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A Cournot-Bertrand mixed duopoly game model is constructed. The existence and local stable region of the Nash equilibria point
are investigated. Complex dynamic properties such as bifurcation and route to chaos are analyzed using parameter basin plots.
The strange attractors are also studied when the system is in chaotic states. Furthermore, considering the memory of the market, a
delayed Cournot-Bertrand mixed model is considered and the results show that the delayed system has the same Nash equilibrium
and has a higher chance of reaching steady states or cycles than the model without delay. So making full use of the historical data
can improve the system’s stability.

1. Introduction

An Oligopoly is a market mechanism between monopoly and
perfect competition, in which the market is completely con-
trolled by only a few number of firms producing the same or
homogeneous productions [1]. In recent years, the oligopoly
game models have attracted many researchers’ attention
firstly because oligopoly is a common market structure and
secondly because the models have different forms according
to the difference of the real economic environments [2–4].

Cournot and Bertrand oligopoly are the twomost notable
models in oligopoly theory. In the first one, firms control
their output level, which influences the market price, while
in the second one, firms change the price to affect the
market demand [5]. A large number of literatures about
Cournot or Bertrand competition in oligopolistic market
have been published [3, 4], but there are only a considerably
lower number of works devoted to Cournot-Bertrand mixed
competition, in which the market can be subdivided into
two groups of firms, the first one optimally adjust prices
and the second optimally adjusts their outputs to ensure
maximum profit [6–8]. Cournot-Bertrand mixed models
exist in realistic economy, and in some cases Cournot-
Bertrand competition may be optimal [7]. For instance, in

duopoly market, one firm competes in a dominant position,
and it chooses output as decision variable while the other one
is in disadvantage, and it chooses price as decision variable in
order to gain more market share [5].

To the best of our knowledge, Bylka and Komar [9] are
the first authors to analyze Cornot-Bertrand mixed models.
Vives [10], Sklivas [11], Häckner [12], Zanchettin [13], and
Arya et al. [14] compared the efficiency of the Cournot and
Bertrand models under different conditions. Sato [15] gave
a Cournot-Bertrand mixed model under a set of regularity
conditions on demand and cost and compared its equilibrium
with the Cournot and Bertrand models. C. H. Tremblay and
V. J. Tremblay [6] analyzed the role of product differentiation
for the static properties of theNash equilibriumof aCournot-
Bertrandmixed duopoly.Naimzada andTramontana [7] con-
sidered a Cournot-Bertrand mixed duopoly model, which is
characterized by linear difference equations and analyzed the
role of best response dynamics and of the adaptive adjustment
mechanism for the stability of the equilibrium. Ma and Pu
[8] studied complex behaviors of a Cournot-Bertrand mixed
duopoly model with the application of nonlinear dynamics
theory. Wang andMa [5], based on the players with bounded
rationality, proposed a Cournot-Bertrandmixed gamemodel
and discussed the stability of the system.
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Delay plays an important role in economic system, which
can describe some economic phenomena and help solve a
great deal of problems, such as the delay of fiscal policy’s
conduction behavior in macroeconomics. Ahmed et al. [16]
considered the delay in oligopoly, showing that delay can
increase stability, and firms using bounded rationality with
delay have a higher chance of reaching Nash equilibrium.
Agiza et al. [17] studied the stability of delayedBowley’smodel
with bounded rationality in monopoly. Yassen and Agiza [18]
discussed the complexity of Bowley’s model with delayed
bounded rationality in duopoly. Hassan [19] investigated a
delayed duopoly model, and the results showed that stability
of Nash equilibrium is increased if less weight is put on the
more recent quantity; otherwise, the region of stability is
smaller. Elsadany [20] gave a duopoly delayedCournotmodel
and pointed out that delay has the effect of delaying a period-
doubling appearance. Matsumoto and Szidarovszky [21]
examined a continuous delayed Cournot-Bertrand mixed
model, and the results showed that the time lags have a
destabilizing effect on the equilibrium. Peng et al. [22] andMa
and Zhang [23] separately studied a 3-dimensional delayed
Cournot and Bertrand model and analyzed the effects of the
adjustment of parameters on the stability of the systems.

