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The graph with the largest signless Laplacian spectral radius among all bicyclic graphs with perfect matchings is determined.

1. Introduction

Let 𝐺 = (𝑉, 𝐸) be a simple connected graph with vertex
set 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} and edge set 𝐸. Its adjacency matrix

𝐴(𝐺) = (𝑎
𝑖𝑗
) is defined as 𝑛 × 𝑛 matrix (𝑎

𝑖𝑗
), where 𝑎

𝑖𝑗
= 1 if

V
𝑖
is adjacent to V

𝑗
, and 𝑎

𝑖𝑗
= 0, otherwise. Denote by 𝑑(V

𝑖
) or

𝑑
𝐺
(V
𝑖
) the degree of the vertex V

𝑖
. Let 𝑄(𝐺) = 𝐷(𝐺) + 𝐴(𝐺)

be the signless Laplacian matrix of graph 𝐺, where 𝐷(𝐺) =
diag(𝑑(V

1
), 𝑑(V
2
), . . . , 𝑑(V

𝑛
)) denotes the diagonal matrix of

vertex degrees of 𝐺. It is well known that 𝐴(𝐺) is a real
symmetric matrix and𝑄(𝐺) is a positive semidefinite matrix.
The largest eigenvalues of 𝐴(𝐺) and 𝑄(𝐺) are called the
spectral radius and the signless Laplacian spectral radius of𝐺,
denoted by𝜌(𝐺) and 𝑞(𝐺), respectively.When𝐺 is connected,
𝐴(𝐺) and 𝑄(𝐺) are a nonnegative irreducible matrix. By the
well-known Perron-Frobenius theory, 𝜌(𝐺) is simple and has
a unique positive unit eigenvector and so does 𝑞(𝐺). We refer
to such an eigenvector corresponding to 𝑞(𝐺) as the Perron
vector of 𝐺.

Two distinct edges in a graph 𝐺 are independent if they
are not adjacent in 𝐺. A set of mutually independent edges
of 𝐺 is called a matching of 𝐺. A matching of maximum
cardinality is a maximummatching in 𝐺. A matching𝑀 that
satisfies 2|𝑀| = 𝑛 = |𝑉(𝐺)| is called a perfect matching of
the graph𝐺. Denote by 𝐶

𝑛
and 𝑃
𝑛
the cycle and the path on 𝑛

vertices, respectively.

The characteristic polynomial of 𝐴(𝐺) is det(𝑥𝐼 − 𝐴(𝐺)),
which is denoted by Φ(𝐺) or Φ(𝐺, 𝑥). The characteristic
polynomial of 𝑄(𝐺) is det(𝑥𝐼 − 𝑄(𝐺)), which is denoted by
Ψ(𝐺) or Ψ(𝐺, 𝑥).

A bicyclic graph is a connected graph in which the
number of vertices equals the number of edges minus one.
Let 𝐶
𝑝
and 𝐶

𝑞
be two vertex-disjoint cycles. Suppose that V

1

is a vertex of 𝐶
𝑝
and V

𝑙
is a vertex of 𝐶

𝑞
. Joining V

1
and V

𝑙

by a path V
1
V
2
⋅ ⋅ ⋅ V
𝑙
of length 𝑙 − 1, where 𝑙 ≥ 1 and 𝑙 = 1

means identifying V
1
with V

𝑙
, denoted by𝐵(𝑝, 𝑙, 𝑞), is called an

∞-graph (see Figure 1). Let 𝑃
𝑙+1
, 𝑃
𝑝+1

, and 𝑃
𝑞+1

be the three
vertex-disjoint paths, where 𝑙, 𝑝, 𝑞 ≥ 1, and at most one of
them is 1. Identifying the three initial vertices and the three
terminal vertices of them, respectively, denoted by 𝑃(𝑙, 𝑝, 𝑞),
is called a 𝜃-graph (see Figure 2).

Let 𝐵
𝑛
(2𝜇) be the set of all bicyclic graphs on 𝑛 = 2𝜇 (𝜇 ≥

2) vertices with perfect matchings. Obviously 𝐵
𝑛
(2𝜇) consists

of two types of graphs: one type, denoted by 𝐵+
𝑛
(2𝜇), is a set

of graphs each of which is an∞-graph with trees attached;
the other type, denoted by 𝐵++

𝑛
(2𝜇), is a set of graphs each of

which is 𝜃- graph with trees attached.Then we have 𝐵
𝑛
(2𝜇) =

𝐵
+

𝑛
(2𝜇) ∪ 𝐵

++

𝑛
(2𝜇).

