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We present a new method for the study of general higher dimensional Kaluza-Klein theories. Our new approach is based on the
Riemannian adapted connection and on a theory of adapted tensor fields in the ambient space. We obtain, in a covariant form,
the fully general 4D equations of motion in a (4 + n)D general gauge Kaluza-Klein space. This enables us to classify the geodesics
of the (4 + n)D space and to show that the induced motions in the 4D space bring more information than motions from both
the 4D general relativity and the 4D Lorentz force equations. Finally, we note that all the previous studies on higher dimensional
Kaluza-Klein theories are particular cases of the general case considered in the present paper.

1. Introduction

As it is well known, by the Kaluza-Klein theory, the unifica-
tion of Einstein’s theory of general relativity with Maxwell’s
theory of electromagnetism was achieved. In a modern
terminology, this theory is developed on a trivial principal
bundle over the usual 4D spacetime, with 𝑈(1) as fibre type.
Thus, a natural generalization of Kaluza-Klein theory consists
in replacing 𝑈(1) by a nonabelian gauge group 𝐺 (cf. [1–5]).
There have been also some other generalizations wherein the
internal space has been considered a homogeneous space of
type 𝐺/𝐻 (cf. [6, 7]).

Two conditions have been imposed in the classical
Kaluza-Klein theory and inmost of the above generalizations:
the “cylinder condition” and the “compactification condi-
tion.” The former condition assumes that all the local com-
ponents of the pseudo-Riemannian metric on the ambient
space do not depend on the extra dimensions, while the latter
requires that the fibre must be a compact manifold.

In 1938, Einstein and Bergmann [8] presented the first
generalization in this direction. According to it, the local
components of the 4D Lorentz metric in a 5D space are
supposed to be periodic functions of the fifth coordinate.
Later on, two other important generalizations have been
intensively studied. One is called brane-world theory and
assumes that the observable universe is a 4-surface (the
“brane”) embedded in a (4 + 𝑛)-dimensional spacetime (the

“bulk”) with particles and fields trapped on the brane, while
gravity is free to access the bulk (cf. [9]). The other one is
called space-time-matter theory and assumes that matter in
the 4D spacetime is amanifestation of the fifth dimension (cf.
[10, 11]).

Recently, we presented a new point of view on a general
Kaluza-Klein theory in a 5Dspace (cf. [12]).We removed both
the above conditions and gave a new method of study based
on the Riemannian horizontal connection. This enabled us
to give a new definition of the fifth force in 4D physics (cf.
[13]) and to obtain a classification of the warped 5D spaces
satisfying Einstein equations with cosmological constant (cf.
[14]).

The present paper is the first in a series of papers devoted
to the study of general Kaluza-Klein theory with arbitrary
gauge group. More precisely, our approach is developed on
a principal bundle 𝑀 over the 4D spacetime 𝑀, with an 𝑛-
dimensional Lie group 𝐺 as fibre type. Moreover, both the
cylinder condition and the compactification condition are
removed. In other words, the theorywe develop here contains
as particular cases all the other generalizations of Kaluza-
Klein theory that have been presented above.

The whole study is based on the Riemannian adapted
connection that we construct in this paper and on a 4D tensor
calculus thatwe introduce via a natural splitting of the tangent
bundle of the ambient space. We obtain, in a covariant form



2 Advances in High Energy Physics

and in their full generality, the 4D equations of motion as
part of equations of motion in a (4 + 𝑛)D space. We analyze
these equations and deduce that the induced motions on the
basemanifold bringmore information than both themotions
from general relativity and the motions from Lorentz force
equations. Moreover, these equations show the existence of
an extra force, which, in a particular case, is perpendicular to
the 4D velocity. The general study of the extra force will be
presented in a forthcoming paper.

Now, we outline the content of the paper. In Section 2 we
present the general gauge Kaluza-Klein space (𝑀, 𝑔,𝐻𝑀),
where 𝑀 is the total space of a principal bundle over a 4D
space time with a Lie group 𝐺 as fibre type. The pseudo-
Riemannian metric 𝑔 determines the orthogonal splitting
(5) and enables us to construct the adapted frame field
{𝛿/𝛿𝑥

𝛼

, 𝜕/𝜕𝑦
𝑖

} (see (12)). Our study is based on a 4D
tensor calculus developed in Section 3. The electromagnetic
tensor field 𝐹 = (𝐹

𝑘

𝛼𝛽
) given by (41) and the adapted

tensor fields 𝐻 and 𝑉 given by (44) and (45), respectively,
play an important role in our approach. In Section 4 we
construct the Riemannian adapted connection, that is, a
metric connection with respect to which both distributions
𝐻𝑀 and 𝑉𝑀 are parallel, and its torsion is given by (58a),
(58b), and (58c). Section 5 is the main section of the paper
and presents the 4D equations of motions in (𝑀, 𝑔,𝐻𝑀) (cf.
(85a) and (85b)). Also, in a particular case, we show that the
extra force is orthogonal to the 4D velocity and therefore
does not contradict the 4D physics. Finally, in Section 6 we
show that the set of geodesics in (𝑀, 𝑔, 𝐻𝑀) splits into
three categories: horizontal, vertical, and oblique geodesics.
Both, the horizontal and oblique geodesics induce some
new motions on the 4D spacetime. We close the paper with
conclusions.

2. General Gauge Kaluza-Klein Space

Let𝑀 be a 4-dimensional manifold and 𝐺 an 𝑛-dimensional
Lie group. The Kaluza-Klein theory we present in the paper
is developed on a principal bundle𝑀 with base manifold𝑀
and structure group𝐺. Any coordinate system (𝑥

𝛼

) on𝑀will
define a coordinate system (𝑥

𝛼

, 𝑦
𝑖

) on𝑀, where (𝑦𝑖) are the
fibre coordinates. Two such coordinate systems (𝑥𝛼, 𝑦𝑖) and
(𝑥
𝜇

, 𝑦
𝑗

) are related by the following general transformations:

𝑥
𝛼

= 𝑥
𝛼

(𝑥
𝜇

) , (1a)

𝑦
𝑖

= 𝑦
𝑖

(𝑥
𝛼

, 𝑦
𝑗

) . (1b)

Then, the transformations of the natural frame and coframe
fields on𝑀 have the forms

𝜕

𝜕𝑥
𝛼
=
𝜕𝑥
𝛾

𝜕𝑥
𝛼

𝜕

𝜕𝑥
𝛾
+
𝜕𝑦
𝑖

𝜕𝑥
𝛼

𝜕

𝜕𝑦
𝑖
, (2a)

𝜕

𝜕𝑦
𝑗
=
𝜕𝑦
𝑖

𝜕𝑦
𝑗

𝜕

𝜕𝑦
𝑖
, (2b)

𝑑𝑥
𝛾

=
𝜕𝑥
𝛾

𝜕𝑥
𝛼
𝑑𝑥
𝛼

, (3a)

𝑑𝑦
𝑖

=
𝜕𝑦
𝑖

𝜕𝑥
𝛼
𝑑𝑥
𝛼

+
𝜕𝑦
𝑖

𝜕𝑦
𝑗
𝑑𝑦
𝑗

, (3b)

respectively.
Throughout the paper we use the ranges of indices:

𝛼, 𝛽, 𝛾, ⋅ ⋅ ⋅ ∈ {0, 1, 2, 3}, 𝑖, 𝑗, 𝑘, ⋅ ⋅ ⋅ ∈ {4, . . . , 𝑛 + 3}, ⋅ ⋅ ⋅ 𝐴,

𝐵, 𝐶, . . . , ∈ {0, . . . , 3 + 𝑛}. By 𝑇(𝑥, 𝑦) we denote a function
𝑇 that is locally defined on 𝑀. Also, for any vector bundle
𝐸 over 𝑀, we denote by Γ(𝐸) the F(𝑀)-module of smooth
sections of𝐸, whereF(𝑀) is the algebra of smooth functions
on𝑀.

Next, from (2b) we see that there exists a vector bundle
𝑉𝑀 over 𝑀 of rank 𝑛 which is locally spanned by {𝜕/𝜕𝑦𝑖}.
We call𝑉𝑀 the vertical distribution on𝑀. Then, we suppose
that there exists on𝑀 a pseudo-Riemannian metric 𝑔 whose
restriction to𝑉𝑀 is a Riemannianmetric 𝑔⋆. Denote by𝐻𝑀
the complementary orthogonal distribution to 𝑉𝑀 in 𝑇𝑀,
and call it the horizontal distribution on𝑀. Suppose that𝐻𝑀
is invariant with respect to the action of𝐺 on𝑀 on the right;
that is, we have

(𝑅
𝑎
)
⋆
(𝐻𝑀) = 𝐻𝑀, ∀𝑎 ∈ 𝐺, (4)

where 𝑅
𝑎
⋆ is the differential of the right translation 𝑅

𝑎
of 𝐺.

