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We propose an analytical scheduling model with subcontracting. Each job can be processed either on a single machine at a
manufacturer or outsourced to a subcontractor, possibly at a higher cost. For a given set of jobs, the decisions the manufacturer
needs to make include the selection of a subset of jobs to be outsourced and the schedule of all the jobs. The objective functions
are to minimize the commonly used scheduling measures, subject to a constraint on the total production and subcontracting cost.
We show the NP-hardiness for the problems with different objective functions and develop dynamic programming algorithms for
solving them.

1. Introduction and Problem Description

With widespread globalization, subcontracting is widespread
in many industries. Subcontracting is the procurement of an
item or service that a firm is normally capable of producing
using its own facilities. Subcontracting can be used as a
strategic tool to reduce operation cost and as ameans to hedge
against the capacity shortage when facing a large demand.
When a firm subcontracts out some orders, this allows it
to concentrate on its core competencies and improve its
response to customer demand. Furthermore, subcontracting
lowers investment requirements and the financial risk of the
firm. However, in making subcontracting decisions, many
factors need to be taken into account, such as production
cost, subcontracting cost, customer demand, and delivery
lead times. Obviously, analyticalmodels and problem-solving
tools are needed if a manufacturer is to optimize the tradeoffs
from those factors.

In this paper, we propose an analytical scheduling model
for a firm with an option of subcontracting. In our model, we
assume that there is a single machine at the manufacturer’s
plant and there is a subcontractor, who has a sufficient
number of identical parallel machines, such that each of
these machines will handle at most one job, possibly at

a higher cost. Each job can be processed either at the
manufacturer’s plant or outsourced to a subcontractor. The
objective functions are to minimize the common scheduling
measures, subject to a constraint on the total production and
subcontracting cost. Given a set of orders, the manufacturer
needs to determine which orders should be scheduled in-
house and which should be outsourced. While controlling
the production and subcontracting costs, the manufacturer
needs to consider in-house scheduling and subcontracting
simultaneously.

The study of subcontracting under machine scheduling
models just started recently. Chung et al. [1] considered a
job shop scheduling problem in which each job has a due
date that must be satisfied, but operations of orders can be
subcontracted at a certain cost. The objective is to minimize
the total subcontracting cost. Bertrand and Sridharan [2]
studied a make-to-order manufacturing environment where
orders arrive over time randomly and can either be processed
in-house on a single machine or outsourced. The objective is
to maximize the utilization of in-house capacity while mini-
mizing tardiness in fulfilling orders. Recently, Qi [3] studied
the production scheduling problem for a two-stage flow shop
where there are options of subcontracting some operations
to subcontractors. He considered a minimum makespan
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objective and analyzed variousmodels for different situations
of subcontracting. Chen and Li [4] proposed an analytical
scheduling model, where each job can be either processed
by the manufacturer in-house or outsourced. The objective
is to minimize the total production and subcontracting cost,
subject to a constraint on the maximun completion time of
the orders. Sotskov [5] considered the objective functionwith
the different machine cost including production cost and
subcontracting cost.

Beyond the research field of scheduling, some work
has been conducted to study the joint decisions of in-
house production and subcontracting under the context
of inventory management, for example, van Mieghem [6],
Atamtürk and Hochbaum [7], and Yang et al. [8]. In these
models, products are supposed to be identical, customers are
assumed equally important, and all demands are aggregated.
The objective is to minimize certain cost which is a function
of the production, subcontracting, inventory, and backlog
orders. Different from thesemodels, in our schedulingmodel
the orders placed by the customer are differentiated based on
their processing times and due dates, and we need to decide
which jobs are processed by in-house machine and which are
oursourced and need to schedule all jobs.

Now we describe our model in detail as follows. If job 𝑗 is
processed at the manufacturer’s plant, a processing time 𝑝

0𝑗

and a production cost𝑔
0𝑗
are required. If job 𝑗 is outsourced, a

processing time 𝑝
1𝑗
and a subcontracting cost 𝑔

1𝑗
are needed.

