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This paper proposes a multiobjective portfolio selection problem with most probable random distribution derived from current
market data and other randomdistributions of boomand recession under the risk-controlled parameters determined by an investor.
The current market data and information include not only historical data but also interpretations of economists’ oral and linguistic
information, and hence, the boom and recession are often caused by these nonnumeric data. Therefore, investors need to consider
several situations from most probable condition to boom and recession and to avoid the risk less than the target return in each
situation. Furthermore, it is generally difficult to set random distributions of these cases exactly.Therefore, a robust-based approach
for portfolio selection problems using the onlymean values and variances of securities is proposed as amultiobjective programming
problem. In addition, an exact algorithm is developed to obtain an explicit optimal portfolio using a principle of compromise.

1. Introduction

Portfolio selection problem has been important in applied
finance and investment science to obtain the optimal asset
allocation among securities since Markowitz proposed mean
variance model (Markowitz [1]). Many portfolio models
based on mathematical programming were developed after
mean variance model, for instance, mean-absolute-deviation
model (Konno et al. [2, 3]), semivariance model (Bawa and
Lindenberg [4]), safety-first model (Elton and Gruber [5]),
value-at-risk (VaR), and conditional value-at-risk (cVaR)
model (Rockafellar and Uryasev [6]).

Standard portfolio models were formulated as stochastic
programming problem with random future returns. On the
other hand, current market data is often imperfect and
ambiguous, and the investor also interprets economist’s oral
and linguistic information subjectively.Therefore, it is almost
impossible to determine random distributions of future
returns. As a nonprobabilistic approach, many researchers
proposed fuzzy-based portfolio selection problems using the
fuzzy theory (Bilbao-Terol et al. [7], Carlsson et al. [8], Duan
and Stahlecker [9], Huang [10, 11], Inuiguchi and Tanino [12],

Tanaka et al. [13, 14], and Watada [15]). Furthermore, some
researchers proposed portfolio models with both random-
ness and fuzziness, for instance, fuzzy random portfolio
selection problems (Katagiri et al. [16]) and random fuzzy
portfolio selection problems (Hasuike et al. [17], Huang [18]).
Hasuike and Ishii [19] proposed a portfolio model with
some possibility of the expected returns. In this model, they
assumed that current market data and information included
not only historical data but also interpretations of economists’
oral and linguistic information, and the boom and recession
are often caused by these nonnumeric data.Thus, it is impor-
tant to set future returns considering most probable random
distribution derived from current market data and other
random distributions of boom and recession, and hence, we
formulate a multiobjective portfolio selection problem with
several possible future returns.

As another portfolio model under uncertainty, some
researchers recently deal with an uncertainty set of future
returns, which is generally formulated as box or ellipsoidal
sets, not assuming certain random distributions and mem-
bership functions, and robust portfolio selection problems
with the uncertainty set have been actively studied. It is
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important for investors to avoid the conceivable worst case
and to decide on an optimal investment strategy using the
robust approach (e.g., Goldfarb and Iyengar [20], Gregory et
al. [21], Liesiö et al. [22], and Lobo [23]). Robust optimization
problems have become an active research area in mathe-
matical programming, leading to various studies of solution
algorithms (e.g., Ben-Tal and Nemirovski [24, 25]). However,
investormust exactly determine the explicit uncertainty set of
future returns in order to obtain an optimal portfolio inmath-
ematical programming. The idea of robustness is useful and
important to avoid the conceivable worst case of total return
loss in risk management. In addition, investors can easily
obtain the mean values and variances of securities to collect
current numerical market data and undertake the statistical
analysis. Hasuike and Katagiri [26] proposed an interactive
and theoretical approach for robust portfolio selection prob-
lem. In this paper, we also apply the idea of robustness using
themean values and variances of securities to amultiobjective
portfolio selection problem considering several situations.

