to grid and point layers; (2) reproject rainfall
data to the same projection as other datasets (geographic);
(3) remove abnormal rainfall values (using a cut-oft value
of 350 mm/day); (4) interpolate daily rainfall using the four
methods; (5) clip rainfall grids to the study area extent;
(6) produce monthly and annual rainfall time series from
the interpolated daily rainfall; (7) calculate rainfall erosivity
based on the improved daily rainfall erosivity model [6]
and soil erosion risk based on the revised universal soil
loss equation (RUSLE) [40]; and (8) sample and statistically
analyse rainfall, erosivity, and erosion data based on the state
plan regions.

Automated GIS scripts have been developed for all the
above procedures to process the projected daily rainfall data
(originally in ASCII format) and spatially interpolate them
into 100 m grids. A rainfall filter is applied such that any daily
rainfall event above a maximum threshold (350 mm/day [3])
is replaced by that value. To save computation time, only wet
days were selected for spatial interpolation and calculation of
monthly and annual rainfall. A threshold of 0.1 mm was cho-
sen to define wet days. Other thresholds could also be chosen
(e.g., 0.2 mm in [41]), but a previous study showed that it is
reasonable to choose the threshold in the range 0-1 mm [42].

2.6. Performance Assessment. In this study, mean absolute
error (MAE), mean relative error (MRE), and root mean
squared error (RMSE) were used to assess the performances
of the four interpolation methods. MRE reflects the relative
accuracy of the interpolation, and the MAE and RMSE are
indicators of the magnitude of extreme errors. Lower MAE,
MRE, and RMSE values indicate greater central tendencies
and generally smaller extreme errors. In the meantime, the
coeflicient of correlation (r) was also used to evaluate whether
the estimated data fits observed data. The formulas of MAE,
MRE, and RMSE are given as follows following Taesombat
and Sriwongsitanon [43]:

MAE = Z?:l (Zi - Zz{),
n
MRE = ”Xnﬂ,
Y1 Zi )
2
n Zi _ ZI
RMSE = X ) ,
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TABLE 1: Interpolation errors of monthly rainfall.

Interpolation methods MAE MRE RMSE r

IDW 42.81 0.55 66.81 0.55
Kriging 43.05 0.55 67.21 0.54
ANUDEM 43.27 0.56 67.57 0.54
Spline 43.30 0.56 6758 0.54

TaBLE 2: Interpolation errors of annual rainfall.

Interpolation methods MAE MRE RMSE r

IDW 243.11 0.26 313.02 0.54
Kriging 24508 026 31660 054
ANUDEM 246.98 0.26 319.59 0.53
Spline 246.99 0.27 322.78 0.53

where # is the number of rain events, Z; is the observed
rainfall value at a time (i), and Zf is the estimated rainfall
value at a time ().

3. Results and Comparisons

3.1. Error Assessment and Statistics. With the aid of the
automated GIS scripts developed in this study, we interpo-
lated daily rainfall for the recent (1990-2009) and future
(2040-2059) periods using the four interpolation methods
as described above. We produced 13,318,880 daily, 1,920
monthly, and 140 annual rainfall GIS layers covering a 40-
year period.

The monthly and annual rainfall values (calculated from
the interpolated daily rainfall) from the four interpolation
methods were used in the assessment and evaluation as the
comparison at daily step would be otherwise too complicated.
We sampled the monthly and annual rainfall data at the 72
rainfall station sites [27] and 1000 random points for each
SPR (total 6000 points across Sydney Region) for all periods.
The sampling points were compared with the available gauged
rainfall data for point-based assessment and the AWAP data
for area-based (spatial) assessment at the same periods.