Given a schedule, we denote 𝐶
𝑗
as the completion time of

job 𝑗. All jobs are available at the time zero, and preemption
is not allowed. The objective functions in our model are
to minimize two common scheduling measures, namely,
the total completion time Σ𝐶

𝑗
and the makespan 𝐶max =

max{𝐶
𝑗
}, subject to a constraint on the total production

and subcontracting cost. Using the notation introduced by
Graham et al. [9], we denote the general formof our problems
as 1 + ∞‖𝐻/𝐺 ≤ 𝑊, where “1” indicates the number
of the available in-house machines, “∞” indicates that the
subcontractor has unlimited capacity, 𝐻 ∈ {Σ𝐶

𝑗
, 𝐶max}, and

𝐺 denotes the whole sum of production cost and outsourcing
cost. The main problem is then how to coordinate the in-
house production and subcontracting in an efficient way,
subject to the constraint that the total cost 𝐺 is no more than
𝑊.

The rest of the paper is organized as follows. In Section 2,
we give the complexity analysis for the first problem 1 +
∞‖Σ𝐶

𝑗
/𝐺 ≤ 𝑊 and present a dynamic programming

algorithm for it. In Section 3, we show the complexity analysis
for the second problem 1 +∞‖𝐶max/𝐺 ≤ 𝑊 and solve it by a
dynamic programming algorithm.We summarize our results
in the last section.

2. Problem 1 +∞‖Σ𝐶
𝑗
/𝐺 ≤𝑊

Now, we prove that the problem 1 + ∞‖Σ𝐶
𝑗
/𝐺 ≤ 𝑊 is NP-

hard, as in Theorem 1.

Theorem 1. The problem 1 + ∞‖Σ𝐶
𝑗
/𝐺 ≤ 𝑊 is binary NP-

hard.

Proof. The proof can be done in polynomial reduction from
the knapsack problem [10], which is known to be NP-hard.
In the knapsack problem, we are given a set of 𝑛 items 𝑁 =
{1, 2, . . . , 𝑛}, where each item 𝑖 has a value 𝑒

𝑖
and a size 𝑠

𝑖
.

All sizes and values are positive integers. The knapsack has
capacity 𝐵, where 𝐵 is also a positive integer. The goal is to
find a subset of items𝑄 ⊆ 𝑁 that maximizes the value Σ

𝑗∈𝑄
𝑒
𝑗

of items in the knapsack subject to the constraint that the
total size of these items is no more than the capacity; that is,
Σ
𝑗∈𝑄

𝑠
𝑗
≤ 𝐵. The decision version of the knapsack problem is

stated as follows.

Knapsack Problem. Given𝑇, is there a subset𝑄 ⊆ 𝑁 such that
Σ
𝑗∈𝑄

𝑠
𝑗
≤ 𝐵 and Σ

𝑗∈𝑄
≥ 𝑇?

We construct the instance of the problem 1+∞‖Σ𝐶
𝑗
/𝐺 ≤

𝑊 as follows.
(i) Number of jobs: 𝑛.
(ii) 𝑝
0𝑗
= 0, 𝑝

1𝑗
= 𝑒
𝑗
, for 𝑗 = 1, 2, . . . , 𝑛.

(iii) 𝑔
0𝑗
= 2𝑠
𝑗
, 𝑔
1𝑗
= 𝑠
𝑗
, for 𝑗 = 1, . . . , 𝑛.

(iv) Threshold value: 𝑆+𝐵, Σ𝐶
𝑗
≤ 𝐸−𝑇, where 𝑆 = Σ𝑛

𝑗=1
𝑠
𝑗
,

𝐸 = Σ𝑛
𝑗=1

𝑒
𝑗
.

(v) The decision asks whether there is a schedule 𝜋 such
that 𝐺 ≤ 𝑊 = 𝐵 + 𝑆 and Σ𝐶

𝑗
≤ 𝐸 − 𝑇.

It can be observed that the above construction can be
done in polynomial time.

First, we assume that the knapsack problem has a solu-
tion, that is, for given 𝑇, there exists a subset 𝑄 ⊆ 𝑁 =
{1, 2, . . . , 𝑛} such that Σ

𝑗∈𝑄
𝑠
𝑗
≤ 𝐵 and Σ

𝑗∈𝑄
𝑒
𝑗
≥ 𝑇.