In this paper, we set up a discrete Cournot-Bertrand
duopoly model, assuming that the market has a linear
demand function, and the firms are delayed bounded ratio-
nal. The system’s complex dynamics are analyzed through
numerical simulations. Our work aims to check whether
the delay can increase the stability of the Cournot-Bertrand
mixed system, which modifies and extends the results of [18–
23], who considered the Cournot or Bertrand systems, and
also [21], who considered a continuous delayed Cournot-
Bertrand mixed system.

The paper is organized as follows. The nondelayed
and delayed Cournot-Bertrand mixed game models with
bounded rational expectations are described in Section 2.
In Section 3, we will study the complex dynamics of the
nondelayed system, including the existence and local stability
of equilibrium points and the bifurcation behaviors. Delayed
system is investigated in Section 4 to find the effects of delay
on the stability of the system. Finally, conclusions are drawn
in Section 5.

2. The Cournot-Bertrand Mixed Models with
Bounded Rational Expectations

Assuming that a market is served by two firms and firm
𝑖 produces good 𝑥

𝑖
, 𝑖 = 1, 2. There is a certain degree

of differentiation between the products 𝑥
1
and 𝑥

2
to avoid

the whole market that is occupied by the one who offers a
lower price. The output and price of firm 𝑖’s product are,
respectively, represented as 𝑞

𝑖
and 𝑝

𝑖
. Firm 1 competes in

output 𝑞
1
to affect the market supply as the Cournot case,

while firm 2 fixes its price 𝑝
2
to influence the market demand

as in the Bertrand case.
The consumers’ utility function is defined as follows:

𝑈 (𝑞
1
, 𝑞
2
) = 𝑎 (𝑞

1
+ 𝑞
2
) −

𝑏
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2

1
+ 2𝑘𝑞
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2
+ 𝑞
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2
) +𝑀, (1)

and the consumers’ budget constraint is as follows:

𝑌 = 𝑀 + 𝑝
1
𝑞
1
+ 𝑝
2
𝑞
2
, (2)

where 𝑌 denotes the consumers’ real disposable income, 𝑀
denotes expenditure on outside goods, and the parameter
𝑘 ∈ (0, 1) denotes the degree of product differentiation or
product substitution, while a negative 𝑘 ∈ (−1, 0) implies that
products are complements and 𝑘 = 0 implies that products
are completely independent.

By maximizing the utility function equation (1) subject to
the budget constraint equation (2), we can obtain the inverse
demand functions of products of variety 1 and 2 at time 𝑡 as
follows:

𝑝
1 (𝑡) = 𝑎 − 𝑏𝑞

1 (𝑡) − 𝑏𝑘𝑞2 (𝑡) ,

𝑝
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2 (𝑡) − 𝑏𝑘𝑞1 (𝑡) .

(3)

Rescale the variables

𝑃
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2
=
𝑏

𝑎
𝑞
2
. (4)

Then (3) can be rewritten as follows:

𝑃
1 (𝑡) = 1 − 𝑄

1 (𝑡) − 𝑘𝑄2 (𝑡) ,

𝑃
2 (𝑡) = 1 − 𝑄

2 (𝑡) − 𝑘𝑄1 (𝑡) .

(5)

Assuming that the two firms have the same marginal cost
𝑐 > 0, and the cost function of firm 𝑖 is as follows:

𝐶
𝑖
(𝑄
𝑖 (𝑡)) = 𝑐𝑄

𝑖 (𝑡) , 𝑖 = 1, 2. (6)

We can write the demand functions equations (5) in the two
strategic variables, 𝑄

1
(𝑡) and 𝑃

2
(𝑡)

𝑃
1 (𝑡) = 1 − 𝑘 − (1 − 𝑘

2
)𝑄
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𝑄
2 (𝑡) = 1 − 𝑃

2 (𝑡) − 𝑘𝑄1 (𝑡) .

(7)

Then the profit functions of firms 1 and 2 are, respectively, as
follows:

Π
1 (𝑡) = 𝑄
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(8)

Assuming that the two firms do not have a complete
knowledge of the market and the opponent, and in this case
they make decisions on the basis of their expected marginal
profits as follows:
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Table 1:The eigenvalues of the Jacobian matrix (14) evaluated at the
boundary equilibrium points.

