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To improve the accuracy and robustness of urban link travel time estimation with limited resources, this research developed a
methodology to estimate the urban link travel time using low frequency GPS probe vehicle data. First, focusing on the case without
reporting points for the GPS probe vehicle on the target link in the current estimation time window, a virtual report point creation
model based on the𝐾-Nearest Neighbour Rule was proposed.Then an improved back propagation neural networkmodel was used
to estimate the link travel time. The proposed method was applied to a case study based on an arterial road in Changchun, China:
comparisons with the traditional artificial neural network method and the spatiotemporal moving average method revealed that
the proposed method offered a higher estimation accuracy and better robustness.

1. Introduction

Accurate estimation of urban link travel times is essential for
traffic operators and travellers, not only because link travel
time is an important index for monitoring and evaluating
the state of the traffic on an urban road network, but also
because it is a critical input to dynamic route guidance sys-
tems which helps travellers make better route choices and
avoid congestion. The estimation of urban link travel times
relies on traffic data collection. In the past, traffic data were
mainly collected by loop detectors [1–4]. However, due to the
high cost of installation and maintenance, loop detectors are
often only installed on a few links in the urban road network,
which leads to unavailability of most of the network traffic
data.

In recent years, most vehicles are equipped with GPS
devices such as GPS navigators or smartphones, which pro-
vide a type of probe vehicle which can collect traffic data from
the entire road network at low cost.These GPS probe vehicles
can continuously collect traffic data by travelling on the road

network and reporting their positions, instantaneous speeds,
and movement directions at specific sampling frequencies.
Chakroborty and Kikuchi [5] proposed a method of utilising
buses equipped with GPS locators to estimate travel times
along urban corridors. Liu et al. [6] discussed the feasibility of
using a taxi dispatch system as a probe with which to collect
traffic information. Zhan et al. [7] proposed an urban link
travel time estimation model using large-scale taxi data with
partial information. Zheng and McDonald [8] proposed two
fuzzy clustering algorithms to estimate the travel time, which
greatly reduced the influence of random error. Guessous et al.
[9] proposed a probabilistic model to estimate the travel time
under different traffic conditions, which took into account the
levels-of-service.

However, most of these methods require the data col-
lected by GPS probe vehicles with high sampling frequencies
(e.g., 10 s intervals or less), which not only needs a large
amount of data storage space but is also computationally
expensive. Therefore, using low frequency probe vehicle data
has become a new challenge for link travel time estimation
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Figure 1: Schematic of the virtual report point creation model.

[10]. When the sampling interval is large (e.g., 60, 90, and
120 s), with the addition of data loss caused by signal drop-
outs or communication failure, the current probe vehicle
(CPV) may have traversed one or more links between two
consecutive available status reports, whichmeans there could
be no report point of the CPV on the target link. Jenelius and
Koutsopoulos [11] developed a maximum likelihood model
to allocate the observed travel time to each link based on link
attributes and trip conditions. Hellinga et al. [12] developed
an analytical model to estimate link travel time, which
considers both stopping and congestion probabilities. Both
methods can solve the problem to some extent; however, the
models are extremely complex and the parameter calibration
is laborious. Zheng and Van Zuylen [13] proposed a tradi-
tional artificial neural network (ANN) model and compared
it with Hellinga et al.’s model. The results suggested that the
ANN method performs better. However, the ANN method
is limited when there is no report point on two consecutive
links. Sanaullah et al. [14] developed a spatiotemporalmoving
averagemethod by assuming that theCPV travels at the speed
limit on the target link when it has no report point thereon.
The assumption significantly simplifies the model. However,
it is not consistent with fact, which leads to unsatisfactory
accuracy in urban road networks.

Thepresent studywill therefore focus on the case inwhich
there is no report point of the CPV on the target link. The
methodology proposed in this paper extends previous work
on travel time estimation using sparse GPS probe vehicle data
by using historical GPS probe vehicle data to impute missing
report points on the target link, which consists of two layers:
first, the virtual report point creationmodel based on pattern
recognition is proposed to recognise the historical probe
vehicle which has the most similar travelling characteristic to
the CPV and then use its report points to create the virtual
report points for the CPV on the target link; second, an
improved back propagation neural networkmodel is used for
estimating the travel time on the target link based on both
virtual and real report points of the CPV.

