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This study aims to discuss the sheet resistance of ultrathin indium tin oxide (ITO) transparent conductive films during the
postannealing treatment. The thickness of the ultrathin ITO films is 20 nm. They are prepared on B270 glass substrates at room
temperature by a direct-current pulsed magnetron sputtering system. Ultrathin ITO films with high sheet resistance are commonly
used for touch panel applications. As the annealing temperature is increased, the structure of the ultrathin ITO film changes from
amorphous to polycrystalline. The crystalline of ultrathin ITO films becomes stronger with an increase of annealing temperature,
which further leads to the effect of enhanced Hall mobility. A postannealing treatment in an atmosphere can enhance the
optical transmittance owing to the filling of oxygen vacancies, but the sheet resistance rises sharply. However, a higher annealing
temperature, above 250∘C, results in a decrease in the sheet resistance of ultrathin ITO films, because more Sn ions become an
effective dopant. An optimum sheet resistance of 336Ω/sqr was obtained for ultrathin ITO films at 400∘C with an average optical
transmittance of 86.8% for touch sensor applications.

1. Introduction

Transparent conducting oxide (TCO) thin films have drawn
a great deal of attention in recent years and have been widely
applied in various optoelectronic devices such as solar cells
[1, 2], flat panel displays [3, 4], organic light emitting devices
(OLED) [5–7], and a variety of handheld devices. Until now,
tin-doped In

2
O
3
(indium tin oxide, ITO) has been the most

widely used of the TCOmaterials because of its low resistivity
(less than 10−3Ω-cm) and good optical transmittance (more
than 80%) in the visible region [8]. It is a degenerate n-
type semiconductor with a wide energy band gap (3.7 eV)
and possesses the qualities of high mechanical hardness and
chemical inertness [9].

In previous studies, ITO films have been deposited using
a variety of techniques such as ion beam assisted deposition
[10], direct current (dc) magnetron sputtering [11–14], and
chemical vapor deposition [15]. A pulsed dc magnetron
sputtering method is the most common technology for the

deposition of ITO films, because it is an easy way to get high
quality thin films [16]. Using these techniques, the properties
of ITO films are dependent on the process parameters
like the oxygen partial pressure, substrate temperature, and
postannealing temperature and different substrates, such as
glass and PET [17–20].

The thickness of ITO films from 40 nm to 2.58 𝜇m has
been discussed in several studies.The results indicate that the
electrical properties increase with increasing film thickness.
However, the physical properties of the ITO film are notable
when the thickness is less than 40 nm. In conclusion, we
can say that the thickness is the most significant factor
influencing the crystallization [21–27]. The main conductive
mechanism of ITO films can be attributed to Sn-doping and
oxygen vacancies to provide more free electrons. However,
the leading contributor to the carrier concentration in amor-
phous ITO films is indistinct [28]. A postannealing treatment
is an attractive way to improve the crystalline and other
properties of ITO films, because it is a simple and low-cost
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process. According to a related study, an ITO film of 200 nm
thickness can be achieved by dc magnetron sputtering at
room temperature. The lowest resistivity after being treated
by rapid thermal annealing (RTA) at 600∘C in a vacuum is
about 1.6 × 10−4Ω-cm [29]. Gheidari et al. focused on the
effect of the sputtering pressure and annealing temperature
on the properties of ITOfilms.They found that the deposition
rate decreases above 30mTorr and the best conductivity and
transmittance and larger grain size are achieved with an
annealing temperature of 400∘C [30].

Touch panels have become an important type of human-
computer interface in recent years, and the ITO is the most
commonly used material for this component. It functions as
a transparent conductivity oxide, which requires an optical
transmittance of more than 85% and high sheet resistance
between 300Ω/sqr and 500Ω/sqr [31, 32]. However, in indus-
trial practice ITO films are fabricated at room temperature
with a postannealing treatment below 250∘C in order to
lower production cost. The fabrication cost can be reduced if
ultrathin ITO films are used because less of the costly scarce
rare element indium is used in its manufacture. However,
the optical and electrical properties of ultrathin ITO films
under an annealing temperature of 250∘C are not well
understood. This study focuses on postannealing treatment
under the atmosphere for ultrathin ITO films deposited by
dc pulsed magnetron sputtering at room temperature and
what is needed to achieve high sheet resistance and high
transmittance for touch sensor applications. The effect of
the annealing temperature on the structure, electrical, and
optical properties will be investigated, with a discussion of the
properties of ultrathin ITO films.