Equilibrium points Eigenvalues
𝐸
0

𝜆
1
= 1 + 𝛽(1 + 𝑐), 𝜆

2
= 1 + 𝛼(1 − 𝑐 − 𝑘)

𝐸
1

𝜆
1
= 1 + 𝛼(1 − 𝑐)(1 − 𝑘/2), 𝜆

2
= 1 − 𝛽(1 + 𝑐)

𝐸
2

𝜆
1
= 1 + 𝛽𝑁/2(1 − 𝑘

2
), 𝜆
2
= 1 − 𝛼(1 − 𝑐 − 𝑑)

Notes:𝑁 = (1 + 2𝑐)(1 − 𝑘2) + 𝑐𝑘 + (1 − 𝑘).

where 𝑄
𝑒

1
and 𝑃

𝑒

2
are the expected output of firm 1 and

price of firm 2, respectively. If the marginal profit is positive
(negative), they increase (decrease) their output or price in
the next period [4].

Supposing that the firms make decisions of period 𝑡 + 1

based on the variables of period 𝑡; that is, 𝑄𝑒
1
= 𝑄
1
(𝑡), 𝑃
𝑒

2
=

𝑃
2
(𝑡); then, the nondelayedCournot-Bertrandmixed dynam-

ical system can be described by the first-order nonlinear
difference equations:

𝑄
1 (𝑡 + 1) = 𝑄

1 (𝑡) + 𝛼𝑄1 (𝑡)

× (1 − 𝑐 − 𝑘 + 𝑘𝑃
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2
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𝑃
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(10)

where 𝛼 > 0 and 𝛽 > 0 represent the two players’ adjustment
speed, respectively.

However, considering the learning ability of the firms’
managers, when they make decisions, they depend on not
only the marginal profits of period 𝑡, but also the past
information, and this is known as the delayed bounded
rational expectation [16, 19, 20]. In this case, the delayed
Cournot-Bertrand mixed system with one-step delay, that is,
𝑄
𝑒

1
= 𝜔
1
𝑄
1
(𝑡) + (1 − 𝜔

1
)𝑄
1
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𝜔
2
)𝑃
2
(𝑡−1)where 𝜔

1
and 𝜔

2
are separately the weight factors

of production and price, is given by the two-order nonlinear
difference equations:

𝑄
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× (𝜔
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2
𝑄
1 (𝑡))

+ (1 − 𝜔
1
)

× (1 − 𝑐 − 𝑘 + 𝑘𝑃
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× (𝜔
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× (1 + 𝑐 − 2𝑃
2 (𝑡 − 1) − 𝑘𝑄1 (𝑡 − 1)))

(11)

𝜔
1
, 𝜔
2
∈ (0, 1]. When 𝜔

1
= 𝜔
2
= 1, the system (11) will

become (10).

3. The Dynamics of the Nondelayed
Cournot-Bertrand Mixed System

3.1. Equilibrium Points and Local Stability. Let 𝑄
1
(𝑡 + 1) =

𝑄
1
(𝑡) and 𝑃

2
(𝑡 + 1) = 𝑃

2
(𝑡). The system (10) have four
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where

𝑄
∗

1
=
2 − 2𝑐 − 𝑘 + 𝑐𝑘

4 − 3𝑘2
,

𝑃
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2
=
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2
− 2𝑐𝑘
2

4 − 3𝑘2
.

(13)

𝐸
0
, 𝐸
1
, and 𝐸

2
are the boundary equilibrium points, and 𝐸∗

is the unique Nash equilibrium point provided that 𝑄∗
1
> 0

and 𝑃∗
2
> 0, that requires 𝑐 < 1. Otherwise, there will be one

firm out of the market.
The local stability of equilibrium points can be deter-

mined by the nature of the eigenvalues of the Jacobian
matrix evaluated at the corresponding equilibrium points.
The Jacobian matrix of the system (10) corresponding to the
state variables (𝑄

1
, 𝑃
2
) is as follows:

𝐽 (𝑄
1
, 𝑃
2
) = (

𝐽
11

𝛼𝑘𝑄
1

−𝛽𝑘𝑃
2

𝐽
22

) , (14)

where

𝐽
11
= 1 + 𝛼 (1 − 𝑐 − 𝑘 + 𝑘𝑃

2
+ 4 (𝑘

2
− 1)𝑄

1
) ,

𝐽
22
= 1 + 𝛽 (1 + 𝑐 − 4𝑃
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− 𝑘𝑄
1
) .