The paper is organised as follows: Section 2 describes
the proposed methodology: the virtual report point creation
model is presented in Section 2.1 and the improved back
propagation neural networks model is presented in
Section 2.2. In Section 3, the performance of the proposed

methodology is evaluated using data from a case study from
Changchun, China.The results are comparedwith those from
the artificial neural network method and the spatiotemporal
moving average method. Section 4 outlines the conclusions
and presents recommendations for future research.

2. Methodology

2.1. Virtual Report Point Creation Model. The main idea of
the virtual report point creation model is to use the pattern
recognition method to select the historical probe vehicle
(HPV) that has the most similar travel characteristics to the
current probe vehicle (CPV) from the candidate HPVs which
have report points on the target link and then use the report
points of the most similar HPV to create virtual report points
for the CPV on the target link, as shown in Figure 1.

Many researchers have emphasised pattern recognition
methods: existing methods mainly include the Bayesian [15],
Principle Component Analysis [16], Linear Discriminant
Analysis [17], Nonnegative Matrix Factorisation [18], Gaus-
sian Mixture Model [19], Artificial Neural Networks [20],
Support Vector Machines [21], and 𝐾-Nearest Neighbour
Rule methods [22]. Among these methods, the 𝐾-Nearest
Neighbour Rule method is not only nearly optimal in a large
sample but also relatively easy to implement with no need for
estimation of its parameters or a training process. Therefore,
the 𝐾-Nearest Neighbour Rule (𝐾-NNR) method is selected
to search for the most similar HPV.

The main idea of 𝐾-NNR is to compare the distances
between the test sample and the training samples that belong
to different patterns and then select 𝑘 training samples
nearest to the test sample and determine to which patterns
they belong; therefore, the pattern which contains the most
selected training samples is recognised as the most similar
pattern to the test sample. For the case of the most similar
HPV as recognised here, the test samples are the report
points of the CPVon the upstream and downstream links, the
training samples are the report points of different candidate
HPVs on the upstream and downstream links, and different
candidate HPVs denote different patterns, assuming that all
report points have been map-matched onto the links.
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2.1.1. Training andTest Set Construction. ThecandidateHPVs
(in the same estimation time window on the same day
with the CPV) of the past few weeks are selected from the
historical database following two rules: first, they must have
the same movement direction as the CPV; second, they must
have report points on the upstream link, the target link,
and the downstream link. Since most similar history probe
vehicle recognition needs to consider the report points on the
upstream and downstream links, two training sets must be
constructed.

The upstream training set is
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where𝑀𝑢,𝑚
ℎ,𝑖

and𝑀𝑑,𝑚
ℎ,𝑖

denote the 𝑚th map-matched report
points of the 𝑖th candidate HPV on the upstream link and
the downstream link, respectively; 𝑙

𝑖
is the number of map-

matched report points of the 𝑖th candidate HPV on the
upstream link; 𝑙

𝑖
is the number of map-matched report

points of the 𝑖th candidate HPV on the downstream link.
Correspondingly, two test sets must be constructed.

The upstream test set is
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and the downstream test set is
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where 𝑀𝑢,𝑗
𝑐

and 𝑀𝑑,𝑗
𝑐

denote the 𝑗th map-matched report
points of the CPV on the upstream and downstream links,
respectively; 𝑙

𝑐
is the number of map-matched report points

of the CPV on the upstream link; 𝑙
𝑐
is the number of map-

matched report points of the CPV on the downstream link.

2.1.2. Characteristic Vector Construction. The traffic data
collected by amap-matched report point include the position,
the instantaneous speed, the time stamp, and the azimuth
angle relative to the North. Since all candidate HPVs have
the same movement direction as the CPV, the azimuth angle
is unable to capture the travelling characteristic of the probe
vehicles. On the contrary, the position, instantaneous speed,
and time stamp can adequately capture the travelling char-
acteristic of the probe vehicles; therefore, these parameters
are selected as elements of the characteristic vectors. Due to
the fact that these characteristic parameters have different
dimensions, a zero-mean normalisation process is needed
for every characteristic parameter before construction of the
characteristic vectors.