2. Experimental Details

2.1. Film Preparation. ITO thin films were coated onto B270
substrates that were 25.4 × 25.4mm2 and 1mm thick by a
pulsed dcmagnetron sputtering system at room temperature.
Figure 1 shows a schematic representation of the pulsed
DC magnetron sputtering system. This system consisted
of a deposition chamber with two magnetron sputtering
cathodes. There was a pulse generator with a frequency
of 20 kHz located between the dc power supply and the
sputtering cathode.The pulse generator can help decrease the
arcing and maintain stable plasma. The sputtering target was
made of In

2
O
3
mixed with 10wt.% SnO

2
powder. An ITO

target 75mm in diameter was mounted on one cathode and
set about 80mm below the substrate.

The sputtering chamber was pumped down to a base
pressure of less than 8 × 10−6 Torr by a cryopump. During
deposition, argon (Ar) was directly injected as the working
gas and the working pressure was set to 2-3 × 10−3 Torr. The
major goal of this paper is to study the effects of different
annealing temperatures on the optical and electrical proper-
ties of ultrathin ITO thin films. The ITO films were prepared
with 100W of sputtering power at room temperature for the
same amount of time after which the films were annealed at
various temperatures (200–500∘C) in air for 1 h.
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Figure 1: Schematic drawing of the experimental setup for pulsed
dc magnetron sputtering.

2.2. Film Characterization. The thickness of all samples was
about 20 nm as measured using a surface profiler (Dektak 8).
The optical transmittance of thin films onB270 substrates was
measured with a Hitachi U4100 spectrometer in the wave-
length range from 300 to 700 nm. The crystalline structure
was then examined through X-ray diffraction (XRD). The
resistivity, Hall mobility, and carrier concentration of the
films were determined by Hall measurements (HEM-300) at
room temperature.

3. Results and Discussion

Ultrathin 20 nm thick ITO films were deposited on B270
substrates at room temperature by a pulsed dc magnetron
sputtering system. To compare the effect of annealing on the
properties of ultrathin ITO films, the as-deposited films were
annealed in air at various temperatures of 200, 250, 300, 350,
400, 450, and 500∘C. Figure 2 shows the carrier density, Hall
mobility, and sheet resistance of the ultrathin ITO films at the
various annealing temperatures, as obtained from the Hall
Effect measurements carried out at room temperature. The
electrical properties depend on the postannealing treatment.
The crystallite size in the ITO films becomes larger as the
annealing temperature increases, resulting in a decrease in
boundary scattering and increase of the carrier lifetime [30].
However, the sheet resistance of the ultrathin ITO films
increases with an increased annealing temperature, reaching
a maximum value of 1075Ω/sqr at an annealing temperature
of 250∘C. After this, the sheet resistance decreases with
increasing temperature. This is an interesting result which
differs from the results for ITO films of more than 40 nm.
When as-deposited films are annealed in air, the free oxygen
easily fills up oxygen vacancies in the lattice of the In

2
O
3

structure, because of the ultrathin thickness of the ITO
films. This reaction will decrease the oxygen vacancies and
carrier concentration, which leads to an increase in the sheet
resistance of the ultrathin ITO films. This also contributes to
oxidation, resulting in an increase of the transmittance, as
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Figure 2: Comparison of the electrical properties of ultrathin ITO
films as a function of the annealing temperature.

shown in Figure 3. Figure 3 shows the transmittance spectra
of ultrathin ITO films before and after annealing at different
temperatures.The average transmittance in the visible region
(400–700 nm) before annealing is 83.84%, but this increases
to over 85% after annealing at over 250∘C.The inset to the fig-
ure shows an obvious increase in the transmittance with the
increase in annealing temperature. This result corresponds
with the aforementioned Hall measurements.