This paper is organized as follows. In Section 2, we
introduce mathematical formulation of existing robust port-
folio selection problems concept. In Section 3, we propose a
multiobjective portfolio selection problem using the robust-
based portfolio model shown in Section 2. It is hard to solve
this proposed problem directly since a complete optimal
solution that simultaneously optimizes all of the multiobjec-
tive functions does not always exist. Therefore, we adopt a
principle of compromise considering the shortest distance
from positive ideal values, called Minkowski’s 𝐿𝑝-metric, in
order to solve the proposed problem in mathematical pro-
gramming. In addition, we develop an exact algorithm to
obtain an explicit optimal portfolio of the proposed problem.
In Section 4, we conclude this paper.

2. Mathematical Formulation of a
Robust-Based Portfolio Selection Problem

A simple objective of portfolio selection problems is generally
maximizing the total profit to decide an asset allocation rate
of each security.Themathematical formulation is introduced
as follows:

Maximize r𝑡x

subject to 1𝑡x = 1, x ≥ 0,
(1)

where the notation means as follows: r is the future return
column vector of securities, r ∈ R𝑛, x is the portfolio rate col-
umn vector of securities, x ∈ R𝑛, and 𝑛 is the total number of
securities.

It is generally impossible to determine future returns as
constant values in the real market, due to difficulty of return
forecast derived from economic fluctuations. Furthermore, in
standard academic portfolio models, the normal distribution
is assumed as the random distribution of each future return.
However, it is difficult to set the specific random distribution
exactly in the real market. On the other hand, investors can
collect historical data of each security in the current market
and calculate themean value and variance statistically.There-
fore, we need to develop a portfolio model using only mean

values and variances of securities without assuming the
specific random distributions.

Furthermore,most investors also tend to avoid some risks
such as loss of the total return holding certain level. Partic-
ularly, it is important to do the risk-averse decision due to
the high possibility of loss under uncertainty of future
returns.Therefore, in risk management to avoid a greater loss
of the total return as much as possible, we apply a robust pro-
gramming approach to the proposed portfolio model.

2.1. Uncertainty Sets. A general ellipsoidal uncertainty set of
future returns 𝑈

𝑟
is given as the following constraint:

𝑈
𝑟
= {r | r = r +Qw, ‖w‖ ≤ 𝑑} , (‖w‖ = √

𝑛

∑

𝑗=1

𝑤
2

𝑗
) ,

(2)

where r is the column vector of center values for r andQ is a
regularmatrix, which represents the relation between any two
securities. In (2), we set a positive value 𝑑 as a degree of
considerable range. In general robust programming optimiz-
ation, parameter 𝑑 is often set as 1. In (2), we set parameters
w󸀠 = w/𝑑, Q󸀠 = 𝑑Q which equivalently transform into the
following uncertainty set:

𝑈
𝑟
= {r | r = r +Q󸀠w󸀠, 󵄩󵄩󵄩󵄩󵄩w

󸀠󵄩󵄩󵄩󵄩󵄩
≤ 1} . (3)

We may verify that the worst case of total return r𝑡x is
attained when w󸀠 = −Q󸀠x/‖Q󸀠x‖; that is, w = −𝑑Q󸀠x/‖Q󸀠x‖.
Therefore, the worst total return minr∈𝑈

𝑟

r𝑡x under the
maximization of the total return is obtained as follows:

min
r∈𝑈
𝑟

r𝑡x = min
‖w‖≤𝑑

(r +Qw)𝑡x

= r𝑡x − 𝑑(
(Qx)𝑡Qx
‖Qx‖

) = r𝑡x − 𝑑 ‖Qx‖ .
(4)

This formula can represent robustness by adjusting parameter
𝑑 according to investor’s satisfaction, and, hence, parameter
𝑑 is regarded as a robustness parameter. If the investor is risk-
averse, she or he will set a larger value of 𝑑, and if not, she or
he will set a smaller value of 𝑑. Therefore, using formula (4)
for the total return,we propose a robust-based portfolio selec-
tion problem maximizing robustness parameter 𝑑 as well as
maximizing the total return.