The characteristic vector of the training sample:
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where M𝑢,𝑚
ℎ,𝑖

and M𝑑,𝑚
ℎ,𝑖

denote the characteristic vectors of
𝑀
𝑢,𝑚

ℎ,𝑖
and 𝑀𝑑,𝑚

ℎ,𝑖
, respectively; 𝑋𝑢,𝑚

ℎ,𝑖
and 𝑋𝑑,𝑚

ℎ,𝑖
denote the

normalised values of the positions of𝑀𝑢,𝑚
ℎ,𝑖

and𝑀𝑑,𝑚
ℎ,𝑖

along
the link, respectively; 𝑉𝑢,𝑚

ℎ,𝑖
, 𝑇𝑢,𝑚
ℎ,𝑖

, and 𝑉𝑑,𝑚
ℎ,𝑖

, 𝑇𝑑,𝑚
ℎ,𝑖

denote the
normalised values of the instantaneous speed and time stamp
of𝑀𝑢,𝑚
ℎ,𝑖

and𝑀𝑑,𝑚
ℎ,𝑖

, respectively.
Similarly, the characteristic vectors of the test samples are

constructed as follows:
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where M𝑢,𝑗
𝑐

and M𝑑,𝑗
𝑐

denote the normalised values of the
characteristic vectors of𝑀𝑢,𝑗
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It is worth noting that the time stamp of a report point is

recorded in year,month, day, hour,minute, and second terms.
For the candidate HPVs and the CPV, the year, month, and
day are not needed during most similar HPV recognition;
therefore, the time stamp needs to be processed before
characteristic vector construction to remove the year, month,
and day: it is then converted into seconds for calculation
purposes.

2.1.3. Characteristic Distance Function Construction. The
characteristic distances between the test samples and the
training samples are able to capture the degree of similarity
between them. There are several distances to be measured
such as the Euclidean distance, Manhattan distance, Bhat-
tacharyya distance, andMahalanobis distance.The character-
istic distance functions for the most similar HPV recognition
are based on the classic Euclidean distance.
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and the function of characteristic distance for the down-
stream link is
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where 𝑑(𝑀𝑢,𝑚
ℎ,𝑖
,CPV) denotes the characteristic distance

between the CPV and the 𝑚th upstream map-matched
report point of the 𝑖th candidate HPV; 𝑑(𝑀𝑑,𝑚

ℎ,𝑖
,CPV) denotes

the characteristic distance between the CPV and the 𝑚th
downstream map-matched report point of the 𝑖th candidate
HPV.

2.1.4. Most Similar HPV Recognition. Due to the low sam-
pling frequency, the number of the map-matched report
points of each candidate HPV is usually less than 10. There-
fore, the value of 𝑘 for𝐾-NNR is set to 10.

For the upstream link, the 10 map-matched report points
that have the shortest characteristic distances from the CPV
are selected from all map-matched report points of all
candidate HPVs on the upstream link; if the most of them
belong toHPV 𝑖, thenHPV 𝑖 is recognised as themost similar
HPV on the upstream link. Similarly, the most similar HPV
on the downstream link is recognised in the same way.

2.1.5. Creation of Virtual Report Points. After the identi-
fication of the most similar HPVs on the upstream and
downstream links, the virtual report points of the CPV on the
target link are able to be created based on the map-matched
report points of the most similar HPV.

The identification of the most similar HPVs would result
in two scenarios: (1) the most similar HPV on the upstream
link is also the most similar one on the downstream link; (2)
the most similar HPV on the upstream link is different from
the one on the downstream link.Therefore, the creation of the
virtual report points in both scenarios is discussed as follows.

Scenario 1 (HPV 𝑖 is themost similarHPV to theCPVon both
the upstream and downstream links). In this case, only those
report points of HPV 𝑖 are used to create the virtual report
points of the CPV on the target link, as shown in Figure 2(a).