We construct a schedule such that 𝐺 ≤ 𝑊 = 𝐵 + 𝑆 and
Σ𝐶
𝑗
≤ 𝐸−𝑇 by the following way: assign each job in {𝐽

𝑗
: 𝑗 ∈

𝑄} to be scheduled on the in-house machine and outsourced
all the other jobs. It is not hard to verify that

𝐺 = ∑
𝑗∈𝑄

𝑔
0𝑗
+ ∑
𝑗∈𝑁\𝑄

𝑔
1𝑗
= ∑
𝑗∈𝑄

2𝑠
𝑗
+ ∑
𝑗∈𝑁\𝑄

𝑠
𝑗

=
𝑛

∑
𝑗=1

𝑠
𝑗
+ ∑
𝑗∈𝑄

𝑠
𝑗
= 𝑆 + ∑

𝑗∈𝑄

𝑠
𝑗
≤ 𝑆 + 𝐵,

𝑛

∑
𝑗=1

𝐶
𝑗
= ∑
𝑗∈𝑄

𝐶
𝑗
+ ∑
𝑗∈𝑁\𝑄

𝐶
𝑗
= ∑
𝑗∈𝑁\𝑄

𝐶
𝑗

= ∑
𝑗∈𝑁\𝑄

𝑒
𝑗
=
𝑛

∑
𝑗=1

𝑒
𝑗
− ∑
𝑗∈𝑄

𝑒
𝑗
≤ 𝐸 − 𝑇.

(1)

Now, suppose that there is a schedule 𝜋 whose objective
function value Σ𝐶

𝑗
is at most ≤ 𝐸−𝑇 and𝐺 ≤ 𝑊 = 𝑆+𝐵; we

will show that there exists a solution to the knapsack problem.
Let 𝑄 be the set of jobs scheduled on the in-house

machine; we obtain that

𝐺 = ∑
𝑗∈𝑄

𝑔
0𝑗
+ ∑
𝑗∈𝑁\𝑄

𝑔
1𝑗
= ∑
𝑗∈𝑄

2𝑠
𝑗
+ ∑
𝑗∈𝑁\𝑄

𝑠
𝑗

=
𝑛

∑
𝑗=1

𝑠
𝑗
+ ∑
𝑗∈𝑄

𝑠
𝑗
= 𝑆 + ∑

𝑗∈𝑄

𝑠
𝑗
.

(2)
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Using the fact that 𝐺 ≤ 𝐵 + 𝑆, we have ∑
𝑗∈𝑄

𝑠
𝑗
≤ 𝐵.

Since

∑
𝑗∈𝑄

𝐶
𝑗
+ ∑
𝑗∈𝑁\𝑄

𝐶
𝑗
= ∑
𝑗∈𝑁\𝑄

𝐶
𝑗
= ∑
𝑗∈𝑁\𝑄

𝑒
𝑗

=
𝑛

∑
𝑗=1

𝑒
𝑗
− ∑
𝑗∈𝑄

𝑒
𝑗
≤ 𝐸 − 𝑇,

(3)

we obtain Σ
𝑗∈𝑄

𝑒
𝑗
≥ 𝑇. Thus, the knapsack problem has a

solution.

Next, we design a dynamic programming algorithm to
solve problem 1 + ∞‖Σ𝐶

𝑗
/𝐺 ≤ 𝑊, denoted as DP1.

Before proceeding further, we need to introduce the following
Lemma.

Lemma 2. For problem 1 + ∞‖Σ𝐶
𝑗
/𝐺 ≤ 𝑊, there exists

an optimal solution in which jobs scheduled on the in-house
machine are sequenced in the SPT order; that is, jobs are
sequenced in the nondecreasing order of processing times on the
in-house machine.

Proof. It can be proved in interchange arguments.

Now assume that jobs are indexed as 𝑝
01

≤ 𝑝
02

≤
⋅ ⋅ ⋅ ≤ 𝑝

0𝑛
. Let 𝑓(𝑗, ℎ, V) be the optimal value of the objective

function for partial jobs 𝑗, 𝑗 + 1, . . . , 𝑛 where (1) ℎ is the
number of the jobs processed on the in-house machine and
(2) V is the current total cost. The recurrence relation is
described as follows.