The investigation on the spectral radius of graphs is an
important topic in the theory of graph spectra, in which some
early results can go back to the very beginnings (see [1]). The
recent developments on this topic also involve the problem
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Figure 1: 𝐵(𝑝, 1, 𝑞) and 𝐵(𝑝, 𝑙, 𝑞) (𝑙 ≥ 2).
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Figure 2: 𝑃(𝑝, 𝑙, 𝑞).

concerning graphs with maximal or minimal spectral radius
of a given class of graphs. In [2], Chang and Tian gave the first
two spectral radii of unicyclic graphs with perfect matchings.
Recently, Yu and Tian [3] gave the first two spectral radii of
unicyclic graphs with a givenmatching number; Guo [4] gave
the first six spectral radii over the class of unicyclic graphs
on a given number of vertices; and Guo [5] gave the first ten
spectral radii over the class of unicyclic graphs on a given
number of vertices and the first four spectral radii of unicyclic
graphs with perfect matchings. Formore results on this topic,
the reader is referred to [6–9] and the references therein.

In this paper, we deal with the extremal signless Laplacian
spectral radius problems for the bicyclic graphs with perfect
matchings.The graphwith the largest signless Laplacian spec-
tral radius among all bicyclic graphs with perfect matchings
is determined.

2. Lemmas

Let 𝐺 − 𝑢 or 𝐺 − 𝑢V denote the graph obtained from 𝐺 by
deleting the vertex 𝑢 ∈ 𝑉(𝐺) or the edge 𝑢V ∈ 𝐸(𝐺). A
pendant vertex of 𝐺 is a vertex with degree 1. A path 𝑃 :
VV
1
V
2
⋅ ⋅ ⋅ V
𝑘
in 𝐺 is called a pendant path if 𝑑(V

1
) = 𝑑(V

2
) =

⋅ ⋅ ⋅ = 𝑑(V
𝑘−1
) = 2 and 𝑑(V

𝑘
) = 1. If 𝑘 = 1, then we say VV

1
is a

pendant edge of the graph 𝐺.
In order to complete the proof of ourmain result, we need

the following lemmas.

Lemma 1 (see [10, 11]). Let 𝐺 be a connected graph and 𝑢, V
two vertices of 𝐺. Suppose that V

1
, V
2
, . . . , V

𝑠
∈ 𝑁(V) \ {𝑁(𝑢) ∪

𝑢} (1 ≤ 𝑠 ≤ 𝑑(V)) and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the Perron vector

of 𝐺, where 𝑥
𝑖
corresponds to the vertex V

𝑖
(1 ≤ 𝑖 ≤ 𝑛). Let

𝐺
∗ be the graph obtained from 𝐺 by deleting the edges VV

𝑖
and

adding the edges𝑢V
𝑖
(1 ≤ 𝑖 ≤ 𝑠). If𝑥

𝑢
≥ 𝑥V, then 𝑞(𝐺) < 𝑞(𝐺∗).

The cardinality of a maximum matching of 𝐺 is com-
monly known as its matching number, denoted by 𝜇(𝐺).

From Lemma 1, we have the following results.

Corollary 2. Let𝑤 and V be two vertices in a connected graph
𝐺 and suppose that 𝑠 paths {𝑤𝑤

1
𝑤


1
, 𝑤𝑤
2
𝑤


2
, . . . , 𝑤𝑤

𝑠
𝑤


𝑠
} of

length 2 are attached to 𝐺 at 𝑤 and 𝑡 paths {VV
1
V
1
, VV
2
V
2
, . . . ,

VV
𝑡
V
𝑡
} of length 2 are attached to𝐺 at V to form𝐺

𝑠,𝑡
.Then either

𝑞(𝐺
𝑠+𝑖,𝑡−𝑖

) > 𝑞(𝐺
𝑠,𝑡
) (1 ≤ 𝑖 ≤ 𝑡) or 𝑞(𝐺

𝑠−𝑖,𝑡+𝑖
) > 𝑞(𝐺

𝑠,𝑡
) (1 ≤

𝑖 ≤ 𝑠)or 𝜇(𝐺
0,𝑠+𝑡
) = 𝜇(𝐺

𝑠+𝑡,0
) = 𝜇(𝐺

𝑠,𝑡
).