Thus 𝐻𝑀 defines an Ehresmann connection on 𝑀 (cf. [15,
p. 359]). Also, suppose that the restriction of 𝑔 to 𝐻𝑀 is
a Lorentz metric 𝑔; that is, 𝑔 is nondegenerate of signature
(+, +, +, −). Thus 𝑇𝑀 is endowed with a Lorentz distribu-
tion (𝐻𝑀, 𝑔) and a Riemannian distribution (𝑉𝑀, 𝑔

⋆

) and
admits the orthogonal direct decomposition

𝑇𝑀 = 𝐻𝑀 ⊕ 𝑉𝑀. (5)

As we apply the above objects to physics, we need a
coordinate presentation for them. First, we recall (cf. [15, p.
359], [16, p. 64]) that the Ehresmann connection defined by
𝐻𝑀 is completely determined by a 1-form𝜔 on𝑀with values
in the Lie algebra 𝐿(𝐺) of 𝐺, satisfying the conditions

𝜔 (𝐴
⋆

) = 𝐴, ∀𝐴 ∈ 𝐿 (𝐺) , (6a)

𝜔 ((𝑅
𝑎
⋆)𝑋) = 𝑎𝑑 (𝑎

−1

) 𝜔 (𝑋) , ∀𝑎 ∈ 𝐺, ∀𝑋 ∈ Γ (𝑇𝑀) ,

(6b)

where 𝐴⋆ is the fundamental vector field corresponding to𝐴
and 𝑎𝑑 denotes the adjoint representation of 𝐺 in 𝐿(𝐺). Now,
suppose that {𝐾

𝑖
} is a basis of left invariant vector fields in

𝐿(𝐺) and put

𝐾
⋆

𝑖
= 𝐾
𝑗

𝑖
(𝑦)

𝜕

𝜕𝑦
𝑗
, (7)
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where [𝐾𝑗
𝑖
(𝑦)] is a nonsingular matrix whose inverse we

denote by [𝐾𝑗
𝑖
(𝑦)]. Then we put 𝜔 = 𝜔

𝑖

𝐾
𝑖
, and by using (6a),

(6b), and (7) we deduce that

𝜔
𝑖

(
𝜕

𝜕𝑦
𝑗
) = 𝐾

𝑖

𝑗
, (8a)

𝜔
𝑖

((𝑅
𝑎
⋆)

𝜕

𝜕𝑦
𝑗
) = 𝑎𝑑 (𝑎

−1

)𝐾
𝑖

𝑗
. (8b)

As it is well known,𝐻𝑀 is the kernel of the connection form
𝜔. In order to present two other local characterizations of
𝐻𝑀, we consider a local basis {𝐸

𝛼
} in Γ(𝐻𝑀) and put

𝜕

𝜕𝑥
𝛼
= 𝐿
𝛾

𝛼
(𝑥, 𝑦) 𝐸

𝛾
+ 𝐿
𝑖

𝛼
(𝑥, 𝑦)

𝜕

𝜕𝑦
𝑖
. (9)

As the transition matrix from {𝐸
𝛼
, 𝛿/𝛿𝑦

𝑖

} to the natural
frame field {𝜕/𝜕𝑥𝛾, 𝜕/𝜕𝑦𝑖} has the form

[

[

𝐿
𝛾

𝛼
0

𝐿
𝑖

𝛼
𝛿
𝑖

𝑗

]

]

, (10)

we infer that the 4 × 4matrix [𝐿𝛾
𝛼
] is nonsingular. Hence the

vector fields

𝛿

𝛿𝑥
𝛼
= 𝐿
𝛾

𝛼
𝐸
𝛾
, 𝛼 ∈ {0, 1, 2, 3} , (11)

form a local basis in Γ(𝐻𝑀), too. Moreover, from (9) we
obtain

𝛿

𝛿𝑥
𝛼
=

𝜕

𝜕𝑥
𝛼
− 𝐿
𝑖

𝛼

𝜕

𝜕𝑦
𝑖
. (12)

Note that 𝛿/𝛿𝑥𝛼 is just the projection of 𝜕/𝜕𝑥𝛼 on𝐻𝑀. Also,
we define the local 1-forms

𝛿𝑦
𝑖

= 𝑑𝑦
𝑖

+ 𝐿
𝑖

𝛼
𝑑𝑥
𝛼

, (13)

and by using (8a) and (13), we deduce that

𝜔
𝑖

= 𝐾
𝑖

𝑗
𝛿𝑦
𝑗

. (14)

Hence,𝐻𝑀 is locally represented by the kernel of the 1-forms
{𝛿𝑦
𝑖

}. Now, by using the fundamental vector fields {𝐾⋆
𝑖
} we

put

𝛿

𝛿𝑥
𝛼
=

𝜕

𝜕𝑥
𝛼
− 𝐴
𝑖

𝛼
(𝑥, 𝑦)𝐾

⋆

𝑖
, (15)

and comparing (12) with (15) we obtain

𝐿
𝑖

𝛼
= 𝐴
𝑗

𝛼
𝐾
𝑖

𝑗
, (16)

via (7). The frame fields {𝛿/𝛿𝑥𝛼, 𝜕/𝜕𝑦𝑖} and {𝛿/𝛿𝑥𝛼, 𝐾⋆
𝑖
} are

called adapted frame fieldswith respect to the decomposition
(5). The commutation formulas for these vector fields will

have a great role in the study. First, by direct calculations
using (12) we obtain

[
𝛿

𝛿𝑥
𝛼
,
𝜕

𝜕𝑦
𝑖
] = 𝐿

𝑘

𝑖 𝛼

𝜕

𝜕𝑦
𝑘

, (17a)

[
𝛿

𝛿𝑥
𝛽

,
𝛿

𝛿𝑥
𝛼
] = 𝐹

𝑘

𝛼𝛽

𝜕

𝜕𝑦
𝑘

, (17b)

[
𝜕

𝜕𝑥
𝛼
, 𝐾
⋆

𝑖
] = 0, (17c)

where we put

𝐿
𝑘

𝑖 𝛼
=
𝜕𝐿
𝑘

𝛼

𝜕𝑦
𝑖
, (18a)

𝐹
𝑘

𝛼𝛽
=

𝛿𝐿
𝑘

𝛽

𝛿𝑥
𝛼
−
𝛿𝐿
𝑘

𝛼

𝛿𝑥
𝛽

. (18b)

Next, we show that

[
𝛿

𝛿𝑥
𝛼
, 𝐾
⋆

𝑖
] = 0. (19)

First, according to a general result stated in page 78 in the
book of Kobayashi and Nomizu [16], we deduce that the
vector fields in the left hand side of (19) must be horizontal.
On the other hand, by using (7) and (17a), we obtain

[
𝛿

𝛿𝑥
𝛼
, 𝐾
⋆

𝑖
] = (

𝛿𝐾
ℎ

𝑖

𝛿𝑥
𝛼
+ 𝐾
𝑗

𝑖
𝐿
ℎ

𝑗 𝛼
)

𝜕

𝜕𝑦
ℎ

. (20)

That is, these vectors fields are vertical, too. This proves (19)
via (5). As 𝐿(𝐺) is isomorphic to the Lie algebra of vertical
vector fields, we have

[𝐾
⋆

𝑖
, 𝐾
⋆

𝑗
] = 𝐶

𝑘

𝑖 𝑗
𝐾
⋆

𝑘
, (21)

where 𝐶 𝑘
𝑖 𝑗

are the structure constants of the Lie group 𝐺.
Then, by using (17a)–(17c), (15), (19), (21), and (7), we deduce
that

𝐹
𝑘

𝛼𝛽
= 𝐹
⋆ℎ

𝛼𝛽
𝐾
𝑘

ℎ
, (22)

where we put

𝐹
⋆ℎ

𝛼𝛽
=

𝜕𝐴
ℎ

𝛽

𝜕𝑥
𝛼
−
𝜕𝐴
ℎ

𝛼

𝜕𝑥
𝛽

+ 𝐴
𝑖

𝛼
𝐴
𝑗

𝛽
𝐶
ℎ

𝑖 𝑗
. (23)

Now, taking into account (17c), from (19), we obtain

𝐾
⋆

𝑖
(𝐴
ℎ

𝛼
) = −𝐶

ℎ

𝑖 𝑗
𝐴
𝑗

𝛼
, (24)

which together with (23) implies

𝐾
⋆

𝑖
(𝐹
⋆ℎ

𝛼𝛽
) = −𝐶

ℎ

𝑖 𝑗
𝐹
⋆𝑗

𝛼𝛽
. (25)

By using (24) and (25) we are entitled to call 𝐹⋆ℎ
𝛼𝛽

the Yang-
Mills fields corresponding to gauge potentials 𝐴ℎ

𝛼
. Also by

(18b) we may call 𝐹𝑘
𝛼𝛽

the electromagnetic tensor field corre-
sponding to the electromagnetic potentials 𝐿𝑘

𝛼
. It is important

to note that these objects come from different physical
theories, and they are related by (22) and (16).
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Remark 1. By a different method, the above Yang-Mills fields
have been first introduced by Cho [4]. On the other hand, we
should stress that we find it more convenient to use 𝐹𝑘

𝛼𝛽
and

𝐿
𝑘

𝛼
instead of 𝐹⋆ℎ

𝛼𝛽
and 𝐴ℎ

𝛼
.

