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The problem ofmatrix projective synchronization (MPS) in discrete-time chaotic systems is investigated, and a new type of discrete
chaos synchronization called inverse matrix projective synchronization (IMPS) is introduced. Sufficient conditions are derived for
achieving MPS and IMPS between chaotic dynamical systems in discrete-time of different and identical dimensions. Based on new
control schemes, Lyapunov stability theory, and stability theory of linear dynamical systems in discrete-time, some synchronization
criteria are obtained. Numerical examples and simulations are used to illustrate the use of the proposed schemes.

1. Introduction

Over the past fewdecades, chaos synchronization has become
an active research subject in nonlinear science and attracted
much attention frommany fields due its high-potential appli-
cations [1–4]. Many powerful methods have been reported to
investigate some types of chaos (hyperchaotic) synchroniza-
tion [5–10] and most of works on synchronization have been
concentrated on continuous-time chaotic systems rather than
discrete-time chaotic systems. Recently, more attention has
been paid to the synchronization of chaos (hyperchaos) in
discrete-time dynamical systems [11–19], due to its applica-
tions in secure communication and cryptology [20–22].

Up to now, many types of synchronization have been
found in interesting chaotic systems in discrete-time such as
projective synchronization [23], adaptive-function projective
synchronization [24, 25], function-cascade synchronization
[26], generalized synchronization [27, 28], lag synchroniza-
tion [29], impulsive synchronization [30], hybrid synchro-
nization [31], Q-S synchronization [32, 33], and full-state
hybrid projective synchronization [34, 35]. Among all types
of synchronization, projective synchronization (PS) has been
extensively considered. In PS, drive and response systems

could be synchronized up to a scaling factor 𝛼. When the
scaling constant 𝛼 is generalized to constant matrix, a new
synchronization type appears and is called matrix projective
synchronization (MPS). Another interesting problem is the
inverse case of MPS, that is, when each response system state
synchronizes with a linear combination of drive system states.
Obviously, complexity of the scaling factors, in MPS or in
IMPS, can have important effect in applications.

In this paper, based on new design control method
using Lyapunov stability theory, we would like to present
constructive schemes to investigate two new synchronization
types: matrix projective synchronization (MPS) and inverse
matrix projective synchronization (IMPS) between chaotic
dynamical systems in discrete-time. Numerical examples are
given to illustrate the effectiveness of the proposed schemes.
To be specific, we apply the MPS between discrete-time
chaotic systems of different dimensions: the drive 3DHénon-
like map and the controlled 2D Fold map. Furthermore, for
the proposed scheme of IMPS, we apply it to 3D generalized
Hénon map and the controlled 3D Baier-Klein map.

The rest of this paper is arranged as follows. In Section 2,
the problem of MPS between chaotic systems of different
dimensions in discrete-time is investigated. In Section 3,
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the IMPS type is proposed for 𝑛-dimensional chaotic systems
in discrete-time. In Section 4, the proposed approaches are
applied to two examples and simulations are used to verify
the theoretical results derived in this paper. Finally, the paper
is concluded in Section 5.

2. MPS between Different Dimensional Drive
System and Response System

In this section, to study the problem of matrix projective
synchronization (MPS), the following drive chaotic system is
considered:

𝑋 (𝑘 + 1) = 𝑓 (𝑋 (𝑘)) , (1)

where 𝑋(𝑘) ∈ R𝑛 is the state vector of the drive system (1)
and 𝑓 : R𝑛 → R𝑛.

As a response system, we consider the following chaotic
system:

𝑌 (𝑘 + 1) = 𝐵𝑌 (𝑘) + 𝑔 (𝑌 (𝑘)) + 𝑈, (2)

where 𝑌(𝑘) ∈ R𝑚, 𝐵 = [𝑏
𝑖𝑗
] ∈ R𝑚×𝑚, 𝑔 : R𝑚 → R𝑚, and

𝑈 = [𝑢
𝑖
] ∈ R𝑚 are the state vector of the response system, the

linear part of the response system, the nonlinear part of the
response system, and a vector controller, respectively.