In Figure 2(a),𝑀𝑡,𝑚
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denotes the𝑚th virtual report points
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It is worth noting that the time stamps of the virtual report
points of the CPV on the target link are supposed to be earlier
than the time stamps of the real map-matched report points
of the CPV on the downstream link but later than those
on the upstream link. Therefore, the time stamp of 𝑀𝑡,𝑚
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Scenario 2 (HPV 𝑖 and HPV 𝑗 are the most similar HPVs
to the CPV on the upstream link and downstream links,
respectively (𝑖 ̸= 𝑗)). For this case, the target link 𝐿 is divided
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Figure 2: Creation of virtual report points in different scenarios.
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(13)

where𝑚
𝑎
is the number of virtual report points from theCPV

on 𝐿
𝑎
; 𝑥𝑡𝑏 ,1
ℎ,𝑗

and 𝑡𝑡𝑏 ,1
ℎ,𝑗

denote the position and time stamp of the
first report point of HPV 𝑗 on 𝐿

𝑏
, respectively; 𝑥𝑡𝑎,𝑙𝑎

ℎ,𝑗
and 𝑡𝑡𝑎 ,𝑙𝑎
ℎ,𝑗

denote the position and time stamp of the last report point
of HPV 𝑗 on 𝐿

𝑎
, respectively; 𝑡𝑡𝑏 ,𝑚−𝑚𝑎

ℎ,𝑗
is the time stamp of

the (𝑚 −𝑚
𝑎
)th report point of HPV 𝑗 on 𝐿

𝑏
. As discussed in

Scenario 1, if 𝑡𝑡,𝑚
𝑐
> 𝑡
𝑑,1

𝑐
, then discard𝑀𝑡,𝑚

𝑐
.

The proposed model is able to be extended to cases
where there is no report point of the CPV on two or more
consecutive links. In this case, the travelling trajectory of the
CPVneeds to be inferred before using the virtual report point
creation model. Rahmani and Koutsopoulos [23] developed
a path inference method from low frequency probe vehicle
data for urban networks, which could be introduced into this
case.

2.2. Improved Back Propagation Neural Networks Model.
Artificial Neural Networks (ANN) have been widely used in
parameter estimation. However, traditional ANN methods
have many shortcomings, such as slow convergence, local
optimum identification, and long training times. Aiming
at overcoming the shortcomings of ANN models, Xiao et
al. proposed an improved back propagation neural network
(BPNN) that combined the momentum item and Levenberg-
Marquardt algorithm to improve the generalisation ability
[24]. The weight equation for their improved BPNN is as
follows:

𝜔 (𝑡 + 1) = 𝜔 (𝑡) + Δ𝜔 (𝑡) + 𝜆 (𝑡) × 𝛼 (𝑡) × Δ𝜔 (𝑡 − 1) , (14)

where 𝜔(𝑡) denotes the weight vector in the 𝑡th iteration time
step;Δ𝜔(𝑡)denotes the variation ofweights in the 𝑡th iteration
time step; 𝜔(𝑡 + 1) denotes the weight vector in the next
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Table 1: Parameter adjustment in the improved BPNNmodel.

Variation of error Adjustment of
momentum coefficient

Adjustment of
learning rate

𝐸 (𝑡) < 𝐸 (𝑡 − 1) 𝛼 (𝑡) = 1.2𝛼 (𝑡 − 1) 𝜆 (𝑡) = 1.2𝜆 (𝑡 − 1)

𝐸 (𝑡) = 𝐸 (𝑡 − 1) 𝛼 (𝑡) = 𝛼 (𝑡 − 1) 𝜆 (𝑡) = 𝜆 (𝑡 − 1)

𝐸(𝑡) > 𝐸(𝑡 − 1) 𝛼 (𝑡) =
1.2𝛼 (𝑡 − 1)

1.2
𝜆 (𝑡) =

1.2𝜆 (𝑡 − 1)

1.2

iteration time step; Δ𝜔(𝑡− 1) denotes the variation of weights
in the previous time step; 𝛼(𝑡) is themomentum coefficient at
the 𝑡th iteration, where 0 < 𝛼(𝑡) < 1; and 𝜆(𝑡) is the learning
rate at the 𝑡th iteration. The adjustment of 𝛼(𝑡) and 𝜆(𝑡) is
shown in Table 1.