We compared MAE, MRE, RMSE, and r from the four
interpolation methods to assess the relative accuracy and the
comparisons are presented in Tables 1 and 2. The MRE values
were similar for monthly and annual data. Both MAE and
RMSE values of the four interpolation methods were in the
order IDW < Kriging < ANUDEM < Spline. The r values
of all the four interpolation methods reached significant
correlation (ryqs,, = 0.081, o, = 0.062). The sample
number (r) is 1180 for annual rainfall and 14160 for monthly
rainfall (12 * 1180). The r values between all four interpolation
methods and AWAP data for monthly and annual rainfall are
similar ranging between 0.53 and 0.55. Comparison suggests
that IDW is slightly superior to the other three methods
during interpolating the 2 km rainfall data. The low r (or large
MAE and RMSE) is mainly caused by the input GCM daily
rainfall projections. Figure 2 presents the scattered plot of
the monthly and annual rainfall between interpolation and
AWAP. Note that the sample numbers in the plots are slightly
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FIGURE 2: Scatter plots of correlation between interpolation and AWAP for monthly rainfall (a) and annual rainfall (b).

different as some sampling points have no data (or no data
cells in the GIS rainfall grids).

The error analysis also shows regional variation revealing
that the interpolation accuracy is generally higher in the
Western regions (Western and South Western) than the
coastal regions (Tables 3 and 4). The MAE and RMSE values
of monthly and annual rainfall are generally in the order

Western < Eastern/Inner < Northern, and the MRE value
in all three regions was similar. The MAE, MRE, and RMSE
values for the four interpolation methods are that IDW <
ANUDEM < Spline < Kriging. The r values for monthly
and annual rainfall from all interpolation methods at all
regions reached obviously significant correlation. The above
performances indicate that all four interpolation methods
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FIGURE 3: Comparison of interpolation methods for mean monthly rainfall against AWAP.

TABLE 3: Error assessment of interpolated monthly rainfall in state
plan regions.

TABLE 4: Error assessment of interpolated annual rainfall in state
plan regions.

Interpolation SPR

Interpolation SPR

methods MAE MRE RMSE r methods MAE MRE RMSE r
Northern Beaches 51.29 0.55 7894 0.50 Northern Beaches 27823 0.25 346.52 0.42
IDW Eastern/Inner 55.06 0.78 7760 0.48 IDW Eastern/Inner 24445 0.25 30768 0.45
Western 49.75 073 7314 046 Western 253.96 0.25 32346 0.32
Northern Beaches 50.34 0.54 78.32 0.49 Northern Beaches 328.30 0.40 42252 0.32
Kriging Eastern/Inner 55.95 0.73 8317 0.42 Kriging Eastern/Inner 33290 030 410.30 0.42
Western 3795 0.55 58.08 0.56 Western 223.73  0.27 28736 0.48
Northern Beaches 5178 0.56  79.46 0.49 Northern Beaches 280.85 0.25 350.27 0.42
ANUDEM Eastern/Inner 4896 0.58 7494 0.48 ANUDEM Eastern/Inner ~ 246.63 0.26 310.56 0.45
Western 38.02 0.55 58.20 0.56 Western 224.22  0.27 288.09 0.45
Northern Beaches 52.03 0.56 79.76  0.49 Northern Beaches 283.10 0.25 353.04 0.41
Spline Eastern/Inner 4572 056 6941 0.52 Spline Eastern/Inner 24835 0.26 31274 0.45
Western 48.61 057 3631 0.56 Western 22226 0.27 285.14 0.48

provide more reasonable estimations in the Western region
than other regions and IDW provides more reasonable
estimations in GSR than ANUDEM, Spline, and Kriging
methods.

3.2. Comparison of Spatial Variations. The spatial variations
of monthly rainfall interpolated by all four methods have
similar patterns (Figure 3). The minimum, mean, maximum,
and standard derivation of monthly rainfall values from the

four interpolation methods are also very similar, with less
than 0.1 mm difference for the mean values. Higher monthly
rainfall mainly appeared in the eastern coastal districts and
the far-Western district (Blue Mountains), and lower values
appeared in the midwestern district.

The spatial patterns of annual rainfall patterns of the
four interpolation methods are similar to those with pre-
dicted mean annual rainfall value around 883 mm (882.7-
883.2mm). The minimum values of annual rainfall from
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FIGURE 4: Comparison of interpolation methods for annual mean rainfall against AWAP.