Now, we present the definition of matrix projective
synchronization (MPS) between the drive system (1) and the
response system (2).

Definition 1. The 𝑛-dimensional drive system (1) and the
𝑚-dimensional response system (2) are said to be matrix
projective synchronized (MPS) if there exists a controller𝑈 =

[𝑢
𝑖
] ∈ R𝑚 and a given matrix Λ = [Λ

𝑖𝑗
] ∈ R𝑚×𝑛 such that the

synchronization error

𝑒 (𝑘) = 𝑌 (𝑘) − Λ𝑋 (𝑘) (3)

satisfies that

lim
𝑘→∞

‖𝑒 (𝑘)‖ = 0. (4)

Then, the error system between the drive system (1) and
the response system (2) can be derived as

𝑒 (𝑘 + 1) = 𝐵𝑌 (𝑘) + 𝑔 (𝑌 (𝑘)) − Λ𝑓 (𝑋 (𝑘)) + 𝑈. (5)

To achieve MPS between systems (1) and (2), we choose
the vector controller 𝑈 as follows:

𝑈 = −𝐿
1
𝑌 (𝑘) − 𝑔 (𝑌 (𝑘)) + Λ𝑓 (𝑋 (𝑘))

+ (𝐿
1
− 𝐵)Λ𝑋 (𝑘) ,

(6)

where 𝐿
1
∈ R𝑚×𝑚 is an unknown control matrix to be deter-

mined.

Theorem 2. The drive system (1) and the response system (2)
are globallymatrix projective synchronized under the controller
law (6) if and only if 𝐿

1
is chosen such that the eigenvalues of

(𝐵 − 𝐿
1
) lie inside the unit disk.

Proof. By substituting (6) into (5), the error system can be
described as

𝑒 (𝑘 + 1) = (𝐵 − 𝐿
1
) 𝑒 (𝑘) . (7)

Now the result follows immediately for the stability theory of
autonomous linear discrete-time systems.

The following result is a corollary of Theorem 2.

Corollary 3. If 𝐿
1
is chosen such that (𝐵 − 𝐿

1
)
𝑇

(𝐵 − 𝐿
1
) − 𝐼

is a negative definite matrix, then the drive system (1) and the
response system (2) are globally matrix projective synchronized
under the control law (6).

Proof. Although this result is a corollary of Theorem 2, we
would like to present an independent proof. Anyhow, once
again, by substituting (6) into (5), the error system can be
described as

𝑒 (𝑘 + 1) = (𝐵 − 𝐿
1
) 𝑒 (𝑘) . (8)

To this end, consider a Lyapunov function in the form

𝑉 (𝑒 (𝑘)) = 𝑒
𝑇

(𝑘) 𝑒 (𝑘) . (9)

Then

Δ𝑉 (𝑒 (𝑘)) = 𝑒
𝑇

(𝑘 + 1) 𝑒 (𝑘 + 1) − 𝑒
𝑇

(𝑘) 𝑒 (𝑘)

= 𝑒
𝑇

(𝑘) (𝐵 − 𝐿
1
)
𝑇

(𝐵 − 𝐿
1
) 𝑒 (𝑘)

− 𝑒
𝑇

(𝑘) 𝑒 (𝑘)

= 𝑒
𝑇

(𝑘) [(𝐵 − 𝐿
1
)
𝑇

(𝐵 − 𝐿
1
) − 𝐼] 𝑒 (𝑘)

< 0.

(10)

Thus, from the Lyapunov stability theory, it is immediate
that the zero solution of the error system (8) is globally
asymptotically stable. Therefore, systems (1) and (2) are
globally matrix projective synchronized.