Next, we express the pseudo-Riemannian metric 𝑔 on𝑀
with respect to the adapted frame field {𝛿/𝛿𝑥𝛼, 𝜕/𝜕𝑦𝑖}; that
is, we have

𝑔
𝛼𝛽
(𝑥, 𝑦) = 𝑔(

𝛿

𝛿𝑥
𝛼
,
𝛿

𝛿𝑥
𝛽

) = 𝑔(
𝛿

𝛿𝑥
𝛼
,
𝛿

𝛿𝑥
𝛽

) , (26a)

𝑔
𝑖𝑗
(𝑥, 𝑦) = 𝑔

⋆

(
𝜕

𝜕𝑦
𝑖
,
𝜕

𝜕𝑦
𝑗
) = 𝑔(

𝜕

𝜕𝑦
𝑖
,
𝜕

𝜕𝑦
𝑗
) , (26b)

𝑔(
𝛿

𝛿𝑥
𝛼
,
𝜕

𝜕𝑦
𝑖
) = 0. (26c)

Thus the local line element representing 𝑔 has the form

𝑑𝑠
2

= 𝑔
𝛼𝛽
(𝑥, 𝑦) 𝑑𝑥

𝛼

𝑑𝑥
𝛽

+ 𝑔
𝑖𝑗
(𝑥, 𝑦) 𝛿𝑦

𝑖

𝛿𝑦
𝑗

= 𝑔
𝛼𝛽
(𝑥, 𝑦) 𝑑𝑥

𝛼

𝑑𝑥
𝛽

+ 𝑔
𝑖𝑗
(𝑥, 𝑦) (𝑑𝑦

𝑖

+ 𝐿
𝑖

𝛼
𝑑𝑥
𝛼

)

× (𝑑𝑦
𝑗

+ 𝐿
𝑗

𝛽
𝑑𝑥
𝛽

)

= 𝑔
𝛼𝛽
(𝑥, 𝑦) 𝑑𝑥

𝛼

𝑑𝑥
𝛽

+ 𝑔
𝑖𝑗
(𝑥, 𝑦) (𝑑𝑦

𝑖

+ 𝐴
ℎ

𝛼
𝐾
𝑖

ℎ
𝑑𝑥
𝛼

)

× (𝑑𝑦
𝑗

+ 𝐴
ℎ

𝛽
𝐾
𝑗

ℎ
𝑑𝑥
𝛽

) .

(27)

Hence 𝑔 is locally given by the matrices

[
𝑔
𝛼𝛽

0

0 𝑔
𝑖𝑗

] , (28)

and

[
𝑔
𝛼𝛽
+ 𝑔
𝑖𝑗
𝐿
𝑖

𝛼
𝐿
𝑗

𝛽
𝑔
𝑖𝑗
𝐿
𝑖

𝛼

𝑔
𝑖𝑗
𝐿
𝑗

𝛽
𝑔
𝑖𝑗

]

= [
𝑔
𝛼𝛽
+ 𝑔
𝑖𝑗
𝐾
𝑖

ℎ
𝐾
𝑗

𝑘
𝐴
ℎ

𝛼
𝐴
𝑘

𝛽
𝑔
𝑖𝑗
𝐾
𝑖

ℎ
𝐴
ℎ

𝛼

𝑔
𝑖𝑗
𝐾
𝑗

𝑘
𝐴
𝑘

𝛽
𝑔
𝑖𝑗

] ,

(29)

with respect to the frame fields {𝛿/𝛿𝑥
𝛼

, 𝜕/𝜕𝑦
𝑖

} and
{𝜕/𝜕𝑥

𝛼

, 𝜕/𝜕𝑦
𝑖

}, respectively. Formally, (29) is identical
to(13.31) from [17], but in the latter the local components are
supposed to be functions of (𝑥𝛼) alone. So 𝑔 given by (27)
is the most general Kaluza-Klein metric considered in any
Kaluza-Klein theory. The principal bundle𝑀, together with
the metric 𝑔 and the Ehresmann connection defined by the
horizontal distribution𝐻𝑀, is denoted by (𝑀, 𝑔,𝐻𝑀), and
it is called a general gauge Kaluza-Klein space.

Finally, we consider two coordinate systems (𝑥𝛼, 𝑦𝑗) and
(𝑥
𝛾

, 𝑦
𝑖

) and by using (12), (13), (2a), (2b), (3a), and (3b), we
obtain

𝛿

𝛿𝑥
𝛼
=
𝜕𝑥
𝛾

𝜕𝑥
𝛼

𝛿

𝛿𝑥
𝛾
, (30a)

𝛿𝑦
𝑖

=
𝜕𝑦
𝑖

𝜕𝑦
𝑗
𝛿𝑦
𝑗

, (30b)

𝐿
𝑗

𝛼

𝜕𝑦
𝑖

𝜕𝑦
𝑗
= 𝐿̃
𝑖

𝛾

𝜕𝑥
𝛾

𝜕𝑥
𝛼
+
𝜕𝑦
𝑖

𝜕𝑥
𝛼
. (30c)

Now, we put

𝐾
⋆

𝑖
= 𝐾̃
𝑗

𝑖

𝜕

𝜕𝑦
𝑗
, (31)

and by using (16) into (30c) we deduce that

(𝐴
𝑖

𝛼
−
𝜕𝑥
𝛾

𝜕𝑥
𝛼
𝐴
𝑖

𝛾
) 𝐾̃
𝑗

𝑖
=
𝜕𝑦
𝑗

𝜕𝑥
𝛼
. (32)

The transformations (30c) and (32) have a gauge character.
Apart from themwe will meet transformations with tensorial
character. Here we observe that by using (26a), (26b), (30a),
and (2b) we obtain the first such transformations

𝑔
𝛼𝛽
= 𝑔
𝜇]
𝜕𝑥
𝜇

𝜕𝑥
𝛼

𝜕𝑥
]

𝜕𝑥
𝛽

, (33a)

𝑔
𝑖𝑗
= 𝑔
ℎ𝑘

𝜕𝑦
ℎ

𝜕𝑦
𝑖

𝜕𝑦
𝑘

𝜕𝑦
𝑗
. (33b)

3. Adapted Tensor Fields on (𝑀, 𝑔, 𝐻𝑀)

In the present section we develop a tensor calculus on
𝑀 that is adapted to the decomposition (5). For example,
we construct some adapted tensor fields which have an
important role in the general Kaluza-Klein theory which we
develop in a series of papers. In particular, we show that the
electromagnetic tensor field is indeed an adapted tensor field.