(15)

Table 1 gives the eigenvalues of the Jacobian matrix (14)
evaluated at the boundary equilibrium points, and we can
easily conclude that𝜆

1
> 1 for𝐸

0
,𝐸
1
, and𝐸

2
, so the boundary

equilibrium points are not stable.
From the view of economics, we are more interested in

studying the local stability properties of the Nash equilibrium
point 𝐸∗. With respect to the boundary equilibrium points, it
is more difficult to explicitly calculate the eigenvalues of the
Nash equilibrium, but it still possible to evaluate its stability
by using the Jury conditions [24].

The Jacobian matrix at the Nash equilibrium point 𝐸∗ is
as follows:

𝐽 (𝐸
∗
)

= (

1 −

2𝛼 (1 − 𝑐) (2 − 𝑘 − 2𝑘
2
+ 𝑘
3
)

4 − 3𝑘
2

𝛼𝑘 (𝑐 − 1) (2 − 𝑘)

4 − 3𝑘
2

𝛽𝑘 (𝑘 + 𝑘
2
− 2 − 𝑐 (2 + 𝑘 − 2𝑘

2
))

4 − 3𝑘
2

1 −
2𝛽𝑁

4 − 3𝑘
2

).

(16)
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We obtain that the trace and determinant of 𝐽(𝐸∗) are,
respectively, as follows:

Tr (𝐽 (𝐸∗)) = 2 −

2𝛼 (1 − 𝑐) (2 − 𝑘 − 2𝑘
2
+ 𝑘
3
) + 2𝛽𝑁

4 − 3𝑘2
,

Det (𝐽 (𝐸∗)) = 1 +
𝛼𝛽 (1 − 𝑐) (2 − 𝑘)𝑁 − 2𝛽𝑁

4 − 3𝑘2
.

(17)

A necessary and sufficient condition for the locally stability
of Nash equilibrium point 𝐸∗ is the following:

(i) 𝐴 := 1 + Tr (𝐽 (𝐸∗)) + Det (𝐽 (𝐸∗)) > 0,

(ii) 𝐵 := 1 − Tr (𝐽 (𝐸∗)) + Det (𝐽 (𝐸∗)) > 0,

(iii) 𝐶 := 1 − Det (𝐽 (𝐸∗)) > 0.

(18)

The local stable region of 𝐸∗ in (𝛼, 𝛽) parameters plane can
be obtained by solving the inequalities (18) as follows:

0 < 𝛼 ≤
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2
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− √
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0 < 𝛽
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2
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2
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;
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− √

4𝑘
2
− 3𝑘
4

(𝑐 − 1)
2
(𝑘 − 2)

2
(𝑘2 − 1)

2

< 𝛼 ≤
3𝑘
2
− 4

(𝑐 − 1) (𝑘
3 − 2𝑘2 − 𝑘 + 2)

,

0 < 𝛽

<

2𝛼 (𝑐 − 1) (𝑘
3
− 2𝑘
2
− 𝑘 + 2)

(𝑐 (2𝑘2 − 𝑘 − 2) + 𝑘2 + 𝑘 − 2) (𝛼 (𝑐 − 1) (𝑘 − 2) − 2)
;

3𝑘
2
− 4

(𝑐 − 1) (𝑘3 − 2𝑘2 − 𝑘 + 2)

< 𝛼 <
3𝑘
2
− 4

(𝑐 − 1) (𝑘 − 2) (𝑘2 − 1)

+ √
4𝑘
2
− 3𝑘
4

(𝑐 − 1)
2
(𝑘 − 2)

2
(𝑘2 − 1)

2
,
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1 2 3 4
𝛼
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Figure 1:The stability and instability region of theNash equilibrium
point 𝐸∗ of system (10).

4 (𝛼 (𝑐 − 1) (𝑘
3
− 2𝑘
2
− 𝑘 + 2) − 3𝑘

2
+ 4)

(𝑐 (2𝑘2 − 𝑘 − 2) + 𝑘2 + 𝑘 − 2) (𝛼 (𝑐 − 1) (𝑘 − 2) − 4)

< 𝛽

<

2𝛼 (𝑐 − 1) (𝑘
3
− 2𝑘
2
− 𝑘 + 2)

(𝑐 (2𝑘2 − 𝑘 − 2) + 𝑘2 + 𝑘 − 2) (𝛼 (𝑐 − 1) (𝑘 − 2) − 2)
.