3. IMPS between 𝑛-Dimensional Drive System
and Response System

In this section, we investigate the problem of IMPS.The drive
and the response chaotic systems are in the following forms:

𝑋(𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝑓 (𝑋 (𝑘)) , (11)

𝑌 (𝑘 + 1) = 𝑔 (𝑌 (𝑘)) + 𝑈, (12)

where 𝑋(𝑘) ∈ R𝑛 and 𝑌(𝑘) ∈ R𝑛 are the states of the drive
system (11) and the response system (12), respectively, 𝐴 ∈

R𝑛×𝑛 is 𝑛 × 𝑛 constant matrix, 𝑓 : R𝑛 → R𝑛 is a nonlinear
function, 𝑔 : R𝑛 → R𝑛, and 𝑈 ∈ R𝑛 is a controller to be
determined.

The definition of inverse matrix projective synchroniza-
tion (IMPS) for the coupled drive-response chaotic systems
given in (11) and (12) is given by the following.
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Definition 4. The drive system (11) and the response system
(12) are said to be inverse matrix projective synchronized
(IMPS), if there exists a controller 𝑈 = [𝑢

𝑖
] ∈ R𝑛 and a given

matrix Λ = [Λ
𝑖𝑗
] ∈ R𝑛×𝑛 such that the synchronization error

𝑒 (𝑘) = 𝑋 (𝑘) − Λ𝑌 (𝑘) (13)

satisfies that

lim
𝑘→+∞

‖𝑒 (𝑘)‖ = 0. (14)

The error system between the drive system (11) and the
response system (12) can be derived as

𝑒 (𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝑓 (𝑋 (𝑘)) − Λ (𝑔 (𝑌 (𝑘)) + 𝑈) . (15)

To achieve IMPS between systems (11) and (12), we can
choose the vector controller 𝑈 as follows:

𝑈 = −𝑔 (𝑌 (𝑘))

+ Λ
−1

[𝑓 (𝑋 (𝑘)) + 𝐿
2
𝑋 (𝑘) + (𝐴 − 𝐿

2
) Λ𝑌 (𝑘)] ,

(16)

where Λ−1 is the inverse of matrix Λ and 𝐿
2
∈ R𝑛×𝑛 is an

unknown control matrix to be determined.
With that in mind, we formulate the following result.

Theorem 5. The drive system (11) and the response system
(12) are globally inverse matrix projective synchronized under
the control law (16) if and only if 𝐿

2
is chosen such that all

eigenvalues of 𝐴 − 𝐿
2
are strictly inside the unit disk.

Proof. By substituting the control law (16) into (15), the error
system can be described as

𝑒 (𝑘 + 1) = (𝐴 − 𝐿
2
) 𝑒 (𝑘) . (17)

Thus, by asymptotic stability of autonomous linear
discrete-time systems, it is immediate that all solutions of
error system (17) go to zero as 𝑘 → ∞ if and only if
all eigenvalues of 𝐴 − 𝐿

2
are strictly inside the unit disk.

Therefore, systems (11) and (12) are globally inverse matrix
projective synchronized.

4. Simulation Examples

In this section, to illustrate the applicability of the theoretical
synchronization results derived above, two examples are
considered.

4.1. Example 1: MPS between Hénon-Like Map and Fold Map.
Here, we consider the Hénon-like map as the drive system
and the controlled Fold map as the response system. The
Hénon-like map can be described as

𝑥
1
(𝑘 + 1) = 1 + 𝑥

3
(𝑘) − 𝛼𝑥

2

2
(𝑘) ,

𝑥
2
(𝑘 + 1) = 1 + 𝛽𝑥

2
(𝑘) − 𝛼𝑥

2

1
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝛽𝑥

1
(𝑘) ,

(18)
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Figure 1: Chaotic attractor of the Hénon-like map when (𝛼, 𝛽) =
(1.4, 0.2).
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Figure 2: Chaotic attractor of the Fold map when (𝑎, 𝑏) = (−0.1,
−1.7).