First, we consider the dual vector bundles𝐻𝑀⋆ and𝑉𝑀⋆

of𝐻𝑀 and𝑉𝑀, respectively.Then, anF(𝑀)−(𝑝+𝑞)-linear
mapping

𝑇 : Γ(𝐻𝑀
⋆

)
𝑝

× Γ(𝐻𝑀)
𝑞

󳨀→ F (𝑀) (34)

is called a horizontal tensor field of type (𝑝, 𝑞). Similarly, an
F(𝑀) − (𝑟 + 𝑠)-linear mapping

𝑇 : Γ(𝑉𝑀
⋆

)
𝑟

× Γ(𝑉𝑀)
𝑠

󳨀→ F (𝑀) (35)

is called a vertical tensor field of type (𝑟, 𝑠). For example, 𝑔
(resp., 𝑔⋆) is a horizontal (resp., vertical) tensor field of type
(0, 2). Also, 𝑑𝑥𝛼 (resp., 𝛿𝑦𝑖) are horizontal (resp., vertical)
covector fields, while 𝛿/𝛿𝑥

𝛼 (resp., 𝜕/𝜕𝑦𝑖) are horizontal
(resp., vertical) vector fields, locally defined on 𝑀. More
generally, anF(𝑀) − (𝑝 + 𝑞 + 𝑟 + 𝑠)-linear mapping

𝑇 : Γ(𝐻𝑀
⋆

)
𝑝

× Γ(𝐻𝑀)
𝑞

× Γ(𝑉𝑀
⋆

)
𝑟

× Γ(𝑉𝑀)
𝑠

󳨀→ F (𝑀)

(36)
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is an adapted tensor field of type (𝑝, 𝑞; 𝑟, 𝑠) on𝑀. Locally, 𝑇 is
given by the functions

𝑇
𝛼
1
⋅⋅⋅𝛼
𝑝
𝑖
1
⋅⋅⋅𝑖
𝑟

𝛽
1
⋅⋅⋅𝛽
𝑞
𝑗
1
⋅⋅⋅𝑗
𝑠

(𝑥, 𝑦)

= 𝑇(𝑑𝑥
𝛼
1

, . . . , 𝑑𝑥
𝛼
𝑝

,
𝛿

𝛿𝑥
𝛽
1

, . . . ,
𝛿

𝛿𝑥
𝛽
𝑞

,

𝛿𝑦
𝑖
1

, . . . , 𝛿𝑦
𝑖
𝑟

,
𝜕

𝜕𝑦
𝑗
1

, . . . ,
𝜕

𝜕𝑦
𝑗
𝑠

) .

(37)

Thenbyusing (2b), (3a), (30a), and (30b)we deduce that there
exists an adapted tensor field of type (𝑝, 𝑞; 𝑟, 𝑠) on𝑀, if and
only if, on the domain of each coordinate system, there exist
4
𝑝+𝑞

⋅ 𝑛
𝑟+𝑠 functions 𝑇𝛼1 ⋅⋅⋅𝛼𝑝𝑖1⋅⋅⋅𝑖𝑟

𝛽
1
⋅⋅⋅𝛽
𝑞
𝑗
1
⋅⋅⋅𝑗
𝑠

satisfying

𝑇
𝛼
1
⋅⋅⋅𝛼
𝑝
𝑖
1
⋅⋅⋅𝑖
𝑟

𝛽
1
⋅⋅⋅𝛽
𝑞
𝑗
1
⋅⋅⋅𝑗
𝑠

𝜕𝑥
𝛾
1

𝜕𝑥
𝛼
1

⋅ ⋅ ⋅
𝜕𝑥
𝛾
𝑝

𝜕𝑥
𝛼
𝑝

𝜕𝑦
𝑘
1

𝜕𝑦
𝑖
1

⋅ ⋅ ⋅
𝜕𝑦
𝑘
𝑟

𝜕𝑦
𝑖
𝑟

= 𝑇̃
𝛾
1
⋅⋅⋅𝛾
𝑝
𝑘
1
⋅⋅⋅𝑘
𝑟

𝜇
1
⋅⋅⋅𝜇
𝑞
ℎ
1
⋅⋅⋅ℎ
𝑠

𝜕𝑥
𝜇
1

𝜕𝑥
𝛽
1

⋅ ⋅ ⋅
𝜕𝑥
𝜇
𝑞

𝜕𝑥
𝛽
𝑞

𝜕𝑦
ℎ
1

𝜕𝑦
𝑗
1

⋅ ⋅ ⋅
𝜕𝑦
ℎ
𝑠

𝜕𝑦
𝑗
𝑠

,

(38)

with respect to the transformations (1a) and (1b). Also, we
note that anyF(𝑀) − (𝑞 + 𝑟 + 𝑠)-linear mapping

𝑇 : Γ(𝐻𝑀)
𝑞

× Γ(𝑉𝑀
⋆

)
𝑟

× Γ(𝑉𝑀)
𝑠

󳨀→ Γ (𝐻𝑀) (39)

defines an adapted tensor field of type (1, 𝑞; 𝑟, 𝑠). Similarly,
anyF(𝑀) − (𝑝 + 𝑞 + 𝑠)-linear mapping

𝑇 : Γ(𝐻𝑀
⋆

)
𝑝

× Γ(𝐻𝑀)
𝑞

× Γ(𝑉𝑀)
𝑠

󳨀→ Γ (𝑉𝑀) (40)

defines an adapted tensor field of type (𝑝, 𝑞; 1, 𝑠). More about
adapted tensor fields can be found in the book of Bejancu and
Farran [18].

Next, we will construct some adapted tensor fields which
are deeply involved in our study. First, we denote by ℎ

and V the projection morphisms of 𝑇𝑀 on 𝐻𝑀 and 𝑉𝑀,
respectively. Then, we consider the mapping

𝐹 : Γ(𝐻𝑀)
2

󳨀→ Γ (𝑉𝑀) ,

𝐹 (ℎ𝑋, ℎ𝑌) = −V [ℎ𝑋, ℎ𝑌] , ∀𝑋, 𝑌 ∈ Γ (𝑇𝑀) .

(41)

It is easy to check that 𝐹 isF(𝑀)-bilinear mapping.Thus 𝐹 is
an adapted tensor field of type (0, 2; 1, 0). By using (17b) and
(41) we obtain

𝐹(
𝛿

𝛿𝑥
𝛼
,
𝛿

𝛿𝑥
𝛽

) = 𝐹
𝑘

𝛼𝛽

𝜕

𝜕𝑦
𝑘

, (42)

where 𝐹𝑘
𝛼𝛽

are given by (18b). Hence the electromagnetic
tensor field is indeed an adapted tensor field. Next, we define
the mappings:

𝐻 : Γ(𝐻𝑀)
2

× Γ (𝑉𝑀) 󳨀→ F (𝑀) ,

𝑉 : Γ(𝑉𝑀)
2

× Γ (𝐻𝑀) 󳨀→ F (𝑀) ,

(43)

given by

𝐻(ℎ𝑋, ℎ𝑌, V𝑍) =
1

2
{V𝑍 (𝑔 (ℎ𝑋, ℎ𝑌)) − 𝑔 (ℎ [V𝑍, ℎ𝑋] , ℎ𝑌)

− 𝑔 (ℎ [V𝑍, ℎ𝑌] , ℎ𝑋)} ,
(44)

𝑉 (V𝑋, V𝑌, ℎ𝑍) =
1

2
{ℎ𝑍 (𝑔

⋆

(V𝑋, V𝑌)) − 𝑔⋆ (V [ℎ𝑍, V𝑋] , V𝑌)

− 𝑔
⋆

(V [ℎ𝑍, V𝑌] , V𝑋)} ,
(45)

for all 𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). It is easy to verify that both 𝐻

and 𝑉 are F(𝑀)-3-linear mappings and therefore define
the adapted tensor fields of types (0, 2; 0, 1) and (0, 1; 0, 2),
respectively. By using 𝐻 and 𝑉 and the metrics on 𝐻𝑀 and
𝑉𝑀, we define two adapted tensor fields denoted by the same
symbols and given by

𝐻 : Γ (𝐻𝑀) × Γ (𝑉𝑀) 󳨀→ Γ (𝐻𝑀) ,

𝑉 : Γ (𝑉𝑀) × Γ (𝐻𝑀) 󳨀→ Γ (𝑉𝑀) ,

(46)

𝑔 (ℎ𝑋,𝐻 (ℎ𝑌, V𝑍)) = 𝐻 (ℎ𝑋, ℎ𝑌, V𝑍) , (47a)

𝑔
⋆

(V𝑋,𝑉 (V𝑌, ℎ𝑍)) = 𝑉 (V𝑋, V𝑌, ℎ𝑍) , (47b)

for all𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀).
We close this section with a local presentation of the

adapted tensor fields𝐻 and𝑉. First, from (33a) and (33b) we
deduce that entries 𝑔𝛼𝛽 (resp., 𝑔𝑖𝑗) of the inverse of the matrix
[𝑔
𝛼𝛽
] (resp., [𝑔

𝑖𝑗
]) define a horizontal (resp., vertical) tensor

field of type (2, 0). Then, we put

𝐻(
𝛿

𝛿𝑥
𝛽

,
𝛿

𝛿𝑥
𝛼
,
𝜕

𝜕𝑦
𝑖
) = 𝐻

𝑖𝛼𝛽
, (48a)

𝐻(
𝛿

𝛿𝑥
𝛼
,
𝜕

𝜕𝑦
𝑖
) = 𝐻

𝛾

𝑖𝛼

𝛿

𝛿𝑥
𝛾
, (48b)

𝑉(
𝜕

𝜕𝑦
𝑗
,
𝜕

𝜕𝑦
𝑖
,
𝛿

𝛿𝑥
𝛼
) = 𝑉

𝛼𝑖𝑗
, (48c)