Corollary 3. Suppose 𝑢 is a vertex of graph 𝐺 with 𝑑(𝑢) ≥ 2.
Let 𝐺 : 𝑢V be a graph obtained by attaching a pendant edge
𝑢V to 𝐺 at 𝑢. Suppose 𝑡 paths {VV

1
V
1
, . . . , VV

𝑡
V
𝑡
} of length 2 are

attached to 𝐺 : 𝑢V at V to form 𝐿
0,𝑡
. Let

𝑀
1,𝑡
= 𝐿
0,𝑡
− VV
1
− ⋅ ⋅ ⋅ − VV

𝑡
+ 𝑢V
1
+ ⋅ ⋅ ⋅ + 𝑢V

𝑡
. (1)

If 𝐿
0,𝑡

has a perfect matching, then we have that 𝑀
1,𝑡

has a
perfect matching and

𝑞 (𝑀
1,𝑡
) > 𝑞 (𝐿

0,𝑡
) , (𝑡 ≥ 1) . (2)

An internal path of a graph 𝐺 is a sequence of vertices
V
1
, V
2
, . . . , V

𝑚
with𝑚 ≥ 2 such that

(1) the vertices in the sequences are distinct (except
possibly V

1
= V
𝑚
);

(2) V
𝑖
is adjacent to V

𝑖+1
, (𝑖 = 1, 2, . . . , 𝑚 − 1);

(3) the vertex degrees 𝑑(V
𝑖
) satisfy 𝑑(V

1
) ≥ 3, 𝑑(V

2
) =

⋅ ⋅ ⋅ = 𝑑(V
𝑚−1
) = 2 (unless𝑚 = 2) and 𝑑(V

𝑚
) ≥ 3.

Let 𝐺 be a connected graph, and 𝑢V ∈ 𝐸(𝐺). The graph
𝐺
𝑢V is obtained from 𝐺 by subdividing the edge 𝑢V, that is,

adding a new vertex𝑤 and edges 𝑢𝑤,𝑤V in𝐺−𝑢V. By similar
reasoning as that ofTheorem 3.1 of [12], we have the following
result.

Lemma 4. Let 𝑃 : V
1
V
2
⋅ ⋅ ⋅ V
𝑘
(𝑘 ≥ 2) be an internal path of

a connected graph 𝐺. Let 𝐺 be a graph obtained from 𝐺 by
subdividing some edge of 𝑃. Then we have 𝑞(𝐺) < 𝑞(𝐺).

Corollary 5. Suppose that V
1
V
2
⋅ ⋅ ⋅ V
𝑘
(𝑘 ≥ 3) is an internal

path of the graph 𝐺 and V
1
V
𝑘
∉ 𝐸(𝐺) for 𝑘 = 3. Let 𝐺∗ be

the graph obtained from 𝐺 − V
𝑖
V
𝑖+1
− V
𝑖+1

V
𝑖+2
(1 ≤ 𝑖 ≤ 𝑘 − 2)

by amalgamating V
𝑖
, V
𝑖+1

, and V
𝑖+2

to form a new vertex 𝑤
1

together with attaching a new pendant path 𝑤
1
𝑤
2
𝑤
3
of length

2 at 𝑤
1
. Then 𝑞(𝐺∗) > 𝑞(𝐺) and 𝜇(𝐺∗) ≥ 𝜇(𝐺).

Proof. FromLemma 4 and thewell-knownPerron-Frobenius
theorem, It is easy to prove that 𝑞(𝐺∗) > 𝑞(𝐺). Next, we prove
that 𝜇(𝐺∗) ≥ 𝜇(𝐺). Let𝑀 be a maximum matching of 𝐺. If
V
𝑖
V
𝑖+1
∈ 𝑀 or V

𝑖+1
V
𝑖+2
∈ 𝑀, then {𝑀 − {V

𝑖
V
𝑖+1
}} ∪ {𝑤

2
𝑤
3
} or

{𝑀 − {V
𝑖+1

V
𝑖+2
}} ∪ {𝑤

2
𝑤
3
} is a matching of 𝐺∗. Thus, 𝜇(𝐺∗) ≥

𝜇(𝐺); If V
𝑖
V
𝑖+1
∉ 𝑀 and V

𝑖+1
V
𝑖+2
∉ 𝑀, then there exist two

edges V
𝑖
𝑢 and V

𝑖+2
V ∈ 𝑀. Thus, {𝑀 − {V

𝑖
𝑢}} ∪ {𝑤

2
𝑤
3
} is a

matching of 𝐺∗. Hence, 𝜇(𝐺∗) ≥ 𝜇(𝐺), completing the proof.

Let 𝑆(𝐺) be the subdivision graph of 𝐺 obtained by
subdividing every edge of 𝐺.