which has a chaotic attractor, for example, when (𝛼, 𝛽) =

(1.4, 0.2) [32]. Using Maple 15.0, the chaotic attractor of the
Hénon-like map for 𝑥

1
(0) = 𝑥

2
(0) = 𝑥

3
(0) = 0 is shown in

Figure 1.
The controlled Fold map can be described as

𝑦
1
(𝑘 + 1) = 𝑦

2
(𝑘) + 𝑎𝑦

1
(𝑘) + 𝑢

1
,

𝑦
2
(𝑘 + 1) = 𝑏 + 𝑦

2

1
(𝑘) + 𝑢

2
,

(19)

which has a chaotic attractor, for example, when (𝑎, 𝑏) =

(−0.1, −1.7) [33], where𝑈 = (𝑢
1
, 𝑢
2
)
𝑇 is the vector controller.

Using Maple 15.0, the chaotic attractor for 𝑦
1
(0) = 𝑦

2
(0) = 0

of this map is shown in Figure 2.
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In this example, the synchronization criterion presented
in Section 3 is applied between systems (18) and (19). Then,
quantities 𝐵 and 𝑔(𝑌(𝑘)) are given by, respectively,

𝐵 = (

𝑎 1

0 0

) ,

𝑔 (𝑌 (𝑘)) = (

0

𝑏 + 𝑦
2

1
(𝑘)

) ;

(20)

then the scaling matrix Λ and the control matrix 𝐿
1
are

selected as, respectively,

Λ = (

1 0 3

2 0 2

) ,

𝐿
1
= (

𝑎 +

1

2

1

0

1

2

) .

(21)

According to the general control law given in Section 2 by
(6), the vector controller can be designed as

𝑢
1
= 1 − (

1

2

+ 𝑎)𝑦
1
(𝑘) − 𝑦

2
(𝑘) + (3𝛽 +

1

2

) 𝑥
1
(𝑘)

+

5

2

𝑥
3
(𝑘) − 𝑎𝑥

2

2
(𝑘)

𝑢
2
= (2 − 𝑏) −

1

2

𝑦
2
(𝑘) + (2𝛽 + 1) 𝑥

1
(𝑘) + 3𝑥

3
(𝑘)

− 𝑦
2

1
(𝑘) − 2𝛼𝑥

2

2
(𝑘) .

(22)

Using simple calculations, we can show that (𝐵−𝐿
1
)
𝑇

(𝐵−

𝐿
1
) − 𝐼 is a negative definite matrix. In this case, since the

scaling matrix Λ = [Λ
𝑖𝑗
] ∈ R2×3 has no effect on the

eigenvalues of (𝐵 − 𝐿
1
), one can adjust the scaling matrix

arbitrarily during control without worrying about the control
robustness. Therefore, in this case, systems (18) and (19) are
matrix projective synchronized. Using the vector controller
(22), the error functions can be written as

𝑒
1
(𝑘 + 1) = −

1

2

𝑒
1
(𝑘) ,

𝑒
2
(𝑘 + 1) = −

1

2

𝑒
2
(𝑘) .

(23)

The error function evolution is shown in Figure 3.

4.2. Example 2: IMPS between Generalized Hénon Map and
Baier-Klein Map. In this example, we apply the control
scheme proposed in Section 3 to achieve IMPS between the
drive 3D generalized Hénon map and the response Baier-
Klein map. The 3D generalized Hénon map can be described
as

𝑥
1
(𝑘 + 1) = −𝛽𝑥

2
(𝑘) ,

𝑥
2
(𝑘 + 1) = 𝑥

3
(𝑘) + 1 − 𝛼𝑥

2

2
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝛽𝑥

2
(𝑘) + 𝑥

1
(𝑘) ,

(24)
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Figure 3: Time evolution of MPS errors between systems (18) and
(19).
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Figure 4: Chaotic attractor of the generalized Hénon map when
(𝑎, 𝑏) = (1.07, 0.3).