Since the momentum coefficient is supposed to be within
the interval (0, 1), if 𝛼(𝑡) > 1, then set 𝛼(𝑡) to 0.01.

As discussed in Zheng and Van Zuylen [13], the travel
time along the target link is correlated with the travel times
along both upstream and downstream links.Therefore, in the
improvedBPNNmodel, the report points of the probe vehicle
on the upstream and downstream links are incorporated with
the report points (real or virtual) on the target link. According
to the discussion in Section 2.1, positions, instantaneous
speeds, and their time stamps can form the input data set in
the improved BPNN model. Figure 3 shows the structure of
the improved BPNNmodel.Themathematical description of
the improved BPNN model is as follows.

(1) Input Layer. Consider
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]
]
]
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]
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(15)

where X(𝑖) denotes the input data vector of CPV 𝑖; x(𝑖)
denotes the position vector of CPV 𝑖 on the upstream
link, target link, and downstream link; k(𝑖) denotes the
instantaneous speed vector of CPV 𝑖; t(𝑖) denotes the time
stamp vector of CPV 𝑖; 𝑛 denotes the number of report points
taken into consideration for CPV 𝑖; 𝑁 is the link number of
the target link; 𝛿 is equal to 1 if there are virtual report points
of CPV 𝑖 on the target link and 0 otherwise; and 𝑀 is the
number of input neuronswhich can be determined as follows:

𝑀 = 3𝑛 + 2. (16)

Output
layer

Hidden
layer

Input
layer

TTe(i)

x(i)X(i) v(i) t(i) N 𝛿

· · ·

· · ·

Figure 3: Structure of the improved BPNN model.

(2) Hidden Layer. Consider
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, (17)

where ℎ
𝑞
(𝑖) is the value of the 𝑞th hidden neuron;𝜔

𝑗,𝑞
denotes

the weight connecting the 𝑗th input neuron and the 𝑞th
hidden neuron; 𝑏

𝑞
denotes the bias with a fixed value for

the 𝑞th hidden neuron; 𝑓 denotes the activation function.
Usually, the sigmoid function is selected as the activation
function [13]:

𝑓 (𝑦) =
1

1 + 𝑒−𝑦
. (18)

The number of hidden neurons in the improved BPNN
model 𝑄 can be determined from

𝑄 = √𝑀 + 𝐾 + 𝜎, (19)

where𝐾 is the number of output neurons. Here, there is only
one output neuron: the estimated link travel time; thus,𝐾 = 1
and 𝜎 is a constant such that 0 ≤ 𝜎 ≤ 10.

(3) Output Layer. Consider

𝑌 (𝑖) = TT
𝑒
(𝑖) = 𝑓(

𝑄

∑

𝑞=1

𝜔
𝑞
ℎ
𝑞
(𝑖) + 𝑏) , (20)

where 𝑌(𝑖) and TT
𝑒
(𝑖) denote the estimated travel time of

CPV 𝑖 on the target link; 𝜔
𝑞
denotes the weight connecting

the 𝑞th hidden neuron and the output neuron; and 𝑏 is
the bias with a fixed value for the output neuron [13].



Discrete Dynamics in Nature and Society 7

Downstream link
Target

link
Nanhu
Road

Upstream link

Figure 4: The case study arterial road in Changchun, China.

Finally, the estimated link travel time during the current time
window is determined as follows:

TT
𝑒
=
1

𝑁
𝑐

𝑁
𝑐

∑

𝑖=1

TT
𝑒
(𝑖) , (21)

where𝑁
𝑐
is the number of CPVs in the current time window.

3. Model Application

The methodology proposed in Section 2 was applied to a
route along Nanhu Road in Changchun, China, as shown in
Figure 4. Changchun is the capital of the Chinese province
Jilin, and the network in Changchun City contains approxi-
mately 5700 links and 3400 nodes. Nanhu Road is a typical
urban arterial road, and the studied route is located in one of
the busier areas of Changchun city.