Lemma 6 (see [13, 14]). Let 𝐺 be a graph on 𝑛 vertices and 𝑚
edges, Φ(𝐺) = det(𝑥𝐼 − 𝐴(𝐺)), Ψ(𝐺) = det(𝑥𝐼 − 𝑄(𝐺)). Then
Φ(𝑆(𝐺)) = 𝑥

𝑚−𝑛
Ψ(𝐺, 𝑥

2
).
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Lemma 7 (see [15]). Let 𝑢 be a vertex of a connected graph 𝐺.
Let 𝐺
𝑘,𝑙
(𝑘, 𝑙 ≥ 0) be the graph obtained from 𝐺 by attaching

two pendant paths of lengths 𝑘 and 𝑙 at 𝑢, respectively. If 𝑘 ≥
𝑙 ≥ 1, then 𝑞(𝐺

𝑘,𝑙
) > 𝑞(𝐺

𝑘+1,𝑙−1
).

Corollary 8. Suppose that V
1
V
2
⋅ ⋅ ⋅ V
𝑘
(𝑘 ≥ 3) is a pendant

path of the graph 𝐺 with 𝑑(V
1
) ≥ 3. Let 𝐺∗ be the graph

obtained from 𝐺 − V
1
V
2
− V
2
V
3
by amalgamating V

1
, V
2
, and

V
3
to form a new vertex 𝑤

1
together with attaching a new

pendant path 𝑤
1
𝑤
2
𝑤
3
of length 2 at 𝑤

1
. Then 𝑞(𝐺∗) > 𝑞(𝐺)

and 𝜇(𝐺∗) ≥ 𝜇(𝐺).

Proof. By Lemma 7 we have 𝑞(𝐺∗) > 𝑞(𝐺). By the proof as
that of Corollary 5, we have 𝜇(𝐺∗) ≥ 𝜇(𝐺).

Lemma 9 (see [16]). Let 𝑒 = 𝑢V be an edge of 𝐺, and let 𝐶(𝑒)
be the set of all circuits containing 𝑒. Then Φ(𝐺) satisfies

Φ (𝐺) = Φ (𝐺 − 𝑒) − Φ (𝐺 − 𝑢 − V) − 2∑
𝑍

Φ (𝐺 − 𝑉 (𝑍)) ,

(3)

where the summation extends over all 𝑍 ∈ 𝐶(𝑒).

Lemma 10 (see [16]). Let V be a vertex of𝐺, and let 𝜑(V) be the
collection of circuits containing V, and let 𝑉(𝑍) denote the set
of vertices in the circuit 𝑍. Then the characteristic polynomial
Φ(𝐺) satisfies

Φ (𝐺) = 𝑥Φ (𝐺 − V) − ∑
𝑤

Φ (𝐺 − V − 𝑤)

− 2 ∑

𝑍∈𝜑(V)
Φ (𝐺 − 𝑉 (𝑍)) ,

(4)

where the first summation extends over those vertices 𝑤
adjacent to V, and the second summation extends over all 𝑍 ∈
𝜑(V).

Lemma 11 (see [17]). Let 𝐺 be a connected graph, and let 𝐺
be a proper spanning subgraph of 𝐺. Then 𝜌(𝐺) > 𝜌(𝐺), and,
for 𝑥 ≥ 𝜌(𝐺), Φ(𝐺) > Φ(𝐺).

Let Δ(𝐺) denote the maximum degree of 𝐺. From
Lemma 11, we have 𝜌(𝐺) ≥ √Δ(𝐺).

Lemma 12 (see [13]). Let 𝐺 be a connected graph, and let 𝐺
be a proper spanning subgraph of 𝐺. Then 𝑞(𝐺) > 𝑞(𝐺).

Lemma 13 (see [18]). Let 𝐺 = (𝑉, 𝐸) be a connected graph
with vertex set 𝑉 = {V

1
, V
2
, . . . , V

𝑛
}. Suppose that V

1
V
2
∈ 𝐸(𝐺),

V
1
V
3
∈ 𝐸(𝐺), V

1
V
4
∈ 𝐸(𝐺), 𝑑(V

3
) ≥ 2, 𝑑(V

4
) ≥ 2, 𝑑(V

1
) = 3,

and 𝑑(V
2
) = 1. Let𝐺V

1
V
3

(𝐺V
1
V
4

) be the graph obtained from𝐺 −
V
1
V
3
(𝐺 − V

1
V
4
) by amalgamating V

1
and V
3
(V
4
) to form a new

vertex 𝑤
1
(𝑤
3
) together with subdivising the edge 𝑤

1
V
2
(𝑤
3
V
2
)

with a new vertex 𝑤
2
(𝑤
4
). If 𝑞 = 𝑞(𝐺) > 3 + √5 ≈ 5.23606,

then

(1) either 𝑞(𝐺V
1
V
3

) > 𝑞(𝐺) or 𝑞(𝐺V
1
V
4

) > 𝑞(𝐺);
(2) 𝜇(𝐺V

1
V
3

) ≥ 𝜇(𝐺) and 𝜇(𝐺V
1
V
4

) ≥ 𝜇(𝐺).