𝑉(
𝜕

𝜕𝑦
𝑖
,
𝛿

𝛿𝑥
𝛼
) = 𝑉

𝑘

𝛼𝑖

𝜕

𝜕𝑦
𝑘

, (48d)

and by using (44), (45), (47a), (47b), (48a)–(48d), (26a),
(26b), and (17a)–(17c), we obtain

𝐻
𝑖𝛼𝛽

=
1

2

𝜕𝑔
𝛼𝛽

𝜕𝑦
𝑖
, (49a)

𝐻
𝛾

𝑖𝛼
= 𝑔
𝛾𝛽

𝐻
𝑖𝛼𝛽
, (49b)

𝑉
𝛼𝑖𝑗
=
1

2
{

𝛿𝑔
𝑖𝑗

𝛿𝑥
𝛼
− 𝑔
𝑘𝑗
𝐿
𝑘

𝑖 𝛼
, −𝑔
𝑖𝑘
𝐿
𝑘

𝑗 𝛼
} , (50a)

𝑉
𝑘

𝛼𝑖
= 𝑔
𝑘𝑗

𝑉
𝛼𝑖𝑗
. (50b)
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Remark 2. If in particular 𝐺 = 𝑈(1), then𝐻
1𝛼𝛽

represent the
local components of the extrinsic curvature used in brane-
world theory (cf. [9]) and in space-time-matter theory (cf.
[12, 19]). For this reason we call𝐻 given by (44) the extrinsic
curvature of the horizontal distribution.

Remark 3. In all the papers published so far on Kaluza-Klein
theories with nonabelian gauge group, the local components
𝑔
𝛼𝛽

of the Lorentz metric 𝑔 are supposed to be independent
of 𝑦𝑖 (cf. [2, 4–7]). From (49a) and (49b) we see that this
particular case occurs if and only if the extrinsic curvature
of𝐻𝑀 vanishes identically on𝑀.

4. A Remarkable Linear
Connection on (𝑀, 𝑔, 𝐻𝑀)

In a previous paper (cf. [12]), we constructed the Riemannian
horizontal connection on the horizontal distribution of a
5D general Kaluza-Klein theory and obtain both the 4D
equations of motion and 4D Einstein equations. As in that
case the vertical bundle was of rank 1, it was not necessary
to consider a linear connection on it. On the contrary, the
geometric configuration of (𝑀, 𝑔,𝐻𝑀) from the present
paper requires such connections on both 𝐻𝑀 and 𝑉𝑀.
The construction of these connections is the purpose of this
section.

First, we denote by ∇ the Levi-Civita connection on
(𝑀, 𝑔,𝐻𝑀) given by (cf. [20, p. 61])

2𝑔 (∇
𝑋
𝑌,𝑍) = 𝑋 (𝑔 (𝑌, 𝑍)) + 𝑌 (𝑔 (𝑍,𝑋)) − 𝑍 (𝑔 (𝑋, 𝑌))

+ 𝑔 ([𝑋, 𝑌] , 𝑍) − 𝑔 ([𝑌, 𝑍] , 𝑋)

+ 𝑔 ([𝑍,𝑋] , 𝑌) ,

(51)

for all 𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). Recall that ∇ is the unique linear
connection on𝑀 which is metric and torsion free.

Next, we say that ∇ is an adapted linear connection on
(𝑀, 𝑔,𝐻𝑀) if both distributions 𝐻𝑀 and 𝑉𝑀 are parallel
with respect to ∇; that is, we have

∇
𝑋
ℎ𝑌 ∈ Γ (𝐻𝑀) , (52a)

∇
𝑋
V𝑌 ∈ Γ (𝑉𝑀) , (52b)

for all𝑋,𝑌 ∈ Γ(𝑇𝑀).Then there exist two linear connections
ℎ

∇ and
V
∇ on𝐻𝑀 and 𝑉𝑀, respectively, given by

ℎ

∇
𝑋
ℎ𝑌 = ∇

𝑋
ℎ𝑌, (53a)

V
∇
𝑋
V𝑌 = ∇

𝑋
V𝑌. (53b)

Conversely, given two linear connections
ℎ

∇ and
V
∇ on𝐻𝑀 and

𝑉𝑀, respectively, there exists an adapted linear connection∇
on𝑀 given by

∇
𝑋
𝑌 =
ℎ

∇
𝑋
ℎ𝑌 +

V
∇
𝑋
V𝑌. (54)

Also, it is easy to show that an adapted connection∇ = (
ℎ

∇,
V
∇)

is metric; that is,

(∇
𝑋
𝑔) (𝑌, 𝑍) = 0, ∀𝑋, 𝑌, 𝑍 ∈ Γ (𝑇𝑀) , (55)

if and only if both
ℎ

∇ and
V
∇ are metric connections; that is,

(

ℎ

∇
𝑋
𝑔) (ℎ𝑌, ℎ𝑍) = 0, (56a)

(

V
∇
𝑋
𝑔
⋆

) (V𝑌, V𝑍) = 0, (56b)

for all𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). The torsion tensor field of ∇ is given
by

𝑇 (𝑋, 𝑌) = ∇
𝑋
𝑌 − ∇

𝑌
𝑋 − [𝑋, 𝑌] . (57)

Now, we can prove the following important result.

Theorem 4. Let (𝑀, 𝑔,𝐻𝑀) be a general gauge Kaluza-
Klein space. Then there exists a unique metric adapted linear

connection ∇ = (
ℎ

∇,

V
∇) whose torsion tensor field 𝑇 is given by

𝑇 (ℎ𝑋, ℎ𝑌) = 𝐹 (ℎ𝑋, ℎ𝑌) , (58a)

𝑇 (V𝑋, V𝑌) = 0, (58b)

𝑇 (ℎ𝑋, V𝑌) = 𝑉 (V𝑌, ℎ𝑋) − 𝐻 (ℎ𝑋, V𝑌) , (58c)

for all 𝑋,𝑌 ∈ Γ(𝑇𝑀).

Proof. First, define
ℎ

∇ and
V
∇ as follows:

ℎ

∇
ℎ𝑋
ℎ𝑌 = ℎ∇

ℎ𝑋
ℎ𝑌, (59a)

ℎ

∇V𝑋ℎ𝑌 = ℎ [V𝑋, ℎ𝑌] + 𝐻 (ℎ𝑌, V𝑋) , (59b)

V
∇V𝑋V𝑌 = V∇V𝑋V𝑌, (59c)

V
∇
ℎ𝑋
V𝑌 = V [ℎ𝑋, V𝑌] + 𝑉 (V𝑌, ℎ𝑋) , (59d)

for all 𝑋,𝑌 ∈ Γ(𝑇𝑀). Then, it is easy to check that

∇ = (
ℎ

∇,
V
∇) given by (59a)–(59d) is a metric adapted linear

connection whose torsion tensor field satisfies (58a)–(58c).

Next, suppose that ∇󸀠 = (
ℎ

∇
󸀠

,

V

∇
󸀠

) is an another metric adapted
linear connection satisfying (58a)–(58c).Then, from (58c) we
deduce that

V
∇
ℎ𝑋
V𝑌 − V [ℎ𝑋, V𝑌] − 𝑉 (V𝑌, ℎ𝑋)

=
ℎ

∇V𝑌ℎ𝑋 − ℎ [V𝑌, ℎ𝑋] − 𝐻 (ℎ𝑋, V𝑌) ,

(60)
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which implies both (59b) and (59d) for ∇󸀠, via (5). Now, we
note that (58a) is equivalent to

ℎ

∇
ℎ𝑋
ℎ𝑌 −

ℎ

∇
ℎ𝑌
ℎ𝑋 − ℎ [ℎ𝑋, ℎ𝑌] = 0, ∀𝑋, 𝑌 ∈ Γ (𝑇𝑀) .

(61)

Then by using (56a) and (61) for
ℎ

∇
󸀠 and taking into account

(51), we obtain

0 = (

ℎ

∇
󸀠

ℎ𝑋
𝑔) (ℎ𝑌, ℎ𝑍) + (

ℎ

∇
󸀠

ℎ𝑌
𝑔) (ℎ𝑍, ℎ𝑋)

− (

ℎ

∇
󸀠

ℎ𝑍
𝑔) (ℎ𝑋, ℎ𝑌)

= ℎ𝑋 (𝑔 (ℎ𝑌, ℎ𝑍)) + ℎ𝑌 (𝑔 (ℎ𝑍, ℎ𝑋))

− ℎ𝑍 (𝑔 (ℎ𝑋, ℎ𝑌))

+ 𝑔 ([ℎ𝑋, ℎ𝑌] , ℎ𝑍) − 𝑔 ([ℎ𝑌, ℎ𝑍] , ℎ𝑋)

+ 𝑔 ([ℎ𝑍, ℎ𝑋] , ℎ𝑌)

− 2𝑔(

ℎ

∇
󸀠

ℎ𝑋
ℎ𝑌, ℎ𝑍)

= 2𝑔(ℎ∇
ℎ𝑋
ℎ𝑌 −

ℎ

∇
󸀠

ℎ𝑋
ℎ𝑌, ℎ𝑍) ,

(62)

which proves (59a) for
ℎ

∇
󸀠. In a similar way (59c) is proved for

V

∇
󸀠. Thus ∇󸀠 = ∇, and the proof is complete.