(19)

When 𝑐 = 0.1, 𝑘 = 0.3, Figure 1 gives the stability and
instability region of the Nash equilibrium point 𝐸∗ in (𝛼, 𝛽)
plane. From the figure, we can conclude that (a) too high
speed of adjustment will make the Nash equilibrium point𝐸∗
lose stability, (b) the stability region is asymmetric, and the
adjustment speed of price is more sensitive than the speed of
output. When 𝛼 > 2.65, the Nash equilibrium point will lose
stability, while about 𝛽 > 2.0, the Nash equilibrium point will
do that.

3.2. Bifurcations and Chaotic Behaviors. In this section, we
will show the complex behaviors of the system (10), includ-
ing bifurcation phenomenon and strange attractor, using
parameter basin plots (also called 2-D bifurcation diagrams)
which is a more powerful tool in the numerical analysis of
nonlinear dynamics than the 1-D bifurcation diagrams [25].
Conveniently, we take the parameter values as follows: 𝑐 = 0.1

and 𝑘 = 0.3. The initial values are chosen as (𝑄
1
(0), 𝑃
2
(0)) =

(0.25, 0.20). Through (12) in this case, the Nash equilibrium
point is (𝑄∗

1
, 𝑃
∗

2
) = (0.4102, 0.4885).

Figure 2 presents the parameter basin plots in the (𝛼, 𝛽)
plane with 𝑘 = 0.3, in which different colors represent
different states. The dark blue indicates stable steady state,
light blue for stable cycles of period 2, purple for period 4,
green for period 8, red for cycles of odd period, yellow for
chaos, and grey for divergence.



Abstract and Applied Analysis 5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

𝛽

𝛼

Figure 2: The parameter basin plots of system (10) for 𝑘 = 0.3.

0.1

0.2

0.3

0.4

0.5

0.6

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
𝛽

Q1

P2

Figure 3: Bifurcation diagrams of system (10) for 𝛼 = 1.5 and 𝛽

varying from 1.0 to 2.9.

−1.5

−1

−0.5

0

0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
𝛽

LLE

Figure 4: The largest Lyapunov exponent of system (10) for 𝛼 = 1.5

and 𝛽 varying from 1.0 to 2.9.

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

P2

Q1

Figure 5: The strange attractor of system (10) for 𝛼 = 1.5 and 𝛽 =

2.9.

0.3

0.35

0.4

0.45

0.5

0.55

1 1.2 1.4 1.6 1.8 2 2.2 2.4
𝛽

Q1

P2

Figure 6: Bifurcation diagrams of system (10) for 𝛼 = 2.5 and 𝛽

varying from 1.0 to 2.47.
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Figure 8: The phase space diagrams of system (10) for 𝛼 = 2.5.

We can conclude these results.

(1) When the parameters (𝛼, 𝛽) from the dark blue area
pass through light blue, purple, green, and yellow
areas in turn, system (10) enters into chaos through
flip bifurcation. Figure 3 shows the bifurcation dia-
grams of system (10) for 𝛼 = 1.5 and 𝛽 varying from
1.0 to 2.9, andFigure 4 gives the corresponding largest
Lyapunov exponent (LLE). When 𝛼 = 1.5 and 𝛽 =

2.9, the system has positive LLE, and then it is in a
chaotic state. Figure 5 illustrates the strange attractor
of system (10) for 𝛼 = 1.5 and 𝛽 = 2.9.

(2) When (𝛼, 𝛽) from the dark blue area go directly
to the yellow area, system (10) enters into chaos
through Neimark-Sacker bifurcation. Figure 6 shows
the bifurcation diagrams of system (10) for 𝛼 = 2.5

and 𝛽 varying from 1.0 to 2.47, and Figure 7 gives
the corresponding LLE. Figure 8 gives the phase space
diagrams of system (10) for 𝛼 = 2.5, and we can
find with the increase of 𝛽, the system generates

cycle (as in Figures 8(a)–8(c)), and then the cycle is
destroyed, and a strange attractor is developed (as in
Figure 8(d)).

(3) When (𝛼, 𝛽) from the yellow area go directly to the
grey area, one of variables of system (10) will overflow,
which means that one of the players will be out of the
market in economics.

(4) We also note that there are red lines (odd cycles) in the
yellow (chaos) region; that is, there are intermittent
odd cycles in the chaos. It is well known that a cycle
with odd period implies chaotic dynamical behaviors
according to the famous “Period 3 implies chaos”
result of Li and Yorke, the socalled topological chaos
[25].