Lemma 14 (see [18]). Suppose 𝑢 is a vertex of the bicyclic graph
𝐺 with 𝑑

𝐺
(𝑢) ≥ 2. Let 𝐺 : 𝑢V be a graph obtained by attaching

a pendant edge 𝑢V to 𝐺 at 𝑢. Suppose that a pendant edge V𝑤
1

and 𝑡 paths {VV
1
V
1
, . . . , VV

𝑡
V
𝑡
} of length 2 are attached to𝐺 : 𝑢V

at V to form𝐿
1,𝑡
. Let𝑀

0,𝑡+1
= 𝐿
1,𝑡
−VV
1
−⋅ ⋅ ⋅−VV

𝑡
+𝑢V
1
+⋅ ⋅ ⋅+𝑢V

𝑡
.

Then we have

(1) 𝑞(𝑀
0,𝑡+1
) > 𝑞(𝐿

1,𝑡
), (𝑡 ≥ 1);

(2) 𝜇(𝐿
1,𝑡
) ≤ 𝜇(𝑀

0,𝑡+1
).

3. Main Results

Lemma 15. Let 𝐺
1
, 𝐺
2
, . . . , 𝐺

6
be the graphs as Figure 3. Then

for 𝜇 ≥ 3, we have 𝑞(𝐺
1
) > 𝑞(𝐺

𝑖
), (𝑖 = 2, 3, . . . , 6).

Proof. From Lemma 10, we have

Φ(𝑆 (𝐺
1
))

= 𝑥 (𝑥
2
− 1) (𝑥

4
− 3𝑥
2
+ 1)
𝜇−3

(𝑥
5
− 4𝑥
3
+ 3𝑥)

2

− (𝜇 − 3) (𝑥
2
− 1) (𝑥

3
− 2𝑥)

× (𝑥
4
− 3𝑥
2
+ 1)
𝜇−4

(𝑥
5
− 4𝑥
3
+ 3𝑥)

2

− 𝑥(𝑥
4
− 3𝑥
2
+ 1)
𝜇−3

(𝑥
5
− 4𝑥
3
+ 3𝑥)

2

− 4 (𝑥
2
− 1) (𝑥

4
− 3𝑥
2
+ 1)
𝜇−3

× (𝑥
5
− 4𝑥
3
+ 3𝑥) (𝑥

4
− 3𝑥
2
+ 2)

Φ (𝑆 (𝐺
2
)) = 𝑥 (𝑥

2
− 1) (𝑥

4
− 3𝑥
2
+ 1)
𝜇−4

(𝑥
5
− 4𝑥
3
+ 3𝑥)

× (𝑥
9
− 8𝑥
7
+ 19𝑥

5
− 14𝑥

3
+ 3𝑥)

− (𝜇 − 4) (𝑥
2
− 1) (𝑥

3
− 2𝑥) (𝑥

4
− 3𝑥
2
+ 1)
𝜇−5

× (𝑥
5
− 4𝑥
3
+ 3𝑥) (𝑥

9
− 8𝑥
7
+19𝑥
5
−14𝑥
3
+ 3𝑥)

− 𝑥(𝑥
4
− 3𝑥
2
+ 1)
𝜇−4

(𝑥
5
− 4𝑥
3
+ 3𝑥)

× (𝑥
9
− 8𝑥
7
+ 19𝑥

5
− 14𝑥

3
+ 3𝑥) − 2 (𝑥

2
− 1)

× (𝑥
4
− 3𝑥
2
+ 1)
𝜇−3

× (𝑥
9
− 8𝑥
7
+ 19𝑥

5
− 14𝑥

3
+ 3𝑥)

− 2 (𝑥
2
− 1) (𝑥

4
− 3𝑥
2
+ 1)
𝜇−4

(𝑥
5
− 4𝑥
3
+ 3𝑥)

× (𝑥
8
− 7𝑥
6
+ 14𝑥

4
− 8𝑥
2
+ 1) − 2 (𝑥

2
− 1)

× (𝑥
4
− 3𝑥
2
+ 1)
𝜇−4

× (𝑥
9
− 8𝑥
7
+ 19𝑥

5
− 14𝑥

3
+ 3𝑥)

− 2(𝑥
2
− 1)
3

(𝑥
4
− 3𝑥
2
+ 1)
𝜇−4

(𝑥
5
− 4𝑥
3
+ 3𝑥).