2.2. Formulation of Our Proposed Robust-Based Model. We
introduce the following parameters setting variance-covari-
ance matrix V where 𝜎

𝑖𝑗
is the 𝑖𝑗th component of V:

𝐸 (r𝑡x) = r𝑡x, V (r𝑡x) = x𝑡Vx. (5)

From current numerical market data, 𝐸(r𝑡x) and V(r𝑡x)
can be calculated. Using 𝐸(r𝑡x) and V(r𝑡x), we formulate a
portfolio selection problemwith robustness parameter𝑑(> 0)

based on the idea of robust optimization (4). If the value of
robustness parameter 𝑑 is larger, the assumed area of uncer-
tainty set is also wide, and it urges the investor to deal
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with more robust cases than the small value of 𝑑. Therefore,
the following robust-based portfolio selection problem is
formulated by setting robustness parameter 𝑑 based on the
investor’s risk-averse subjectivity:

Maximize 𝐸 (r𝑡x) − 𝑑√V (r𝑡x)

subject to 𝐸 (r𝑡x) ≥ 𝑓,

1𝑡x = 1, x ≥ 0,

(6)

where 𝑓 is the standard target value of total future profit
according to the investor’s demand.With respect to the objec-
tive function, if future returns occur according to normal
distributions and robust parameter𝑑 is set as𝛽-quantile point
of normal distribution, and 𝑑-sigma value can be regarded as
the value-at-risk point of normal distribution under probabil-
ity level 𝛽. Therefore, the investor can obtain the total return
more than 𝐸(r𝑡x) avoiding the risk by maximizing 𝐸(r𝑡x) −
𝑑√V(r𝑡x). In this paper, we call objective function 𝐸(r𝑡x) −
𝑑√V(r𝑡x) 𝑑-sigma value. Problem (6) is a convex program-
ming problem, and hence, we obtain the optimal solution
using the convex programming approach.

3. Our Proposed Model Robust-Based
Multiobjective Portfolio Selection Problem

In practical investment situations, it is natural for the investor
to consider maximizing the target total profit as well as
minimizing the total risk, that is, maximizing the robustness
parameter in risk management. Therefore, problem (6) is
reformulated as the following problem:

Maximize 𝐸 (r𝑡x) − 𝑑√V (r𝑡x)

Maximize 𝐸 (r𝑡x)

subject to 1𝑡x = 1, x ≥ 0.

(7)

Furthermore, it often occurs that a future economy becomes
boom or recession than envisioned values derived from the
historical analysis based on current market data. As well as
expected value r

𝐶
with the variance-covariance matrix V

𝐶
in

the envisioned future market, it is natural that investors set
expected return r

𝑈
with the variance-covariance matrix V

𝑈

in the boom and expected return r
𝐿
with the variance-covari-

ance matrix V
𝐿
in the recession, respectively. These cases

generally have larger uncertainty thanusual, and, hence,𝜎2
𝐿𝑗
>

𝜎
2

𝐶𝑗
and 𝜎

2

𝑈𝑗
> 𝜎
2

𝐶𝑗
are assumed. We propose the following

multiobjective portfolio selection problem based on problem
(7):

Maximize 𝐸 (r𝑡
𝐶
x) − 𝑑

𝐶
√V (r𝑡

𝐶
x)

Maximize 𝐸 (r𝑡
𝑈
x) − 𝑑

𝑈
√V (r𝑡

𝑈
x)

Maximize 𝐸 (r𝑡
𝐿
x) − 𝑑

𝐿
√V (r𝑡

𝐿
x)

Maximize 𝐸 (r𝑡
𝐶
x)

Maximize 𝐸 (r𝑡
𝑈
x)

Maximize 𝐸 (r𝑡
𝐿
x)

subject to 1𝑡x = 1, x ≥ 0.
(8)

We set 𝑧
𝑑
𝑘

= 𝐸(r𝑡
𝑘
x) − 𝑑

𝑘
√V(r𝑡

𝑘
x), 𝑘 ∈ {𝐶, 𝐿, 𝑈}. It is hard to

solve this problem directly since a complete optimal solution
that simultaneously optimizes all of the multiobjective func-
tions does not always exist, and hence, various approaches to
obtain a compromise solution for the multiobjective pro-
gramming problem have been proposed. In this paper, we
adopt a principle of compromise considering the shortest
distance from positive ideal values 𝑧∗