As
ℎ

∇ and
V
∇ satisfy (56a) and (56b), we call them

the Riemannian horizontal connection and the Riemannian
vertical connection, respectively. Also, ∇ = (

ℎ

∇,
V
∇) given by

(59a), (59b), (59c), and (59d) is called Riemannian adapted
connection on (𝑀, 𝑔,𝐻𝑀).

Remark 5. It is important to note that both ∇
ℎ𝑋
𝑇 and ∇V𝑋𝑇

are adapted tensor fields, where 𝑇 is an adapted tensor field
and ∇ is given by (59a)–(59d).

Remark 6. Throughout the paper, all local components for
linear connections and adapted tensor fields are defined with
respect to the adapted frame field {𝛿/𝛿𝑥

𝛼

, 𝜕/𝜕𝑦
𝑖

} and the
adapted coframe field {𝑑𝑥𝛼, 𝛿𝑦𝑖}.

Next, we consider ∇ = (
ℎ

∇,
V
∇) given by (59a)–(59d) and

put

ℎ

∇
𝛿/𝛿𝑥
𝛽

𝛿

𝛿𝑥
𝛼
= Γ
𝛾

𝛼 𝛽

𝛿

𝛿𝑥
𝛾
, (63a)

ℎ

∇
𝜕/𝜕𝑦
𝑖

𝛿

𝛿𝑥
𝛼
= Γ
𝛾

𝛼 𝑖

𝛿

𝛿𝑥
𝛾
, (63b)

V
∇
𝜕/𝜕𝑦
𝑗

𝜕

𝜕𝑦
𝑖
= Γ
𝑘

𝑖 𝑗

𝜕

𝜕𝑦
𝑘

, (63c)

V
∇
𝛿/𝛿𝑥
𝛼

𝜕

𝜕𝑦
𝑖
= Γ
𝑘

𝑖 𝛼

𝜕

𝜕𝑦
𝑘

. (63d)

Then, we take 𝑋 = 𝛿/𝛿𝑥
𝛽

, 𝑌 = 𝛿/𝛿𝑥
𝛼

, and 𝑍 = 𝛿/𝛿𝑥
𝜇 into

(51), and using (59a), (63a) (26a), and (17b), we obtain

Γ
𝛾

𝛼 𝛽
=
1

2
𝑔
𝛾𝜇

{

𝛿𝑔
𝜇𝛼

𝛿𝑥
𝛽

+

𝛿𝑔
𝜇𝛽

𝛿𝑥
𝛼
−

𝛿𝑔
𝛼𝛽

𝛿𝑥
𝜇
} . (64)

Similarly, we take 𝑋 = 𝜕/𝜕𝑦
𝑗

, 𝑌 = 𝜕/𝜕𝑦
𝑖

, and 𝑍 = 𝜕/𝜕𝑦
𝑘 in

(51), and by using (59c), (63c), and (26b), we infer that

Γ
𝑘

𝑖 𝑗
=
1

2
𝑔
𝑘ℎ

{
𝜕𝑔
ℎ𝑖

𝜕𝑦
𝑗
+

𝜕𝑔
ℎ𝑗

𝜕𝑦
𝑖
−

𝜕𝑔
𝑖𝑗

𝜕𝑦
ℎ

} . (65)

Also, by direct calculations using (59b), (59d), (63b), (63d),
(17a), (48b), and (48d), we deduce that

Γ
𝛾

𝛼 𝑖
= 𝐻

𝛾

𝑖𝛼
, (66a)

Γ
𝑘

𝑖 𝛼
= 𝐿
𝑘

𝑖 𝛼
+ 𝑉
𝑘

𝛼𝑖
. (66b)

According to the splitting in (5), the Riemannian adapted

connection ∇ = (
ℎ

∇,
V
∇) defines two types of covariant

derivatives. More precisely, if 𝑇𝛾𝑘
𝛽𝑗

are the local components
of an adapted tensor field of type (1, 1; 1, 1), then we have

𝑇
𝛾𝑘

𝛽𝑗|
𝛼

=

𝛿𝑇
𝛾𝑘

𝛽𝑗

𝛿𝑥
𝛼
+ 𝑇
𝜇𝑘

𝛽𝑗
Γ
𝛾

𝜇 𝛼
+ 𝑇
𝛾ℎ

𝛽𝑗
Γ
𝑘

ℎ 𝛼
− 𝑇
𝛾𝑘

𝜇𝑗
Γ
𝜇

𝛽 𝛼
− 𝑇
𝛾𝑘

𝛽ℎ
Γ
ℎ

𝑗 𝛼
,

(67a)

𝑇
𝛾𝑘

𝛽𝑗|
𝑖

=

𝜕𝑇
𝛾𝑘

𝛽𝑗

𝜕𝑦
𝑖
+ 𝑇
𝜇𝑘

𝛽𝑗
Γ
𝛾

𝜇 𝑖
+ 𝑇
𝛾ℎ

𝛽𝑗
Γ
𝑘

ℎ 𝑖
− 𝑇
𝛾ℎ

𝜇𝑗
Γ
𝜇

𝛽 𝑖
− 𝑇
𝛾𝑘

𝛽ℎ
Γ
ℎ

𝑗 𝑖
.

(67b)

In particular, from (56a) and (56b) we deduce that

𝑔
𝛼𝛽|
𝛾

= 0, (68a)

𝑔
𝛼𝛽

|
𝛾

= 0, (68b)

𝑔
𝑖𝑗|
𝛼

= 0, (68c)

𝑔
𝑖𝑗

|
𝛼

= 0, (68d)

𝑔
𝛼𝛽|
𝑖

= 0, (69a)

𝑔
𝛼𝛽

|
𝑖

= 0, (69b)

𝑔
𝑖𝑗|
𝑘

= 0, (69c)

𝑔
𝑖𝑗

|
𝑘

= 0. (69d)
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Throughout the paper we use 𝑔
𝛼𝛽
, 𝑔
𝛼𝛽

, 𝑔
𝑖𝑗
, and 𝑔𝑖𝑗 for raising

and lowering indices of adapted tensor fields as follows:

𝐻
𝑘

𝛼𝛽
= 𝑔
𝑘𝑖

𝐻
𝑖𝛼𝛽
, (70a)

𝑉
𝛾

𝑖𝑗
= 𝑔
𝛾𝛼

𝑉
𝛼𝑖𝑗
, (70b)

𝐹
𝛾

𝑖𝛼
= 𝑔
𝑖𝑘
𝑔
𝛾𝛽

𝐹
𝑘

𝛼𝛽
. (70c)

Now, we state the following.

Theorem7. TheLevi-Civita connection∇ on the general gauge
Kaluza-Klein space (𝑀, 𝑔,𝐻𝑀) is expressed as follows:

∇
𝛿/𝛿𝑥
𝛽

𝛿

𝛿𝑥
𝛼
= Γ
𝛾

𝛼 𝛽

𝛿

𝛿𝑥
𝛾
+ (

1

2
𝐹
𝑘

𝛼𝛽
− 𝐻
𝑘

𝛼𝛽
)

𝜕

𝜕𝑦
𝑘

, (71a)

∇
𝜕/𝜕𝑦
𝑖

𝛿

𝛿𝑥
𝛼
= (𝐻

𝛾

𝑖𝛼
+
1

2
𝐹
𝛾

𝑖𝛼
)

𝛿

𝛿𝑥
𝛾
+ 𝑉
𝑘

𝛼𝑖

𝜕

𝜕𝑦
𝑘

, (71b)

∇
𝛿/𝛿𝑥
𝛼

𝜕

𝜕𝑦
𝑖
= (𝐻

𝛾

𝑖𝛼
+
1

2
𝐹
𝛾

𝑖𝛼
)

𝛿

𝛿𝑥
𝛾
+ Γ
𝑘

𝑖 𝛼

𝜕

𝜕𝑦
𝑘

, (71c)