(5)
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From (5), we have

Φ(𝑆 (𝐺
2
)) − Φ (𝑆 (𝐺

1
))

= 𝑥
3
(𝑥
4
− 3𝑥
2
+ 1)
𝜇−5

× [(−2 + 𝜇) 𝑥
14

+ (22 − 10𝜇) 𝑥
12
+ (−97 + 39𝜇) 𝑥

10

+ (221 − 75𝜇) 𝑥
8
+ (−278 + 74𝜇) 𝑥

6

+ (189 − 35𝜇) 𝑥
4
+ (−63 + 6𝜇) 𝑥

2
+ 8] .

(6)

If 𝜇 ≥ 12, for 𝑥 ≥ 𝜌(𝑆(𝐺
1
)) ≥ √Δ𝑆(𝐺

1
) = √𝜇 + 2, it is easy

to prove that Φ(𝑆(𝐺
2
)) − Φ(𝑆(𝐺

1
)) > 0. Hence, 𝜌(𝑆(𝐺

1
)) >

𝜌(𝑆(𝐺
2
)) for 𝜇 ≥ 12. When 𝜇 = 4, 5, . . . , 11, by direct

calculation, we also get 𝜌(𝑆(𝐺
1
)) > 𝜌(𝑆(𝐺

2
)), respectively. So,

𝜌(𝑆(𝐺
1
)) > 𝜌(𝑆(𝐺

2
)) for 𝜇 ≥ 4. By Lemma 6, we know that

𝜌(𝑆(𝐺)) = √𝑞(𝐺). Hence, 𝑞(𝐺
1
) > 𝑞(𝐺

2
) (𝜇 ≥ 4). By similar

method, the result is as follows.

Theorem 16. If 𝐺 ∈ 𝐵
𝑛
(2𝜇) (𝑛 ≥ 6), then 𝑞(𝐺) ≤ 𝑞(𝐺

1
), with

equality if and only if 𝐺 = 𝐺
1
.

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be the Perron vector of 𝐺.

FromLemma 12 andbydirect calculations,we have, for𝜇 ≥ 3,
𝑞(𝐺
1
) > 𝑞(𝐵(3, 1, 3)) ≈ 5.5615 > 3 +√5. So, in the following,

we only consider those graphs, which have signless Laplacian
spectral radius greater than 𝑞(𝐺) > 3 + √5.

Choose 𝐺∗ ∈ 𝐵
𝑛
(2𝜇) such that 𝑞(𝐺∗) is as large as

possible. Then 𝐺∗ consists of a subgraph 𝐻 which is one of
graphs 𝐵(𝑝, 1, 𝑞), 𝐵(𝑝, 𝑙, 𝑞), and 𝑃(𝑝, 𝑙, 𝑞) (see Figures 1 and
2).

Let𝑇 be a tree attached at some vertex, say, 𝑧, of𝐻; |𝑉(𝑇)|
is the number of vertices of 𝑇 including the vertex 𝑧. In the
following, we prove that tree𝑇 is formed by attaching at most
one path of length 1 and other paths of length 2 at 𝑧.

Suppose 𝑃 : V
0
V
1
⋅ ⋅ ⋅ V
𝑘
is a pendant path of 𝐺∗ and V

𝑘
is

a pendant vertex. If 𝑘 ≥ 3, let 𝐻
1
= 𝐺
∗
− V
2
V
3
+ V
0
V
3
. From

Corollary 8, we have𝐻
1
∈ 𝐵
𝑛
(2𝜇) and 𝑞(𝐻

1
) > 𝑞(𝐺

∗
), which

is a contradiction.
For each vertex 𝑢 ∈ 𝑉(𝑇 − 𝑧), we prove that 𝑑(𝑢) ≤ 2.

Otherwise, there must exist some vertex 𝑢
0
of 𝑇 − 𝑧 such

that 𝑑(𝑧, 𝑢
0
) = max{𝑑(𝑧, V) | V ∈ 𝑉(𝑇) − 𝑧, 𝑑(V) ≥ 3}.

From the above proof, we have the pendant paths attached
𝑢
0
which have length of at most 2. Obviously, there exists an

internal path between 𝑢
0
and some vertex 𝑤 of 𝐺∗, denoted

by 𝑃 : 𝑢
0
𝑤
1
⋅ ⋅ ⋅ 𝑤
𝑚
(𝑤
𝑚
= 𝑤). If 𝑚 ≥ 2, let 𝐻

2
be the graph

obtained from 𝐺∗ − 𝑢
0
𝑤
1
− 𝑤
1
𝑤
2
by amalgamating 𝑢

0
, 𝑤
1
,

and 𝑤
2
to form a new vertex 𝑠

1
together with attaching a

new pendant path 𝑠
1
𝑠
2
𝑠
3
of length 2 at 𝑠

1
. From Corollary 5,

we have 𝐻
2
∈ 𝐵
𝑛
(2𝜇) and 𝑞(𝐻

2
) > 𝑞(𝐺

∗
), which is a

contradiction. If𝑚 = 1, by Lemma 14 andCorollary 3, we can
get a newgraph𝐻

3
such that𝐻

3
∈ 𝐵
𝑛
(2𝜇) and 𝑞(𝐻

3
) > 𝑞(𝐺

∗
),

which is a contradiction.
From the proof as above, we have the tree 𝑇 which is

obtained by attaching some pendant paths of length 2 and at
most one pendant path of length 1 at 𝑧.