𝑑
𝑘

and 𝐸
∗
(r𝑡
𝑘
x) and the

farthest distance from minimum target values 𝑧
−

𝑑
𝑘

and
𝐸
−
(r𝑡
𝑘
x), called Minkowski’s 𝐿𝑝-metric. Minkowski’s 𝐿𝑝-

metric is defined by the following form using 𝐿𝑝-norm (𝑝 >

1):

𝑍
𝑝
(x) =

{

{

{

∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝑑
𝑘

{

𝑧
∗

𝑑
𝑘

− 𝑧
𝑑
𝑘

𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

}

𝑝

+ ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝐸
𝑘

{

𝐸
∗
(r𝑡
𝑘
x) − 𝐸 (r𝑡

𝑘
x)

𝐸∗ (r𝑡
𝑘
x) − 𝐸− (r𝑡

𝑘
x)

}

𝑝

}

}

}

1/𝑝

,

(9)

where𝑤
𝑑
𝑘

and𝑤
𝐸
𝑘

, (𝑘 ∈ {𝐶, 𝐿, 𝑈}) are the relative importance
of each objective function and 𝑝 is the parameter of norm
functions. To simplify the discussion, we set 𝑝 = 1 in this
paper. The case 𝑝 = 1 is operationally and practically
important, which provides better credibility than others and
emphasizes the sum of individual distances in the utility con-
cept [10]. Main problem (8) is transformed into the following
single-objective programming problem:

Minimize 𝑍
𝑝
(x)

subject to 1𝑡x = 1, x ≥ 0.
(10)

That is,

Minimize ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝑑
𝑘

{

𝑧
∗

𝑑
𝑘

− 𝑧
𝑑
𝑘

𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

}

+ ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝐸
𝑘

{

𝐸
∗
(r𝑡
𝑘
x) − 𝐸 (r𝑡

𝑘
x)

𝐸∗ (r𝑡
𝑘
x) − 𝐸− (r𝑡

𝑘
x)

}

subject to 1𝑡x = 1, x ≥ 0.

(11)

In order to solve this problem, investors need to set para-
meters 𝑧∗

𝑑
𝑘

, 𝑧−
𝑑
𝑘

, 𝐸∗(r𝑡
𝑘
x), and 𝐸

−
(r𝑡
𝑘
x), (𝑘 ∈ {𝐶, 𝐿, 𝑈}) explic-

itly. Therefore, we develop an exact algorithm to obtain opti-
mal values of 𝑧∗

𝑑
𝑘

, 𝑧−
𝑑
𝑘

, 𝐸∗(r𝑡
𝑘
x), and 𝐸−(r𝑡

𝑘
x), (𝑘 ∈ {𝐶, 𝐿, 𝑈}).
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3.1. Subproblems of Our Proposed Model and the Exact Algo-
rithm. Subproblems to obtain positive ideal value 𝑧

∗

𝑑
𝑘

and
𝐸
∗
(r𝑡
𝑘
x) are as follows:

Maximize 𝐸 (r𝑡
𝑘
x) − 𝑑

𝑘
√V (r𝑡

𝑘
x)

subject to 1𝑡x = 1, x ≥ 0,

(𝑘 ∈ {𝐶, 𝐿, 𝑈}) ,

(12)

Maximize 𝐸 (r𝑡
𝑘
x)

subject to 1𝑡x = 1, x ≥ 0,

(𝑘 ∈ {𝐶, 𝐿, 𝑈}) .

(13)

In this paper, the minimum target values 𝑧−
𝑑
𝑘

and 𝐸
−
(r𝑡
𝑘
x) of

objective functions are also set by the investor. Since problem
(13) is a linear knapsack problem, the optimal portfolio and
optimal value are easily and explicitly obtained as follows:
(optimal portfolio and optimal value of problem (13))

𝑥
∗

𝑖
=

{

{

{

1, 𝑖 = arg max
1≤𝑗≤𝑛

{𝑟
𝑘𝑗
}

0, otherwise

𝐸
∗
(r𝑡
𝑘
x) = max
1≤𝑗≤𝑛

{𝑟
𝑘𝑗
} ,

(𝑘 ∈ {𝐶, 𝐿, 𝑈}) .