In addition to oxidation to fill up the oxygen vacan-
cies, there is another possibility for the improvement of
transmittance in ITO films which is also attributed to good
crystallinity. However, the ultrathin ITO films do not easily
crystallize at low annealing temperatures. The crystallization
of the ultrathin ITO films is strongly dependent on the
higher annealing temperature and the phase change from
amorphous to crystalline during the annealing treatment,
as shown in Figure 4. The transmittance of the crystalline
structure is higher than that of the amorphous structure and
this implies that the transmittance in the visible light range
of ultrathin ITO films is closely related to the film structure.
The grain-boundary scattering mechanism in polycrystalline
ITO films has been discussed in a previous report [30]. The
crystalline structure of the films can be improved and the
crystallite size increased after annealing, which can decrease
the scattering of incident light by decreasing the number
of grain-boundaries and enhancing the transmittance. The
crystallinity of ultrathin ITO films is higher, which further
results in the effect of enhanced Hall mobility.
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Figure 3: Optical transmittance of ultrathin ITO films during
annealing treatment with various annealing temperatures.
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Figure 4: X-ray diffraction peaks and diffraction angles of ultrathin
ITO films during annealing treatment with various annealing
temperatures.

The results discussed above seem to contradict the sheet
resistance of the Hall measurement when the annealing
temperature is more than 250∘C. This is a point worthy
of discussion. A higher annealing temperature leads to a
decrease in the sheet resistance of ultrathin ITO films. This
is due to the fact that the annealing treatment rearranges
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the structure of the ITO films, causing more Sn ions to
become an effective dopant.This is demonstrated by the XRD
measurements. It can be seen in the inset to Figure 4 that the
(222) peak intensity of the ITO films becomes higher with
the increase of annealing temperature. Consequently, there is
a decrease in the sheet resistance because of the replacement
of the In3+ by Sn2+ when the annealing temperature exceeds
250∘C. According to Bragg’s law, the Bragg angle (𝜃) increases
due to a decrease in the 𝑑 spacing. The length of the 𝑑
spacing is expected to be shorter if the In ions are replaced
by Sn ions, due to the smaller ionic radius of Sn (the ionic
radii of In3+ and Sn4+ are 80 and 69 pm, resp.). This is
also consistent with the results obtained for the electrical
properties and the increase in carriers owing to the more
effective dopant. Furthermore, the more effective dopant acts
as a donor source to increase themobility of ITO films. In this
study, the best conditions for ultrathin ITO films for touch
sensor applications offer a sheet resistance of 336Ω/sqr and
an optical transmittance of 86.8% in the visible region when
the annealing temperature is 400∘C.

4. Conclusion

Ultrathin ITO films were prepared on B270 glass substrates
at room temperature by the dc pulsed magnetron sputtering
method.The effect of the annealing temperature on ultrathin
ITO films was investigated. As the annealing temperature is
increased, the structure of the ultrathin ITO film changes
from amorphous to polycrystalline. The postannealing treat-
ment in the atmosphere can enhance the optical transmit-
tance owing to a filling up of the oxygen vacancies, but
there is also a sharp rise in the sheet resistance. A higher
annealing temperature of above 250∘C results in a decrease
in the sheet resistance of the ultrathin ITO films because of
more Sn ions, to become an effective dopant.The crystallinity
of ultrathin ITO films becomes higher with an increase of
annealing temperature, which further leads to the effect of
enhanced Hall mobility. In terms of the sheet resistance and
transmittance, an annealing temperature of 400∘C is the best
for our ultrathin ITO samples. A suitable sheet resistance of
336Ω/sqr was obtained for ultrathin ITO films at 400∘C with
an average optical transmittance of 86.8% making it suitable
for applications in touch sensors.
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