IDW, Kriging, ANUDEM, and Spline interpolation methods
are 599.7 mm, 599.1 mm, 595.7 mm, and 5672 mm, and the
maximum values are 1481.9 mm, 1483.2 mm, 1485.2 mm, and
1491.1 mm, respectively. Again, higher values of annual rain-
fall appeared in the far-Western district and the coastal dis-
tricts, and lower values mainly appear in Southern, Northern
Beaches, and Eastern-Inner districts. The IDW and Kriging,
as they emphasize the significant of known points upon the
interpolated values, produced more localized patterns. But
the Spline and ANUDEM generated more smooth surfaces
(Figure 4).

The monthly and annual rainfall patterns in the GSR are
similar and consistent from the four interpolation methods.
That is, the mean values in the Northern region are always
higher than those of the Western and Southern regions for
all the interpolation methods. The interpolated monthly and
annual rainfall patterns show the obvious rainfall increase
from west to east, but such trend in the north-south direction
is not obvious.

3.3. Comparison of Seasonal Variations. Compared with
the AWAP rainfall, the interpolated rainfall shows similar
seasonal variations within the GSR (Figure5). All four
interpolation methods produced a good reproduction of the
recent seasonal rainfall patterns though there is generally
overestimate, as inherited from the NARCLM projections,
across all mid to high rainfall rates, particularly in autumn
as observed in Evans and Argtieso [41].

In general, there is more rainfall from January to May,
and little from July to September. The maximum, minimum,

and annual values of future rainfall are increasing compared
with the recent period and this might be due to the GCM
(CSIRO MK 3.5) itself which is regarded as a “wetter” model
(overestimate rainfall [3]). Figure 6 compares the monthly
changes of rainfall from the four interpolation methods and
AWAP. Three interpolation methods (ANUDEM, IDW, and
Spline) show almost identical curves and monthly changes
but interpolation from Kriging is noticeably different. The
rainfall in February was recorded the highest during the
recent period, but this is not reflected in the WER projection
and interpolation. This implies that the GCM and WFR
(here the NARCIIM project) can predict the general rainfall
patterns and trends but they cannot correctly predict rainfall
extremes or the spatial-temporal variations.

3.4. Potential Impacts on Soil Erosion Risk. Future rainfall
is predicted to increase significantly by 2050 in GSR using
this specific climate model (CSIRO MK 3.5, Figure 7). This
represents a “wet” scenario in soil erosion risk modeling to
study the potential impacts of future rainfall on soil erosion
and the relative risk across the state plan regions.

To assess the impacts of projected rainfall on soil erosion
risk, we further applied an improved daily rainfall erosivity
model [6] and the revised universal soil loss equation [40]
to estimate rainfall erosivity and soil erosion for the recent
(1990-2009) and future (2040-2059) periods using the inter-
polated daily rainfall. Based on the projected daily rainfall,
both rainfall erosivity and erosion are expected to increase
up to 61% by 2050 in Sydney SPRs if there is no ground cover
or protection (Table 5). The 60%+ extra hillslope erosion
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TABLE 5: Mean rainfall (mm-yr™"), rainfall erosivity (MJ-mm-ha™"-hr "-yr™"), hillslope erosion (tonnes-ha™-yr™'), and their changes over the
two contrasting periods (1990-2009 and 2040-2059). Change% is calculated as (Future — Recent)/Recent.

SPR name Eastern/Inner ~ Northern  Northern Beaches  Southern  South Western =~ Western ~ All SPRs
Recent annual rainfall 1094.46 1120.51 1243.44 1142.75 851.60 948.59 946.18
Future annual rainfall 1516.21 1410.26 1643.75 1550.36 1043.67 1215.87 1202.27
Annual rainfall change (%) 38.25 25.73 32.14 35.17 21.72 26.92 25.83
Recent rainfall erosivity 3381.53 3480.30 3985.32 3534.32 2162.49 2722.00 2654.13
Future rainfall erosivity 6027.67 5481.52 6604.56 6222.66 3622.83 4261.81 4295.57
Rainfall erosivity change (%) 78.41 57.51 66.52 86.23 65.94 55.21 60.94
Recent hillslope erosion 0.99 8.48 8.54 4.97 3.22 8.41 6.79
Future hillslope erosion 2.05 13.57 14.57 9.82 6.00 13.56 11.04
Hillslope erosion change (%) 78.40 57.51 66.51 86.24 65.94 55.21 60.94
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FIGURE 6: Monthly rainfall and variation between interpolation and
AWAP.
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FIGURE 7: Predicted temporal change of rainfall in Greater Sydney
Region.