(14)

We consider an exact algorithm to obtain each optimal port-
folio of problem (12). Since V

𝑘
in problem (12) is a positive

definite matrix, we perform the following equivalent trans-
formations of variables:

x𝑡V
𝑘
x = y𝑡
𝑘
y
𝑘

V
𝑘
= P𝑡
𝑘
Λ
𝑘
P
𝑘
, (P

𝑘
: unitary matrix consisting

of eigen vector of V
𝑘
)

Λ
𝑘
= (

𝜆
𝑘1

0
d

0 𝜆
𝑘𝑛

) , (𝜆
𝑘𝑖
: eigen value of V

𝑘
)

Λ
𝑘
=(Λ
1/2

𝑘
)
𝑡

Λ
1/2

𝑘
, Λ

1/2

𝑘
=(Λ
1/2

𝑘
)
𝑡

=(

√𝜆
𝑘1

0
d

0 √𝜆
𝑘𝑛

)

y
𝑘
= Λ
1/2

𝑘
P
𝑘
x, r󸀠k = (Λ

1/2

𝑘
)
−1

P
𝑘
r
𝑘
,

a
𝑘
= (Λ
1/2

𝑘
)
−1

P
𝑘
1.

(15)

Using these transformations of variables, problem (12) is
equivalently transformed into the following problem:

Minimize − r󸀠ky𝑘 + 𝑑
𝑘
√y𝑡
𝑘
y
𝑘

subject to a𝑡
𝑘
y
𝑘
= 1, y

𝑘
≥ 0.

(16)

This problem still includes square root term √y𝑡
𝑘
y
𝑘
. There-

fore, in order to obtain the exact optimal portfolio of problem
(16), we introduce the following auxiliary problem 𝑃

𝑅
𝑘 using

a parameter 𝑅
𝑘
not including the square root term:

Minimize 𝑅
𝑘
(−r󸀠ky𝑘) +

𝑑
𝑘

2
(y𝑡
𝑘
y
𝑘
)

subject to a𝑡
𝑘
y
𝑘
= 1, y

𝑘
≥ 0.

(17)

Since this problem is a quadratic convex programming prob-
lem, we solve problem (17) more easily than problem (16).
Furthermore, with respect to the relation between problem
(16) and its auxiliary problem (17), the following theorem
holds based on Hasuike and Katagiri [26].

Theorem 1 (see [26]). Let y(𝑅𝑘)
𝑘

be the optimal solution of aux-

iliary problem (17). If 𝑅
𝑘
= √∑

𝑛

𝑗=1
{𝑦
(𝑅
𝑘
)

𝑘𝑗
}
2

holds, y(𝑅𝑘)
𝑘

is also
the optimal solution of problem (16).

This theoremmeans that we can obtain the optimal solu-
tion of problem (16) by solving the auxiliary quadratic pro-
gramming problem (17) setting the appropriate parameter𝑅

𝑘
.

Furthermore, let 𝑔(𝑅
𝑘
) = 𝑅
𝑘
− √∑

𝑛

𝑗=1
{𝑦
(𝑅
𝑘
)

𝑘𝑗
}
2

. Then, the fol-
lowing theorem to determine that the appropriate value of 𝑅
is derived.

Theorem 2 (see [26]). Let y∗
𝑘
be the optimal solution to prob-

lem (17) and optimal value 𝑅∗
𝑘
= √∑

𝑛

𝑗=1
{𝑦
∗

𝑘𝑗
}
2.Then the fol-

lowing relationship holds:

𝑅
∗

𝑘
> 𝑅
𝑘
⇐⇒ 𝑔(𝑅

𝑘
) > 0

𝑅
∗

𝑘
= 𝑅
𝑘
⇐⇒ 𝑔(𝑅

𝑘
) = 0

𝑅
∗

𝑘
< 𝑅
𝑘
⇐⇒ 𝑔(𝑅

𝑘
) < 0.

(18)

This theorem means that an optimal solution 𝑦
∗

𝑘𝑗
of aux-

iliary problem (17) is an optimal and unique solution of main
problem (16) in the only case 𝑅∗

𝑘
= 𝑅
𝑘
.