∇
𝜕/𝜕𝑦
𝑗

𝜕

𝜕𝑦
𝑖
= −𝑉
𝛾

𝑖𝑗

𝛿

𝛿𝑥
𝛾
+ Γ
𝑘

𝑖 𝑗

𝜕

𝜕𝑦
𝑘

. (71d)

Proof. According to decomposition (5) we put

∇
𝛿/𝛿𝑥
𝛽

𝛿

𝛿𝑥
𝛼
= Γ
𝛾

𝛼 𝛽

𝛿

𝛿𝑥
𝛾
+ Γ
𝑘

𝛼 𝛽

𝜕

𝜕𝑦
𝑘

. (72)

Then by using (59a) and (63a), we deduce that

Γ
𝛾

𝛼 𝛽
= Γ
𝛾

𝛼 𝛽
. (73)

Next, take 𝑋 = 𝛿/𝛿𝑥
𝛽

, 𝑌 = 𝛿/𝛿𝑥
𝛼, and 𝑍 = 𝜕/𝜕𝑦

𝑖 in (51) and
by using (26a), (26c), (17a), (17b), (48a), and (70a), we obtain

Γ
𝑘

𝛼 𝛽
=
1

2
𝐹
𝑘

𝛼𝛽
− 𝐻
𝑘

𝛼𝛽
. (74)

Thus (71a) is obtained from (72). Similarly, we put

∇
𝜕/𝜕𝑦
𝑖

𝛿

𝛿𝑥
𝛼
= Γ
𝛾

𝛼 𝑖

𝛿

𝛿𝑥
𝛾
+ Γ
𝑘

𝛼 𝑖

𝜕

𝜕𝑦
𝑘

. (75)

Then, take 𝑋 = 𝜕/𝜕𝑦
𝑖

, 𝑌 = 𝛿/𝛿𝑥
𝛼, and 𝑍 = 𝛿/𝛿𝑥

𝜇 in (51) and
by using (26a), (26c), (17a), (17b), (49a), and (70c), we infer
that

Γ
𝛾

𝛼 𝑖
= 𝐻

𝛾

𝑖𝛼
+
1

2
𝐹
𝛾

𝑖𝛼
. (76)

Also, take 𝑋 = 𝜕/𝜕𝑦
𝑖

, 𝑌 = 𝛿/𝛿𝑥
𝛼, and 𝑍 = 𝜕/𝜕𝑦

𝑖 in (51) and
by using (26b), (26c), (17a), and (50b), we deduce that

Γ
𝑘

𝛼 𝑖
= 𝑉
𝑘

𝛼𝑖
. (77)

Thus (71b) is obtained from (75). Now, taking into account
that ∇ is a torsion-free connection and using (17a), (71b), and
(66b) we obtain (71c). Finally, (71d) is deduced in a similar
way as (71a).

5. 4D Equations of Motion in (𝑀, 𝑔, 𝐻𝑀)

In this section we present the first achievement of the new
method which we develop on general (4 + 𝑛)D Kaluza-
Klein theories. We obtain, in a covariant form, the 4D
equations of motion induced by the equations of motion in
(𝑀, 𝑔,𝐻𝑀). This enables us to study the geodesics of the
ambient space according to their positions with respect to
horizontal distribution. It is noteworthy that the geodesics
which are tangent to𝐻𝑀 must be autoparallel curve for the

Riemannian horizontal connection
ℎ

∇. The motions on the
base manifold are defined as projections of the motions in
(𝑀, 𝑔,𝐻𝑀).

Let 𝐶 be a smooth curve in 𝑀 given by parametric
equations

𝑥
𝛼

= 𝑥
𝛼

(𝑡) , (78a)

𝑦
𝑖

= 𝑦
𝑖

(𝑡) , 𝑡 ∈ [𝑎, 𝑏] , 𝛼 ∈ {0, 1, 2, 3} , 𝑖 ∈ {4, . . . , 3 + 𝑛} .

(78b)

Then, we express the tangent vector field 𝑑/𝑑𝑡 to 𝐶 with
respect to the natural frame field as follows:

𝑑

𝑑𝑡
=
𝑑𝑥
𝛼

𝑑𝑡

𝜕

𝜕𝑥
𝛼
+
𝑑𝑦
𝑖

𝑑𝑡

𝜕

𝜕𝑦
𝑖
. (79)

Taking into account decomposition (5) and using (12) into
(79), we obtain

𝑑

𝑑𝑡
=
𝑑𝑥
𝛼

𝑑𝑡

𝛿

𝛿𝑥
𝛼
+
𝛿𝑦
𝑖

𝛿𝑡

𝜕

𝜕𝑦
𝑖
, (80)

where we put

𝛿𝑦
𝑖

𝛿𝑡
=
𝑑𝑦
𝑖

𝑑𝑡
+ 𝐿
𝑖

𝛼

𝑑𝑥
𝛼

𝑑𝑡
. (81)

Next, by direct calculations using (71a)–(71d) and (80), we
deduce that

∇
𝑑/𝑑𝑡

𝛿

𝛿𝑥
𝛼
= {Γ

𝛾

𝛼 𝛽

𝑑𝑥
𝛽

𝑑𝑡
+ (𝐻

𝛾

𝑖𝛼
+
1

2
𝐹
𝛾

𝑖𝛼
)
𝛿𝑦
𝑖

𝛿𝑡
}

𝛿

𝛿𝑥
𝛾

+ {(
1

2
𝐹
𝑘

𝛼𝛽
− 𝐻
𝑘

𝛼𝛽
)
𝑑𝑥
𝛽

𝑑𝑡
+ 𝑉
𝑘

𝛼𝑖

𝛿𝑦
𝑖

𝛿𝑡
}

𝜕

𝜕𝑦
𝑘

,

(82a)

∇
𝑑/𝑑𝑡

𝜕

𝜕𝑦
𝑖
= {(𝐻

𝛾

𝑖𝛼
+
1

2
𝐹
𝛾

𝑖𝛼
)
𝑑𝑥
𝛼

𝑑𝑡
− 𝑉
𝛾

𝑖𝑗

𝛿𝑦
𝑗

𝛿𝑡
}

𝛿

𝛿𝑥
𝛾

+ {Γ
𝑘

𝑖 𝛼

𝑑𝑥
𝛼

𝑑𝑡
+ Γ
𝑘

𝑖 𝑗

𝛿𝑦
𝑗

𝛿𝑡
}

𝜕

𝜕𝑦
𝑘

,

(82b)

where ∇ is the Levi-Civita connection on (𝑀, 𝑔,𝐻𝑀). Then,
by using (80), (82a), and (82b) and taking into account that
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𝐹
𝑘

𝛼𝛽
are skew symmetric with respect to Greek indices, we

obtain

∇
𝑑/𝑑𝑡

𝑑

𝑑𝑡

= ∇
𝑑/𝑑𝑡

{
𝑑𝑥
𝛼

𝑑𝑡

𝛿

𝛿𝑥
𝛼
+
𝛿𝑦
𝑖

𝛿𝑡

𝜕

𝜕𝑦
𝑖
}

=
𝑑
2

𝑥
𝛾

𝑑𝑡
2

𝛿

𝛿𝑥
𝛾
+
𝑑

𝑑𝑡
(
𝛿𝑦
𝑘

𝛿𝑡
)

𝜕

𝜕𝑦
𝑘

+
𝑑𝑥
𝛼

𝑑𝑡
∇
𝑑/𝑑𝑡

𝛿

𝛿𝑥
𝛼

+
𝛿𝑦
𝑖

𝛿𝑡
∇
𝑑/𝑑𝑡

𝜕

𝜕𝑦
𝑖

= {
𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

+ (2𝐻
𝛾

𝑖𝛼
+ 𝐹
𝛾

𝑖𝛼
)
𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝑑𝑡
−𝑉
𝛾

𝑖𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
}

𝛿

𝛿𝑥
𝛾

+ {
𝑑

𝑑𝑡
(
𝛿𝑦
𝑘

𝛿𝑡
) − 𝐻

𝑘

𝛼𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

+ (Γ
𝑘

𝑖 𝛼
+ 𝑉
𝑘

𝛼𝑖
)
𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
+ Γ
𝑘

𝑖 𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
}

𝜕

𝜕𝑦
𝑘

.

(83)

Now, we recall that 𝐶 is a geodesic of (𝑀, 𝑔,𝐻𝑀) if and only
if it is a curve of acceleration zero; that is, we have (cf. [20, p.
67])

∇
𝑑/𝑑𝑡

𝑑

𝑑𝑡
= 0. (84)

Thus, using (84), (83), and decomposition (5), we can state
the main result of this section.