The studied route is about 3.16 km long, divided into
three links, and each link typically contains a signalised
intersection; the red arrow indicated in Figure 4 is the target
link for travel time estimation (about 0.74 km long); the blue
arrow indicates the upstream link (about 1.33 km long); the
green arrow indicates the downstream link (about 1.09 km
long); the white arrow shows the driving direction taken into
consideration in this case study.

3.1. Data Source and Description. TheGPS probe vehicle data
were obtained from the fleet dispatching systemof a taxi com-
pany in Changchun city. A daily average of 2500 taxis were
driving with GPS devices along the studied route.The default
sampling frequency is one report per 30 s. To evaluate the
effect of the proposed method at lower sampling frequencies,
three different sampling frequency GPS probe data sets (i.e.,
60, 90, and 120 s) were extracted from the original data set
(i.e., 30 s). All GPS probe vehicle data were map-matched
onto the road network using a method developed elsewhere
[25]. GPS probe data for three consecutive Mondays (time
interval: 6:00 a.m. to 6:00 p.m.) from 1 September, 2014, to 15
September, 2014, were used to construct the training sets for
virtual report point construction, which takes the early and
late peak periods into consideration. Correspondingly, GPS
probe data for the time interval from 6:00 a.m. to 6:00 p.m.
on 22 September, 2014 (a Monday), were used to construct

the testing sets. The time window length for link travel time
estimation is 5 minutes. Therefore, for each sampling fre-
quency, there are 3 × 144 = 432 groups of data forming the
training sample and 144 groups of data forming the testing
sample: each group of data is divided into upstream and
downstream sets.

The real link travel times of individual vehicles were
recorded by high-resolution digital video cameras through
license plate reidentification.The average value was chosen to
be the reference link travel time. A total of 5528 vehicles were
recorded during the experiment from 6:00 a.m. to 6:00 p.m.
on 22 September, 2014. Therefore, the reference link travel
time set with 144 values was constructed.

3.2. Selection of Experimental Parameters. For the improved
BPNNmodel, the initialmomentum item𝛼 = 0.01; the initial
learning rate 𝜆 = 0.01; the maximum number of iterations
maxint = 20,000; the maximum permissible error 𝐸

𝑚
=

1.0 × 10
−6; the value of 𝜎 used to determine the number of

the hidden neurons was 8.

3.3. Performance Evaluation Indices. For the purpose of
evaluating the performance of the link travel time estimation
method proposed here, three widely used evaluation indices
are introduced: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE):

RMSE = √ 1

𝑁
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𝑁
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(TT
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− TT
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2
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𝑁
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TT𝑟,𝑖 − TT𝑒,𝑖
 ,

MAPE = 100 × 1

𝑁
𝑇

𝑁
𝑇

∑

𝑖=1



TT
𝑟,𝑖
− TT
𝑒,𝑖

TT
𝑟,𝑖



,

(22)

where TT
𝑟,𝑖
is the reference link travel time during the time

window 𝑖; TT
𝑒,𝑖

is the estimated travel time during time
window 𝑖; 𝑁

𝑇
is the total number of time windows (here,

𝑁
𝑇
= 144).

3.4. Model Performance and Analysis. The link travel times
estimated by the proposed method with different sampling
frequency GPS probe data sets (i.e., 30, 60, 90, and 120 s)
are compared with the reference link travel times shown
in Figure 5. The trend in the estimated link travel times at
different sampling frequencies is, on the whole, consistent
with the reference link travel times. When the reference link
travel time significantly increases during the early and late
peak periods, the estimated link travel time curves at different
sampling frequencies all show the same characteristics as the
reference travel time curve.

Figures 6–8 show the correlation between the reference
link travel times and the estimated link travel times under dif-
ferent sampling frequencies based on the proposed method,
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Table 2: Performance measurements of the three methods.