Lagrange function 𝐿 of problem (17) is obtained using
Lagrange multipliers 𝜆 and V

𝑗
as follows:

𝐿 = −𝑅
𝑘

𝑛

∑

𝑗=1

𝑟
󸀠

𝑘𝑗
𝑦
𝑘𝑗
+
𝑑
𝑘

2

𝑛

∑

𝑗=1

𝑦
2

𝑘𝑗
+ 𝜆(

𝑛

∑

𝑗=1

𝑎
𝑘𝑗
𝑦
𝑘𝑗
− 1) −

𝑛

∑

𝑗=1

V
𝑗
𝑦
𝑘𝑗
.

(19)

Karush-Kuhn-Tucker condition of this Lagrange function is
also calculated as follows:

−𝑅
𝑘
𝑟
󸀠

𝑘𝑗
+ 𝑑
𝑘
𝑦
𝑘𝑗
+ 𝜆𝑎
𝑘𝑗
− V
𝑗
= 0

𝑛

∑

𝑗=1

𝑎
𝑘𝑗
𝑦
𝑘𝑗
= 1

V
𝑗
𝑦
𝑘𝑗
= 0, (𝑗 = 1, 2, . . . , 𝑛) ,

(20)
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where V
𝑗
𝑦
𝑘𝑗

= 0 is the complementarity condition. Solving
this simultaneous equation, we obtain the following optimal
solution of problem (17):

𝑦
(𝑅
𝑘
)

𝑘𝑗
=

{{{{{{

{{{{{{

{

𝑅
𝑘
𝑟
󸀠

𝑘𝑗
− 𝜆𝑎
𝑘𝑗

𝑑
𝑘

(𝜆 ≤

𝑅
𝑘
𝑟
󸀠

𝑘𝑗

𝑎
𝑘𝑗

)

0 (𝜆 ≥

𝑅
𝑘
𝑟
󸀠

𝑘𝑗

𝑎
𝑘𝑗

) .

(21)

This solution 𝑦
(𝑅
𝑘
)

𝑘𝑗
depends on parameters 𝑅

𝑘
and 𝜆, and,

hence, we need to determine the optimal value of parameters
𝑅
𝑘
and 𝜆.We define𝐴

𝑗
= 𝑅
𝑘
𝑟
󸀠

𝑘𝑗
/𝑎
𝑘𝑗
.With respect to the order

of 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
, the following theorem holds.

Theorem 3. The order of 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
is determined with-

out depending on 𝑅
𝑘
.

Proof. With respect to any two parameters 𝐴
𝑖
and 𝐴

𝑗
,

𝐴
𝑖
− 𝐴
𝑗
=
𝑅
𝑘
𝑟
󸀠

𝑘𝑖

𝑎
𝑘𝑖

−

𝑅
𝑘
𝑟
󸀠

𝑘𝑗

𝑎
𝑘𝑗

= 𝑅
𝑘
(
𝑟
󸀠

𝑘𝑖

𝑎
𝑘𝑖

−

𝑟
󸀠

𝑘𝑗

𝑎
𝑘𝑗

) (22)

holds. Since 𝑅
𝑘
≥ 0, the positive or the negative of 𝐴

𝑖
− 𝐴
𝑗
is

determined by the value of 𝑟󸀠
𝑘𝑖
/𝑎
𝑘𝑖
− 𝑟
󸀠

𝑘𝑗
/𝑎
𝑘𝑗
not depending on

𝑅
𝑘
.

Consequently, the following exact algorithm is developed
to obtain the optimal solution based on the above theorem.

Exact Algorithm for Problem (17).

Step 1. Sort 𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
in ascending order according to

values of 𝑟󸀠
𝑘𝑗
/𝑎
𝑘𝑗
, (𝑗 = 1, . . . , 𝑛). Go to Step 2.

Step 2. Set 𝐴
0
← 0 and ℎ ← 1. Go to Step 3.