FromCorollary 2, we have all the pendant paths of length
2 in 𝐺∗ which must be attached at the same vertex of𝐻.

In the following, we prove that 𝐺∗ is isomorphic to one
of graphs 𝐺

1
, 𝐺
2
, . . . , 𝐺

6
(see Figure 3). We distinguish the

following two cases:

Case 1 (𝐺∗ ∈ 𝐵+
𝑛
(2𝜇)). We prove that𝐺∗ is isomorphic to one

of graphs 𝐺
1
, 𝐺
2
, and 𝐺

3
.

Assume that there exists some cycle 𝐶
𝑝
of 𝐺∗ with length

of at least 4. From Corollary 5, we have each internal path
of 𝐺∗, which is not a triangle, has length 1. Note that all
the pendant paths of length 2 in 𝐺∗ must be attached at
the same vertex, then there must exist edges V

1
V
2
∈ 𝐸(𝐺

∗
),

V
1
V
3
∈ 𝐸(𝐶

𝑝
), and V

1
V
4
∈ 𝐸(𝐶

𝑝
) and 𝑑(V

1
) = 3, 𝑑(V

2
) = 1,

𝑑(V
3
) ≥ 3, and 𝑑(V

4
) ≥ 3. Let𝐻

4
(𝐻
5
) be the graph obtained

from 𝐺∗ − V
1
V
3
(𝐺
∗
− V
1
V
4
) by amalgamating V

1
and V
3
(V
4
) to

form a new vertex 𝑦
1
(𝑦
3
) together with subdividing the edge

𝑦
1
V
2
(𝑦
3
V
2
) with a new vertex 𝑦

2
(𝑦
4
). From Lemma 13, we

have 𝐻
𝑖
∈ 𝐵
+

𝑛
(2𝜇) (𝑖 = 4, 5) and either 𝑞(𝐻

4
) > 𝑞(𝐺

∗
) or

𝑞(𝐻
5
) > 𝑞(𝐺

∗
), which is a contradiction. Then for each cycle

𝐶
𝑔
of 𝐺∗, we have 𝑔 = 3.

Assume that 𝑙 ≥ 4. If there exists an internal path 𝑃∗ :
V
𝑖
V
𝑖+1
⋅ ⋅ ⋅ V
𝑚
(1 ≤ 𝑖 < 𝑚 ≤ 𝑙) with length greater than 1 in 𝐺∗.

Then, by Corollary 5, we can get a new graph 𝐻
6
such that

𝑞(𝐻
6
) > 𝑞(𝐺

∗
) and 𝐻

6
∈ 𝐵
+

𝑛
(2𝜇), which is a contradiction.

Thus,𝑑(V
𝑖
) ≥ 3 (𝑖 = 1, 2, . . . , 𝑙) and either𝑑(V

2
) = 3 or𝑑(V

3
) =

3. By Lemma 13, we can also get a new graph 𝐻
7
such that

𝑞(𝐻
7
) > 𝑞(𝐺

∗
) and 𝐻

7
∈ 𝐵
+

𝑛
(2𝜇), which is a contradiction.

Hence, 𝑙 ≤ 3.
We distinguish the following three subcases:

Subcase 1.1 (𝑙 = 1).Then𝐺∗ is the graph obtained by attaching
all the pendant paths of length 2 at the same vertex of𝐺, where
𝐺 is one of graphs 𝐺

1
, . . . , 𝐺

5
(see Figure 4).

Assume that 𝐺 = 𝐺
2
. If 𝑥
𝑢
≥ 𝑥V, let𝐻8 = 𝐺

∗
− 𝑟V − 𝑠V +

𝑟𝑢 + 𝑠𝑢; if 𝑥V ≥ 𝑥𝑢, let 𝐻9 = 𝐺
∗
− 𝑢𝑡 + 𝑡V. Obviously, 𝐻

𝑖
∈

𝐵
+

𝑛
(2𝜇) (𝑖 = 8, 9) and either 𝑞(𝐻

8
) > 𝑞(𝐺

∗
) or 𝑞(𝐻

9
) > 𝑞(𝐺

∗
)

by Lemma 1, which is a contradiction. By similar reasoning,
we have also 𝐺 ̸=𝐺

3
.