If job 𝑗 is scheduled on the in-house machine, its con-
tribution to the total completion time of objective function
depends on both the number of jobs scheduled after 𝑗 and
the processing time 𝑝

0𝑗
, which is ℎ𝑝

0𝑗
. We set

𝑓
0
(𝑗, ℎ, V) = {

𝑓 (𝑗 + 1, ℎ − 1, V − 𝑔
0𝑗
) + ℎ𝑝

0𝑗
, if V ≤ 𝑊;

+∞, otherwise.
(4)

Similarly, if job 𝑗 is outsourced, its contribution to the
total completion time of objective function is 𝑝

1𝑗
. Then set

𝑓
0
(𝑗, ℎ, V) = {

𝑓 (𝑗 + 1, ℎ, V − 𝑔
1𝑗
) + 𝑝
1𝑗
, if V ≤ 𝑊;

+∞, otherwise.
(5)

Thus

𝑓 (𝑗, ℎ, V) = min {𝑓0 (𝑗, ℎ, V) , 𝑓1 (𝑗, ℎ, V)} . (6)

The initial conditions is as follows:

𝑓 (𝑛, ℎ, V) =
{{

{{
{

𝑝
0𝑛
, ℎ = 1, V = 𝑔

01
, V ≤ 𝑊;

𝑝
1𝑛
, ℎ = 0, V = 𝑔

11
, V ≤ 𝑊;

+∞, otherwise.
(7)

The optimal value is min{𝑓(1, ℎ, V) | ℎ = 0, 1, 2, . . . , 𝑛; V =
0, 1, . . . ,𝑊} where𝑊 stands for the total cost for all the jobs.
The running time of the algorithm DP1 is 𝑂(𝑛2𝑊).

3. Problem 1 +∞‖𝐶max/𝐺 ≤𝑊

In this section, using the knapsack problem for the reduction,
we similarly prove that the problem 1 + ∞‖𝐶max/𝐺 ≤ 𝑊 is
NP-hard.

Theorem 3. The problem 1 + ∞‖𝐶max/𝐺 ≤ 𝑊 is binary NP-
hard.

Proof. The proof can also be done in polynomial reduction
from the knapsack problem. Now, consider the following
instance of the given problem 1 +∞‖𝐶max/𝐺 ≤ 𝑊.

(i) Number of jobs: 𝑛.
(ii) 𝑝
0𝑗
= 𝑒
𝑗
, 𝑝
1𝑗
= 0, for 𝑗 = 1, 2, . . . , 𝑛.

(iii) 𝑔
0𝑗
= 0, 𝑔

1𝑗
= 𝑠
𝑗
, for 𝑗 = 1, . . . , 𝑛.

(iv) Threshold value: 𝐵, 𝐸 − 𝑇, where 𝐸 = Σ𝑛
𝑗=1

𝑒
𝑗
.

(v) The decision asks whether there is a schedule 𝜋 such
that 𝐺 ≤ 𝑊 = 𝐵 and 𝐶max ≤ 𝐸 − 𝑇.

It can be observed that the above construction can be
done in polynomial time.

First, we assume that the knapsack problem has a solu-
tion; that is, for given 𝑇, there exists a subset 𝑄 ⊆ 𝑁 =
{1, 2, . . . , 𝑛} such that Σ

𝑗∈𝑄
𝑠
𝑗
≤ 𝐵 and Σ

𝑗∈𝑄
𝑒
𝑗
≥ 𝑇. Then

consider the following schedule by subcontracting all jobs in
{𝐽
𝑗
: 𝑗 ∈ 𝑄} and scheduling all the other jobs on the in-house

machine in any sequence. It is not hard to show that

𝐺 = ∑
𝑗∈𝑁\𝑄

𝑔
0𝑗
+ ∑
𝑗∈𝑄

𝑔
1𝑗
= ∑
𝑗∈𝑄

𝑠
𝑗
≤ 𝐵,

𝐶max = ∑
𝑗∈𝑁\𝑄

𝑝
0𝑗
= ∑
𝑗∈𝑁\𝑄

𝑒
𝑗
=
𝑛

∑
𝑗=1

𝑒
𝑗
− ∑
𝑗∈𝑄

𝑒
𝑗
≤ 𝐸 − 𝑇.

(8)

Now, we suppose that there is a schedule 𝜋 whose
objective function value𝐶max is at most ≤ 𝐸−𝑇 and𝐺 ≤ 𝑊 =
𝐵; we will show that there exists a solution to the knapsack
problem.