for unprotected soil is a serious concern with implications
for Sydney water quality. Review of erosion and sediment
control standards for construction and reassessment of land
management practices may be required for the predicted
high risk areas. However, the hillslope erosion rate will be
significantly reduced if the ground cover or materials (i.e.,
urban build-up areas) are considered. Note that the changes
in rainfall, rainfall erosivity, and hillslope erosion rates are
noticeably uneven in space and time. Changes are the greatest

near the coast and in the west (Figure 8). Rainfall, rainfall
erosivity, and their changes in summer are mostly greater
than those in other months suggesting that summer is the
critical season for soil erosion prevention and management.

4. Conclusions

In this study, four common but representative spatial inter-
polation methods have been applied to downscale RCM
modeled rainfall data into high-resolution GIS data layers.
The results of our study show that the projected rainfall data,
at monthly and annual scales, are close to the AWAP data in
spatial patterns despite about 7% deference in absolute values
as the GCM (CSIRO MK 3.5) generally overestimates rainfall
particularly in autumn, and the r value between them reached
significant correlation (P < 0.01). These results demonstrate
that rainfall projections provide relatively good estimations
of daily rainfall and provide meaningful spatial and temporal
information of rainfall changes for soil erosion risk modeling
and climate change adaptation future plans.

In our study, IDW, ANUDEM, and Spline interpolation
methods produced very similar results and they all reveal
similar patterns of monthly rainfall distributions, while
Kriging produced slightly different seasonal patterns. The
study suggests that IDW is slightly superior, though not
significantly, to others in relative errors and computational
efficiency.

The four interpolation methods also resulted in similar
spatial patterns across GSR and they all show the obvious
variations across the state plan regions. Predicted rainfall
tends to gradually reduce from East to West and from
Eastern/Inner to Northern Beaches. All four interpolation
methods produced more reasonable estimations in Western
district than Northern or Eastern/ Inner district as the rainfall
patterns in the latter district are more variable. This implied
that the ordinary interpolation methods can not accurately
reflect extremes in monthly and annual rainfall patterns.
While they are similar, we chose IDW interpolation method
as it performed slightly better, and it is easier and faster in
computation and compatible with previous ones [19, 23, 44].

There is likely significant increase in rainfall erosivity and
soil erosion risk based on the rainfall projections used in this
study. The predicted future soil erosion risk and the changes
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are useful information for climate impact assessments and
adaptation and planning. In the near future, we will extend
the techniques developed in this study to produce daily
rainfall data at a resolution adequate for local soil erosion
risk prediction from climate projections for the entire south-
east Australia. The NARCIiM projected daily rainfall data (at
10 km spatial resolution) from all 12 ensembles (4 GCMs and 3
RCMs [3]) are to be used as model inputs to provide unbiased
future prediction on future rainfall erosivity and hillslope
erosion risk for two future periods (2020-2039 and 2060-
2079).

In conclusion, this study has demonstrated a suitable
approach and processes to interpolate daily rainfall values
for recent and future periods from GCM projections. The
methods have been successfully implemented in GIS for
efficient calculation and mapping of the spatial and temporal
variation of rainfall across GSR. The spatial interpolation
greatly enhanced the level of detail which is useful for climate
impact assessments and soil erosion modeling at local scale.
With the automated GIS process developed in this study, the

daily rainfall GIS layers, consequently rainfall erosivity and
soil erosion layers, can be readily upgraded when better or
future rainfall data become available. The methodology and
GIS programs are also readily applicable to any other regions
with GCM projections at about the same resolution.
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