Sampling interval (s) Proposed method ANNmethod Spatiotemporal moving average method
MAE (s) RMSE (s) MAE (s) RMSE (s) MAE (s) RMSE (s)

30 4.96 5.88 6.68 8.24 8.04 10.46
60 6.05 7.37 8.30 9.93 15.56 18.15
90 6.56 8.03 10.14 12.57 16.65 19.65
120 7.28 8.96 10.68 12.84 17.38 20.27

Period of time (5 min)

Reference travel time
Estimated travel time (30 s)
Estimated travel time (120 s)

Estimated travel time (60 s)
Estimated travel time (90 s)
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Figure 5: Estimation results based on the proposed method and
different sampling frequencies.

the ANN model, and the spatiotemporal moving average
method, respectively. It can be seen that the three methods
all perform well at a sampling interval of 30 s; the link
travel times estimated by the three methods all have high
correlation with the reference link travel time (𝑅2 is more
than 0.9 as shown in Figures 6(a), 7(a), and 8(a)) and, in
particular, the proposed method (𝑅2 is more than 0.95).
When the sampling frequency decreases from one report per
30 s to one report per 120 s, the link travel times estimated
by the ANN model and the spatiotemporal moving average
method both deviate from the reference link travel time
significantly (𝑅2 for the ANN model decreases from 0.9263
to 0.83653 and 𝑅2 for the spatiotemporal moving average
method decreases from 0.91451 to 0.80118 as shown in Figures
7(b), 7(c), 7(d), 8(b), 8(c), and 8(d)), but the proposedmethod
still performs well (𝑅2 for the proposed method is always
more than 0.9 at sampling intervals of 60, 90, and 120 s as
shown in Figures 6(b), 6(c), and 6(d)).

The performance of the three estimation methods, in
terms of MAE and RMSE, is indicated in Table 2. Both
the MAE and RMSE of the proposed method are less than
those found with the other two methods. In addition, when
the sampling frequency decreases from one report per 30 s
to one report per 120 s, the MAE and RMSE of the ANN
model increase from 6.68 s and 8.24 s to 10.68 s and 12.84 s,
respectively; the MAE and RMSE of the spatiotemporal
moving average method increase from 8.04 s and 10.46 s to
17.38 s and 20.27 s, respectively, whereas the proposedmethod

still performs well at longer sampling intervals (60, 90, and
120 s), as theMAE and RMSE are always less than 8 s and 10 s,
respectively.Therefore, the proposedmethod returns a higher
estimation accuracy than the other two methods under low
sampling frequency conditions.

Figure 9 shows the comparison among the three link
travel time estimation methods in terms of MAPE. It can be
seen that the MAPE of the proposed method not only is less
than the other two methods, but also increases marginally
as the sampling frequency decreases. The increase in MAPE
is always less than 2%. As for the ANN model, the MAPE
significantly increases from 7.4% to 11.0% when the sampling
frequency decreases fromone report per 30 s to one report per
90 s. As for the spatiotemporal moving average method, the
MAPE significantly increases from 8.5% to 16.2% when the
sampling frequency decreases from one report per 30 s to one
report per 60 s. Therefore, the proposed method has better
robustness than the other two methods under low sampling
frequency conditions.

Bayesian method was used to analyze the reliability of
the proposed method in the case without observations on
CPVs on the target link. The distribution of the absolute
estimation error based on the experimental data was selected
as the prior distribution. The statistical proportion of the
studied case at different error intervals based on the proposed
method is shown in Table 3. It can be seen that the proportion
of the studied case increases significantly as the sampling
frequency decreases; and the estimation error increases as
the proportion increases. The posteriori distribution of the
absolute error based on the proposed method in the studied
case is shown in Figure 10. It can be seen that the distributions
are not symmetrical due to the existence of a few large
values of the estimation error. This is because the report
points of the CPV on the adjacent links could be exceptional
due to traffic incidents, which would significantly reduce
the accuracy of the most similar HPV recognition and the
accuracy of the travel time estimation. The 95% credible
interval of the absolute error based on the three estimation
methods is indicated in Table 4. It can be seen that the 95%
credible interval of the proposed method is the narrowest of
the three methods. And the length of the interval based on
the proposed method is always less than 17 s, which satisfies
the accuracy requirement for the engineering application,
whereas the length of the interval based on the ANNmethod
is always more than 15 s and increases to 26.23 s as the
sampling interval increases to 120 s. As for the spatiotemporal
moving average method, the length of the interval is always
more than 20 s and increases to 41.16 s as the sampling interval
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Table 3: Proportion of the studied case based on the proposed method (%).