Subcase 1.2 (𝑙 = 2). Then 𝐺∗ is the graph obtained by
attaching all the pendant paths of length 2 at the same vertex
of 𝐺, where 𝐺 is one of graphs 𝐺

6
, . . . , 𝐺

14
(see Figure 4).

Assume that 𝐺 = 𝐺
6
. If 𝑥V

1

≥ 𝑥V
2

, let 𝐻
10
= 𝐺
∗
−

V
2
𝑢 + V
1
𝑢; if 𝑥V

2

≥ 𝑥V
1

, let 𝐻
11
= 𝐺
∗
− V
1
𝑟 + V
2
𝑟. Obviously,

𝐻
𝑖
∈ 𝐵
+

𝑛
(2𝜇) (𝑖 = 10, 11) and either 𝑞(𝐻

10
) > 𝑞(𝐺

∗
) or

𝑞(𝐻
11
) > 𝑞(𝐺

∗
) by Lemma 1, which is a contradiction. By

similar reasoning, we have also 𝐺 ̸=𝐺
𝑗
(𝑗 = 6, . . . , 14).

Subcase 1.3 (𝑙 = 3). Then 𝐺∗ is the graph obtained by
attaching all the pendant paths of length 2 at the same vertex
of 𝐺, where 𝐺 is one of graphs 𝐺

15
, . . . , 𝐺

20
(see Figure 4).

Assume that 𝐺 = 𝐺
15
. If 𝑥V

1

≥ 𝑥V
2

, let𝐻
12
= 𝐺
∗
− V
2
V
3
+

V
1
V
3
; if 𝑥V

2

≥ 𝑥V
1

, let𝐻
13
= 𝐺
∗
− V
1
𝑧
1
+ V
2
𝑧
1
. Obviously,𝐻

𝑖
∈

𝐵
+

𝑛
(2𝜇) (𝑖 = 12, 13) and either 𝑞(𝐻

12
) > 𝑞(𝐺

∗
) or 𝑞(𝐻

13
) >
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𝑞(𝐺
∗
) by Lemma 1, a contradiction. By similar reasoning, we

have also 𝐺 ̸=𝐺
𝑗
(𝑗 = 15, . . . , 20).

Thus,𝐺 is isomorphic to one of the graphs𝐺
1
,𝐺
4
and𝐺

5
.

In the following, we prove that 𝐺∗ is isomorphic to one of
graphs 𝐺

1
, 𝐺
2
and 𝐺

3
.

Assume that 𝐺∗ is obtained by attaching all the pendant
paths of length 2 at vertex 𝑦

4
of 𝐺
1
. If 𝑥V

1

≥ 𝑥
𝑦
4

, let 𝐻
14

be
the graph obtained from 𝐺

1
by attaching 𝜇 − 3 pendant paths

of length 2 at V
1
. If 𝑥
𝑦
4

≥ 𝑥V
1

, let 𝐻
15
= 𝐺
∗
− V
1
𝑦
3
− V
1
𝑦
1
−

V
1
𝑦
2
+ 𝑦
4
𝑦
3
+ 𝑦
4
𝑦
1
+ 𝑦
4
𝑦
2
. Obviously, 𝐻

14
= 𝐻
15
= 𝐺
1
and

𝑞(𝐺
1
) > 𝑞(𝐺

∗
) by Lemma 1, a contradiction. Then 𝐺∗ = 𝐺

1
.

By similar reasoning, the result follows.

Case 2 (𝐺∗ ∈ 𝐵++
𝑛
(2𝜇)). By similar reasoning as that of Case 1,

we have𝐺∗ is the graph obtained by attaching all the pendant
paths of length 2 at the same vertex of 𝐺, where 𝐺 is one of
graphs 𝐺

21
, . . . , 𝐺

24
(see Figure 4).

From Lemma 1, it is easy to prove that 𝐺 ̸=𝐺
22
and all the

pendant paths of length 2 are attached at the vertex of degree 3
of𝐺
21
or of degree 4 of𝐺

𝑖
(𝑖 = 23, 24).Thus,𝐺∗ is isomorphic

to one of graphs 𝐺
4
, 𝐺
5
and 𝐺

6
(see Figure 3).

So, 𝐺∗ is isomorphic to one of graphs 𝐺
1
, . . . , 𝐺

6
. From

Lemma 15, we know 𝑞(𝐺
1
) > 𝑞(𝐺

𝑖
), (𝑖 = 2, 3, . . . , 6). Thus,

𝐺
∗
= 𝐺
1
.
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