From the perspective of economics, the players’ adjust-
ment speed 𝛼 and 𝛽 should be in a certain range; otherwise,
the system will come forth cycle fluctuations through flip
or Neimark-Sacker bifurcations, and then into chaos, which
means irregular, unpredictable, sensitive to initial values and
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Figure 9: The stability region (dark blue) of the Nash equilibrium point 𝐸∗ of system (11) with 𝜔
1
= 1 and 𝜔

2
varying.

bad for the economy.We also find that the adjustable range of
𝛼 is larger than that of 𝛽, which means that the adjustment of
price is more sensitive than that of output, and price war will
be easier to get market into chaos.

4. The Dynamics of the Delayed
Cournot-Bertrand Mixed System

4.1. Equilibrium Points and Local Stability. Let 𝑄
1
(𝑡 + 1) =

𝑄
1
(𝑡) = 𝑄

1
(𝑡−1),𝑃

2
(𝑡+1) = 𝑃

2
(𝑡) = 𝑃

2
(𝑡−1), and the delayed

system (11) has the same equilibriumpoints as the system (10).

To study the stability of system (11), we can rewrite it as a
fourth-dimensional system in the form

𝑄
1 (𝑡 + 1)

= 𝑄
1 (𝑡) + 𝛼𝑄1 (𝑡)

× (𝜔
1
(1 − 𝑐 − 𝑘 + 𝑘𝑃

2 (𝑡) − 2𝑄1 (𝑡)

+ 2𝑘
2
𝑄
1 (𝑡)) + (1 − 𝜔1)

× (1 − 𝑐 − 𝑘 + 𝑘𝑃
2 (𝑡)

−2𝑄
1 (𝑡) + 2𝑘

2
𝑄
1 (𝑡))) ,
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Figure 10: The stability region (dark blue) of the Nash equilibrium point 𝐸∗ of system (11) with 𝜔
1
= 𝜔
2
= 𝜔 varying.

𝑄
1 (𝑡 + 1) = 𝑄

1 (𝑡) ,

𝑃
2 (𝑡 + 1)

= 𝑃
2 (𝑡) + 𝛽𝑃2 (𝑡)

× (𝜔
2
(1 + 𝑐 − 2𝑃

2 (𝑡) − 𝑘𝑄1 (𝑡))

+ (1 − 𝜔
2
) (1 + 𝑐 − 2𝑃

2 (𝑡) − 𝑘𝑄1 (𝑡))) ,

𝑃
2 (𝑡 + 1) = 𝑃

2 (𝑡) .

(20)

The Jacobian matrix of the system (20) corresponding to
the state variables (𝑄

1
, 𝑄
1
, 𝑃
2
, 𝑃
2
) is as follows:
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Figure 11: Bifurcation diagrams of system (11) for 𝛼 = 1.5, 𝛽 = 2.9,
𝜔
1
= 1 and 𝜔

2
varying from 0.8 to 1.

𝐽 (𝑄
1
, 𝑄
1
, 𝑃
2
, 𝑃
2
)

= (

𝐽11 −2𝛼 (𝑘
2
− 1)𝑄1 (𝜔1 − 1) 𝛼𝑘𝑄1𝜔1 −𝛼𝑘𝑄1 (𝜔1 − 1)

1 0 0 0

−𝛽𝑘𝑃2𝜔2 𝛽𝑘𝑃2 (𝜔2 − 1) 𝐽33 2𝛽𝑃2 (𝜔2 − 1)

0 0 1 0

) ,

(21)
where

𝐽
11
= 1 − 𝛼 (2 (𝑄

1
(𝜔
1
− 1) − 2𝑄

1
𝜔
1
) 𝑘
2

+ (𝑃
2
(𝜔
1
− 1) − 𝑃

2
𝜔
1
+ 1) 𝑘

+ 𝑐 + 2𝑄
1
+ 4𝑄
1
𝜔
1
− 2𝑄
1
𝜔
1
− 1) ,

𝐽
33
= 𝛽 (𝑐 − 𝑘𝑄

1
+ 2𝑃
2
(𝜔
2
− 1) − 4𝑃

2
𝜔
2

− 𝑘𝑄
1
𝜔
2
+ 𝑘𝑄
1
𝜔
2
+ 1) + 1.