Sampling interval (s) Interval of the absolute error (s)
[0, 2) [2, 4) [4, 6) [6, 8) [8, 10) [10, 12) [12, 14) [14, 16) [16, 18) [18, 20) [20, 22) [22, 24]

30 10.7 13.3 18.8 22.9 33.4 52.9 100 100 100 100 \ \

60 18.2 28.5 35.9 40.4 62.2 100 100 100 100 100 100 \

90 27.2 43.8 55.6 66.0 88.6 100 100 100 100 100 100 \

120 40.2 59.8 73.7 92.5 100 100 100 100 100 100 100 100
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Figure 6: Correlation between estimated link travel times and reference travel times based on the proposed method at different sampling
frequencies.

increases to 120 s. Therefore, the reliability of the proposed
method is higher than the other two methods in the case
without observations on CPVs on the target link.

In summary, the proposed method performs better than
the ANN model and the spatiotemporal moving average
method, under low sampling frequency conditions. This is
because it is able to imputemissing report points on the target
link based on historical data when there is no report point
on the target link. When the sampling frequency gets lower,
the possibility of no report point on the target link would be

higher; then the advantage of the proposed method would be
more significant.

4. Discussion and Conclusions

An urban link travel time estimation method using low
frequency GPS probe vehicle data was proposed. For the case
in which there is no report point from the current probe
vehicle on the target link due to the low sampling frequency,
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Table 4: 95% credible interval of the absolute error based on the three estimation methods.

Sampling interval (s) Interval of the absolute error (s)
Proposed method ANNmethod Spatiotemporal moving average method

30 [0, 8.82] [0, 15.85] [0, 23.78]

60 [0, 11.53] [0, 19.05] [0, 32.62]

90 [0, 14.36] [0, 23.56] [0, 38.27]

120 [0, 16.44] [0, 26.23] [0, 41.16]
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Figure 7: Correlation between estimated link travel times and reference travel times based on the ANN method at different sampling
frequencies.

a 𝐾-Nearest Neighbour Rule based model was proposed.
The main idea of the model is to recognise the historical
vehicle which has the most similar travelling characteristics
to the current probe vehicle and uses its report points to
create virtual report points for the current vehicle on the
target link. Then the virtual report points on the target link
were incorporated with the report points on the upstream
and downstream links to estimate the link travel time using
an improved back propagation neural network model. The
proposed methodology was applied to a case study involving
an arterial road in Changchun, China, and comparison with

the ANN method and the spatiotemporal moving average
method was undertaken. Results suggested that the proposed
method outperforms the other two methods with higher
estimation accuracy and better robustness.

The reliability of the proposed method was validated
in the case without report points for CPVs on the target
link. When the sampling interval is very long (i.e., 120 s),
the 95% credible interval of the absolute error based on
the proposed method is [0, 16.44], which still satisfies the
accuracy requirement for the engineering application. The
accuracy of the proposed method could be influenced by
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Figure 8: Correlation between estimated link travel times and reference travel times based on the spatiotemporal moving average method at
different sampling frequencies.

20 30 40 50 60 70 80 90 100 110 120 130
0
2
4
6
8

10
12
14
16
18
20

M
A

PE
 (%

)

Sampling frequency (s) 

Proposed method
ANN method
Spatial-temporal moving average method

Figure 9: MAPE of the three methods at different sampling freq-
uencies.

the nonrecurring traffic incidents (e.g., disabled vehicles and
traffic crashes). This is because the nonrecurring incidents
would lead to exceptional observations on CPVs on the
adjacent links, which would reduce the accuracy of the
similarHPV recognition. Nevertheless, the proposedmethod
is applicable for the general traffic condition.

In future, it is recommended that the virtual report point
creation model be improved by constructing a more logical
characteristic distance function, which takes the differences
among the characteristic parameters into consideration.
Besides, the traffic process, the influence of traffic control, and
queuing could be considered specifically in urban link travel
time estimation. In addition, more efficient algorithms could
be introduced to the urban link travel time estimation.
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Figure 10: A posteriori distribution of the absolute error based on the proposed method at different sampling frequencies.
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