which has a chaotic attractor, for example, when (𝑎, 𝑏) =

(1.07, 0.3) [32]. Using Maple 15.0, the chaotic attractor of the
generalized Hénon map for 𝑥

1
(0) = 𝑥

2
(0) = 𝑥

3
(0) = 0 is

shown in Figure 4.
The controlled Baier-Klein map [36] can be described as

𝑦
1
(𝑘 + 1) = −0.1𝑦

3
(𝑘) − 𝑦

2

2
(𝑘) + 1.76 + 𝑢

1
,

𝑦
2
(𝑘 + 1) = 𝑦

1
(𝑘) + 𝑢

2
,

𝑦
3
(𝑘 + 1) = 𝑦

2
(𝑘) + 𝑢

3
,

(25)
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Figure 5: Chaotic attractor of the Baier-Klein map.

where 𝑈 = (𝑢
1
, 𝑢
2
, 𝑢
3
)
𝑇 is the vector controller. Using Maple

15.0, the chaotic attractor of Baier-Klein map for 𝑦
1
(0) =

𝑦
2
(0) = 𝑦

3
(0) = 0 is shown in Figure 5.

According to our approach presented in Section 3, the
quantities 𝐴 and 𝑓(𝑋(𝑘)) are given by, respectively,

𝐴 = (

0 −𝛽 0

0 0 1

1 𝛽 0

) ,

𝑓 (𝑋 (𝑘)) = (

0

1 − 𝛼𝑥
2

2
(𝑘)

0

) ;

(26)

then the scaling matrix Λ and the control matrix 𝐿
2
are

chosen as, respectively,

Λ = (

0.5 0 0

0 0.5 0

0 0 0.5

) ,

𝐿
2
= (

−0.1 −𝛽 0

0 0.2 1

1 𝛽 0.3

) .

(27)

In this case, by using the same formula of the control
law given by (16), the vector controller can be constructed as
follows:

𝑢
1
= −1.76 + 0.1𝑦

1
(𝑘) + 0.1𝑦

3
(𝑘) − 0.2𝑥

1
(𝑘)

− 2𝛽𝑥
2
(𝑘) + 𝑦

2

2
(𝑘) ,

𝑢
2
= 2 − 0.2𝑦

2
(𝑘) − 𝑦

1
(𝑘) + 0.4𝑥

2
(𝑘) − 2𝛼𝑥

2

2
(𝑘) ,

𝑢
3
= −0.3𝑦

3
(𝑘) − 𝑦

2
(𝑘) + 2𝑥

1
(𝑘) + 2𝛽𝑥

2
(𝑘)

+ 0.6𝑥
3
(𝑘) .

(28)

It is easy to show that all eigenvalues of𝐴−𝐿
2
are strictly

inside the unit disk. Therefore, in this case, systems (24)
and (25) are inverse matrix projective synchronized. Using
controllers (28), the error functions can be described as

𝑒
1
(𝑘 + 1) = 0.1𝑒

1
(𝑘) ,

𝑒
2
(𝑘 + 1) = −0.2𝑒

2
(𝑘) ,

𝑒
3
(𝑘 + 1) = −0.3𝑒

3
(𝑘) .

(29)

The error function evolution is shown in Figure 6.

5. Conclusion

In this paper, the problems of matrix projective synchroniza-
tion (MPS) and inverse matrix projective synchronization
(IMPS) in different and identical dimensional discrete-time
chaotic systems have been analyzed. Based on nonlinear
controllers, Lyapunov stability theory, and stability theory
of linear dynamical systems, some synchronization criteria
have been obtained and new conditions have been derived for
achieving MPS and IMPS. Firstly, to achieve MPS behavior
between different dimensional systems, the derived control
scheme was proposed by controlling the linear part of
the response system. Secondly, to achieve IMPS between
identical dimensional systems, the presented control method
was proposed by controlling the linear part of the drive
system. Numerical examples and simulations were used to
verify the effectiveness of the proposed approaches.
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