(22)

Similarly, the local stability of equilibrium points can be
determined by the nature of the eigenvalues of the Jacobian
matrix evaluated at the corresponding equilibrium points. As
in the system (10), we can easily conclude that the boundary
equilibrium points 𝐸

0
, 𝐸
1
, and 𝐸

2
are not stable.

In this case, because of the computational complexity, it
is hard to give the analytical expression of local stable regions
of the only Nash equilibrium points 𝐸∗ by Jury conditions as
in system (10). In order to find the influences of delay on the
stability of 𝐸∗, using numerical method as in [25], Figure 9
separately gives the stability region (dark blue) of the Nash
equilibrium point 𝐸∗ of system (11) for 𝜔

1
= 1, 𝜔

2
= 0.8,

0.6, 0.4 and 0.2, and Figure 10 gives the stability region of the
Nash equilibrium point 𝐸∗ of system (11) for 𝜔

1
= 𝜔
2
= 𝜔 =

0.8, 0.6, 0.4 and 0.2, respectively. From the comparison with
Figure 1 (𝜔

1
= 𝜔
2
= 1), we can see with the decreasing of

the delay weights that the dark blue area first becomes bigger
and then smaller; that is, the stability of Nash equilibrium is
increased if less weights are put on the more recent price or
quantity and price simultaneously; otherwise, the region of
stability becomes smaller.
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Figure 12: Bifurcation diagrams of system (11) for 𝛼 = 1.5, 𝛽 = 2.9

and 𝜔
1
= 𝜔
2
= 𝜔 varying from 0.8 to 1.

4.2. The Effects of Delay on System Stability. Numerical
simulations are carried to show the influences of the delay
weights on system (11). When 𝛼 = 1.5 and 𝛽 = 2.9, according
to Figure 3, the nondelayed system is in chaos through flip
bifurcation. Figure 11 shows bifurcation diagrams of system
(11) for 𝛼 = 1.5, 𝛽 = 2.9, 𝜔

1
= 1 and 𝜔

2
varying from 0.8

to 1. Figure 12 shows bifurcation diagrams of system (11) for
𝛼 = 1.5, 𝛽 = 2.9 and 𝜔

1
= 𝜔
2
= 𝜔 varying from 0.8 to 1.

It can be seen that the chaotic system can be controlled to
stable states or cycles by selecting suitable delayweight values;
that is, the introduction of the lagged structure can make the
system have a higher chance of reaching steady states.

When 𝛼 = 2.5 and 𝛽 = 2.3, according to Figure 6,
the nondelayed system is in chaos through Neimark-Sacker
bifurcation. Figure 13 shows bifurcation diagrams of system
(11) for 𝛼 = 2.5, 𝛽 = 2.3, 𝜔

1
= 1 and 𝜔

2
varying from 0.8

to 1. Figure 14 shows bifurcation diagrams of system (11) for
𝛼 = 2.5, 𝛽 = 2.3 and 𝜔

1
= 𝜔
2
= 𝜔 varying from 0.8 to 1. It

can be seen that the chaotic system can also be controlled to
stable states by selecting suitable delay weight values.

Above all, if the system is in chaos, either through flip
or Neimark-Sacker bifurcation, reasonably selecting delay
weights can help control chaos to cycles or stable states. So
making full use of the historical data can improve the system’s
stability.

5. Conclusions

In this paper, we propose a delayed Cournot-Bertrand mixed
game model, assuming that the demand and cost function
is linear, and the firms make their decisions according to
their own marginal profit. Through comparison with the
nondelayed model, we find that they have the same equi-
librium points, the boundary equilibrium points are always
unstable, and the local stability of the Nash equilibrium is
affected by the weights of delay. If less weights are put on the
more recent quantity and price, the stability region of Nash
equilibrium will become bigger, otherwise it will become
smaller. Moreover, we analyze the effects of the delay on the
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Figure 13: Bifurcation diagrams of system (11) for 𝛼 = 2.5, 𝛽 = 2.3,
𝜔
1
= 1 and 𝜔

2
varying from 0.8 to 1.
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Figure 14: Bifurcation diagrams of system (11) for 𝛼 = 2.5, 𝛽 = 2.3

and 𝜔
1
= 𝜔
2
= 𝜔 varying from 0.8 to 1.

system stability and find that making full use of the memory
can help control chaos to cycles or stable states.
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