Step 3. Obtain an optimal solution derived from solution (21)
depending on 𝑅

𝑘
:

𝑛

∑

𝑗=ℎ

𝑎
𝑘𝑗
(

𝑅
𝑘
𝑟
󸀠

𝑘𝑗
− 𝜆𝑎
𝑘𝑗

𝑑
𝑘

)=1 ⇐⇒ 𝜆=

𝑅
𝑘
(∑
𝑛

𝑗=ℎ
𝑎
𝑘𝑗
𝑟
󸀠

𝑘𝑗
) − 𝑑
𝑘

∑
𝑛

𝑗=ℎ
𝑎
2

𝑘𝑗

𝑦
(𝑅
𝑘
)

𝑘𝑗
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑅
𝑘
(𝑟
󸀠

𝑘𝑗
(

𝑛

∑

𝑗=ℎ

𝑎
2

𝑘𝑗
)

−𝑎
𝑘𝑗
(

𝑛

∑

𝑗=ℎ

𝑎
𝑘𝑗
𝑟
󸀠

𝑘𝑗
))+𝑑

𝑘
𝑎
𝑘𝑗
)

×(𝑑
𝑘
(

𝑛

∑

𝑗=ℎ

𝑎
2

𝑘𝑗
))

−1

(𝑘∈{ℎ, ℎ+1, . . . , 𝑛})

0 otherwise.
(23)

Go to Step 4.

Step 4. Solve the following quadratic equation of 𝑅(ℎ)
𝑘
:

{𝑅
(ℎ)

𝑘
}
2

=

𝑛

∑

𝑗=ℎ

{

{

{

(𝑅
𝑘
(𝑟
󸀠

𝑘𝑗
(

𝑛

∑

𝑗=ℎ

𝑎
2

𝑘𝑗
)

− 𝑎
𝑘𝑗
(

𝑛

∑

𝑗=ℎ

𝑎
𝑘𝑗
𝑟
󸀠

𝑘𝑗
)) + 𝑑

𝑘
𝑎
𝑘𝑗
)

× (𝑑
𝑘
(

𝑛

∑

𝑗=ℎ

𝑎
2

𝑘𝑗
))

−1

}

}

}

2

(24)

and substitute𝑅(ℎ)
𝑘

into 𝜆(ℎ) = (𝑅
𝑘
(∑
𝑛

𝑗=ℎ
𝑎
𝑘𝑗
𝑟
󸀠

𝑘𝑗
)−𝑑
𝑘
)/∑
𝑛

𝑗=ℎ
𝑎
2

𝑘𝑗
.

Go to Step 5.

Step 5. If 𝜆(ℎ) satisfies 𝐴
ℎ−1

≤ 𝜆
(ℎ)

≤ 𝐴
ℎ
, 𝑦(𝑅𝑘)
𝑘𝑗

is the optimal
solution of problem (16). Terminates this algorithm. If not,
ℎ ← ℎ + 1 and return to Step 3.

Using this algorithm, the optimal solution of problem (12)
is explicitly obtained as x∗ = (Λ

1/2

𝑘
)
−1

P
𝑘
y∗
𝑘
.

3.2. Solution Approach of Our Proposed Model Robust-Based
Multiobjective Portfolio Selection Problem. Since investors
obtain positive ideal values 𝑧∗

𝑑
𝑘

and 𝐸
∗
(r𝑡
𝑘
x) and minimum

target values 𝑧−
𝑑
𝑘

and 𝐸−(r𝑡
𝑘
x) from the above exact algorithm,

we next consider the optimal solution of the following repro-
vided main problem (11):

Minimize ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝑑
𝑘

{

𝑧
∗

𝑑
𝑘

− 𝑧
𝑑
𝑘

𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

}

+ ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝐸
𝑘

{

𝐸
∗
(r𝑡
𝑘
x) − 𝐸 (r𝑡

𝑘
x)

𝐸∗ (r𝑡
𝑘
x) − 𝐸− (r𝑡

𝑘
x)

}

subject to 1𝑡x = 1, x ≥ 0.

(25)

In this paper, we assume that variances of 𝜎2
𝐿𝑗
and 𝜎2
𝑈𝑗
are uni-

formly larger than 𝜎
2

𝐶𝑗
; that is, 𝜎2

𝐿𝑗
= 𝛼
2

𝐿
𝜎
2

𝐶𝑗
and 𝜎

2

𝑈𝑗
= 𝛼
2

𝑈
𝜎
2

𝐶𝑗

satisfying 𝛼
𝐿
> 1 and 𝛼

𝑈
> 1, and also assume that corre-

lation coefficients of V
𝐿
and V

𝑈
are the same as V

𝐶
. From

these assumptions, we obtain V
𝐿
= 𝛼
2

𝐿
V
𝐶
and V

𝑈
= 𝛼
2

𝑈
V
𝐶
.