Let 𝑄 be the set of jobs outsourced; we have that

𝐺 = ∑
𝑗∈𝑁\𝑄

𝑔
0𝑗
+ ∑
𝑗∈𝑄

𝑔
1𝑗
= ∑
𝑗∈𝑄

𝑠
𝑗
. (9)

Using the fact that 𝐺 ≤ 𝐵, we get∑
𝑗∈𝑄

𝑠
𝑗
≤ 𝐵. Since 𝑝

1𝑗
=

0, for all 𝑗 = 1, 2, . . . , 𝑛,

𝐶max = ∑
𝑗∈𝑁\𝑄

𝑝
0𝑗
= ∑
𝑗∈𝑁\𝑄

𝑒
𝑗
=
𝑛

∑
𝑗=1

𝑒
𝑗
− ∑
𝑗∈𝑄

𝑒
𝑗
. (10)

By𝐶max ≤ 𝐸−𝑇, we obtainΣ
𝑗∈𝑄

𝑒
𝑗
≥ 𝑇.Thus the knapsack

problem has a solution.

For the problem 1 + ∞‖𝐶max/𝐺 ≤ 𝑊, we design a
dynamic programming algorithm, denoted as DP2. We do
not reindex the jobs before scheduling, because any arbitrary
job sequence leads to the samemakespan on a singlemachine.

Define (𝑗, 𝑥, 𝑦, V) as a state variable describing a sub-
schedule for jobs 1, 2, . . . , 𝑗 where (1) 𝑥 is the load of
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the in-housemachine, that is, the sum of the processing times
of the jobs scheduled on the in-house machine, (2) 𝑦 is the
maximal processing time of the outsourced jobs, and (3) V is
the current total cost. Let 𝑓(𝑗, 𝑥, 𝑦, V) be the optimal value
of the objective function for the subschedule described by
(𝑗, 𝑥, 𝑦, V). The recurrence relation is described as follows.

If job 𝑗 is scheduled on the in-house machine, we set

𝑓
0
(𝑗, 𝑥, 𝑦, V)

=
{{

{{
{

𝑓(𝑗 − 1, 𝑥 − 𝑝
0𝑗
, 𝑦, V − 𝑔

0𝑗
)

+max {𝑥, 𝑦} −max {𝑥 − 𝑝
0𝑗
, 𝑦} , if V ≤ 𝑊;

+∞, otherwise.
(11)

If job 𝑗 is outsourced, we have

𝑓
1
(𝑗, 𝑥, 𝑦, V)

=

{{{{{{{{

{{{{{{{{
{

𝑓(𝑗 − 1, 𝑥, 𝑦, V − 𝑔
1𝑗
) , if 𝑝

1𝑗
≤ 𝑦, V ≤ 𝑊;

𝑓 (𝑗 − 1, 𝑥, 𝑝
1𝑗
, V − 𝑔

1𝑗
)

+max {𝑥, 𝑝
1𝑗
} −max {𝑥, 𝑦} , if 𝑝

1𝑗
> 𝑦, V ≤ 𝑊;

+∞, otherwise.
(12)

Furthermore

𝑓 (𝑗, 𝑥, 𝑦, V) = min {𝑓0 (𝑗, 𝑥, 𝑦, V) , 𝑓1 (𝑗, 𝑥, 𝑦, V)} . (13)

We give the initial conditions as follows:

𝑓 (1, 𝑥, 𝑦, V) =
{{

{{
{

𝑝
11
, 𝑥 = 0, 𝑦 = 𝑝

11
, V = 𝑔

11
≤ 𝑊;

𝑝
01
, 𝑥 = 𝑝

01
, 𝑦 = 0, V = 𝑔

01
≤ 𝑊;

+∞, otherwise.
(14)

The optimal value is min
𝑥,𝑦,V{𝑓(𝑛, 𝑥, 𝑦, V)}, where 𝑥 =

0, 1, 2, . . . , 𝑃; 𝑦 = 0, 1, 2, . . . , 𝑃; V = 0, 1, . . . ,𝑊, and 𝑃, 𝑊,
respectively, stand for the sum of processing times and the
total cost for all the jobs. The running time of the algorithm
DP2 is 𝑂(𝑛𝑃2𝑊). Obviously, the dynamic programming
algorithm DP2 is pseduopolynomial dynamic programming
algorithm.

4. Conclusion

An analytical model for the coordination of in-house pro-
duction and outsourcing has been studied. The objective
functions are to minimize the common scheduling mea-
sures, subject to a constraint on the total production and
subcontracting cost. We give their complexity analysis and
solve them by dynamic programming algorithms. In the
further, we will investigate the problems with other objective
functions such as minimizing the number of tardy jobs and
the maximum lateness. And we will discuss more complex
models with multiple available subcontractors and batch
processing.
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