Substituting V
𝐿
and V

𝑈
, problem (25) is equivalently trans-

formed into the following problem:

Minimize − ∑

𝑘∈{𝐶,𝐿,𝑈}

{

𝑤
𝑑
𝑘

𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

+

𝑤
𝐸
𝑘

𝐸∗ (r𝑡
𝑘
x) − 𝐸− (r𝑡

𝑘
x)
}

× 𝐸 (r𝑡
𝑘
x) + ( ∑

𝑘∈{𝐶,𝐿,𝑈}

𝑤
𝑑
𝑘

𝑑
𝑘
𝛼
𝑘

𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

)
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× √V (r𝑡
𝑘
x)

subject to 1𝑡x = 1, x ≥ 0,
(26)

where 𝛼
𝐶
= 1. Since𝑤

𝑑
𝑘

/(𝑧
∗

𝑑
𝑘

−𝑧
−

𝑑
𝑘

)+𝑤
𝐸
𝑘

/(𝐸
∗
(r𝑡
𝑘
x)−𝐸−(r𝑡

𝑘
x))

and 𝑤
𝑑
𝑘

𝑑
𝑘
𝛼
𝑘
/(𝑧
∗

𝑑
𝑘

− 𝑧
−

𝑑
𝑘

) are constant values, this problem
is the same as problem (16). Therefore, we can apply the
same exact algorithm to problem (26) and obtain the explicit
optimal portfolio.

4. Conclusion

In this paper, we have proposed a robust-based portfolio
selection problem with most probable random distribution
derived from current market data and other random distri-
butions of boom and recession. Since the proposed model is
a multiobjective programming problem, we have introduced
a principle of compromise considering the shortest distance
from positive ideal values, called Minkowski’s 𝐿𝑝-metric. In
themain problem, we need to set some parameters by solving
subproblems, and hence, we have developed the exact algo-
rithm and shown the explicit optimal solution. Furthermore,
by introducing a natural assumption for variances to random
distributions of boom and recession, the main problem of
our proposed model is transformed into a standard existing
problem. In our proposedmodel, robust parameter is flexibly
controlled according to investor’s risk-averse subjectivity,
and, hence, our proposed model will be more useful than
previous models in terms of the flexible risk-controlled and
support usual and unusual economic conditions.

As for future studies, we need to consider the application
of the proposed model and solution algorithm to large-
scale or multiperiod portfolio selection problems using real
market data. Furthermore, it may be appropriate to set
robustness parameter 𝑑 introduced in (4) as a membership
function based on the fuzzy theory in terms of realistic mod-
elling, because 𝑑 is set by investor’s risk-averse subjectivity
which includes fuzziness. In addition, since the proposed
model obtains the explicit optimal portfolio according to the
investor’s risk-averse subjectivity, we should tackle sensitivity
analysis for the parameters of the proposed robust portfolio
model. The sensitivity analysis may be useful for economists
to estimate how investors’ risk-averse subjectivity has an
impact on the currentmarket and how to find the appropriate
balance between robustness and the total profit in the near-
future market.
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[22] J. Liesiö, P. Mild, and A. Salo, “Robust portfolio modeling with
incomplete cost information and project interdependencies,”
European Journal of Operational Research, vol. 190, no. 3, pp.
679–695, 2008.

[23] M. S. Lobo, Robust and convex optimization with applications
in finance [Doctor thesis], Department of Electrical Engineering
and the Committee on Graduate Studies, Stanford University,
2000.

[24] A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain
linear programs,” Operations Research Letters, vol. 25, no. 1, pp.
1–13, 1999.

[25] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex
Optimization, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa, USA, 2001.

[26] T. Hasuike and H. Katagiri, “Robust-based interactive portfolio
selection problems with an uncertainty set of returns,” Fuzzy
Optimization and Decision Making, vol. 12, no. 3, pp. 263–288,
2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