Theorem 8. The equations of motion in a general gauge
Kaluza-Klein space (𝑀, 𝑔,𝐻𝑀) are expressed as follows:

𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

+ (2𝐻
𝛾

𝑖𝛼
+ 𝐹
𝛾

𝑖𝛼
)
𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝑑𝑡
− 𝑉
𝛾

𝑖𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
= 0,

(85a)

𝑑

𝑑𝑡
(
𝛿𝑦
𝑘

𝛿𝑡
)− 𝐻

𝑘

𝛼𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

+ (Γ
𝑘

𝑖 𝛼
+ 𝑉
𝑘

𝛼𝑖
)
𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
+ Γ
𝑘

𝑖 𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
= 0.

(85b)

We call (85a) the 4D equations of motion in (𝑀, 𝑔,𝐻𝑀).
We justify this name as follows. Suppose that the following
conditions are satisfied:

𝐻
𝛾

𝑖𝛼
= 0, (86a)

𝐹
𝛾

𝑖𝛼
= 0, (86b)

𝑉
𝛾

𝑖𝑗
= 0, (86c)

for all 𝛼, 𝛾 ∈ {0, 1, 2, 3} and 𝑖, 𝑗 ∈ {4, . . . , 3 + 𝑛}. Note that
all these conditions have geometrical (physical) meaning,
because they are invariant with respect to the transformations
(1a) and (1b). Taking into account (86a), (49a), (49b), and
(26a), we deduce that the Lorentz metric 𝑔 on 𝐻𝑀 can be
considered as a Lorentzmetric on the basemanifold𝑀.Thus,
in this particular case, Γ 𝛾

𝛼 𝛽
given by (64) are functions of (𝑥𝛼)

alone and they are given by

Γ
𝛾

𝛼 𝛽
(𝑥
𝜇

) =
1

2
𝑔
𝛾𝜇

{

𝜕𝑔
𝜇𝛼

𝜕𝑥
𝛽

+

𝜕𝑔
𝜇𝛽

𝜕𝑥
𝛼
−

𝜕𝑔
𝛼𝛽

𝜕𝑥
𝜇
} . (87)

Moreover, (85a) becomes

𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽
(𝑥
𝜇

)
𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0. (88)

That is, we obtain the equations of motion in the 4D space-
time (𝑀, 𝑔 = 𝑔

𝛼𝛽
(𝑥
𝜇

)). Hence, the projections of geodesics of
(𝑀, 𝑔,𝐻𝑀) on𝑀 coincide with the geodesics of the spacetime
(𝑀, 𝑔). This justifies the name 4D equations of motion for
(85a).

Next, we suppose that only (86a) and (86c) are satisfied.
Then (85a) becomes

𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽
(𝑥
𝜇

)
𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
+ 𝐹
𝛾

𝑖𝛼
(𝑥, 𝑦)

𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
= 0. (89)

In this case, we show that there exists an extra force which
does not contradict the 4D physics. First, we define the
4D velocity along a geodesic 𝐶 as the horizontal vector field
𝑈(𝑡) given by

𝑈 (𝑡) =
𝑑𝑥
𝛼

𝑑𝑡

𝛿

𝛿𝑥
𝛼
. (90)

Then, define the extra force induced by extra dimensions as
the horizontal vector field 𝐹 given by

𝐹 (𝑡) =

ℎ

∇
𝑑/𝑑𝑡

𝑈 (𝑡) , (91)

where 𝑑/𝑑𝑡 is given by (80) and
ℎ

∇ is the Riemannian
horizontal connection. Now, we put

𝐹 (𝑡) = 𝐹
𝛾

(𝑡)
𝛿

𝛿𝑥
𝛾
, (92)

and by using (92), (90), (80), and (91), we deduce that

𝐹
𝛾

(𝑡) =
𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽
(𝑥
𝜇

)
𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
. (93)

Thus, from (89) we obtain

𝐹
𝛾

(𝑡) = −𝐹
𝛾

𝑖𝛼
(𝑥, 𝑦)

𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
. (94)
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Then, by using (90), (92), and (94) and taking into account
that 𝐹

𝑖𝛼𝛽
are skew symmetric with respect to Greek indices,

we infer that

𝑔 (𝐹 (𝑡) , 𝑈 (𝑡)) = − 𝑔
𝛾𝛽
𝐹
𝛾

𝑖𝛼
(𝑥, 𝑦)

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡

= − 𝐹
𝑖𝛼𝛽
(𝑥, 𝑦)

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
= 0.

(95)

Thus the extra force is perpendicular to the 4Dvelocity, which
is awell-knownproperty of the extra force in classical Kaluza-
Klein theory. The above result on the extra force enables us
to call (89) the Lorentz force equations induced in the space
time (𝑀, 𝑔). Finally, in this particular case, we see that our
equations (89) coincide with (44) obtained by Kerner [2].

6. Motions in (𝑀, 𝑔, 𝐻𝑀) and Induced
Motions on the Base Manifold 𝑀

In this section we show that the set of geodesics in
(𝑀, 𝑔,𝐻𝑀) splits into three categories and state charac-
terizations of each category. Also, we define and study the
induced motions on the base manifold.

The study of geodesics of (𝑀, 𝑔,𝐻𝑀) is based on their
positions with respect to the distributions 𝐻𝑀 and 𝑉𝑀.
First, we see from (80) that, apart from the 4D velocity 𝑈(𝑡)
given by (90), there exists an 𝑛D velocity 𝑊(𝑡) given by

𝑊(𝑡) =
𝛿𝑦
𝑖

𝛿𝑡

𝜕

𝜕𝑦
𝑖
. (96)

The whole study is developed in a coordinate neighbourhood
U around a point 𝑃

0
∈ 𝑀. We say that a curve 𝐶 passing

through 𝑃
0
is horizontal (resp.,vertical) if its 𝑛D velocity

(resp., 4D velocity) vanishes on U. By (80) and (81) we see
that 𝐶 is a horizontal curve if and only if one of the following
conditions is satisfied:

𝑑

𝑑𝑡
=
𝑑𝑥
𝛼

𝑑𝑡

𝛿

𝛿𝑥
𝛼

(97a)

or

𝛿𝑦
𝑖

𝛿𝑡
=
𝑑𝑦
𝑖

𝑑𝑡
+ 𝐿
𝑖

𝛼

𝑑𝑥
𝛼

𝑑𝑡
= 0. (97b)

Similarly, 𝐶 is a vertical curve if and only if we have

𝑑

𝑑𝑡
=
𝛿𝑦
𝑖

𝛿𝑡

𝜕

𝜕𝑦
𝑖
, (98a)

or

𝑑𝑥
𝛼

𝑑𝑡
= 0. (98b)

Then, by using (85a), (85b), (97b), and (98b) we can state the
following.

Theorem 9. (i) A curve 𝐶 is a horizontal geodesic in
(𝑀, 𝑔,𝐻𝑀) if and only if (97b) and the following equations
are satisfied:

𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽
(𝑥, 𝑦)

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0,

∀𝛾 ∈ {0, 1, 2, 3} ,

(99a)

𝐻
𝑘

𝛼𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0. ∀𝑘 ∈ {4, . . . , 3 + 𝑛} . (99b)

(ii) A curve 𝐶 is a vertical geodesic in (𝑀, 𝑔,𝐻𝑀) if and
only if (98b) and the following equations are satisfied:

𝑑

𝑑𝑡
(
𝛿𝑦
𝑘

𝛿𝑡
) + Γ

𝑘

𝑖 𝑗
(𝑥, 𝑦)

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
= 0,

∀𝑘 ∈ {4, . . . , 3 + 𝑛} ,

(100a)

𝑉
𝛾

𝑖𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
= 0, ∀𝛾 ∈ {0, 1, 2, 3} . (100b)

It is noteworthy that the equations in (99a) and (99b)
are related to the geometry of the horizontal distribution. To
emphasize this, we give some definitions. First, we say that
a curve 𝐶 in 𝑀 is an autoparallel curve with respect to the

Riemannianhorizontal connection
ℎ

∇ if it is a horizontal curve
satisfying

ℎ

∇
𝑑/𝑑𝑡

𝑑

𝑑𝑡
= 0, (101)

where 𝑑/𝑑𝑡 is given by (97a). Then, by direct calculations
using (97a) and (63a), we deduce that (101) is equivalent to
(99a). Now, according to (71a) we may say that

𝐾
𝑘

𝛼𝛽
=
1

2
𝐹
𝑘

𝛼𝛽
− 𝐻
𝑘

𝛼𝛽
(102)

are local components of the second fundamental form of the
distribution𝐻𝑀. Note that𝐾𝑘

𝛼𝛽
are symmetric with respect

to Greek indices if and only if𝑀 is an integrable distribution.
If this is the case and 𝑛 = 1, then −𝐾1

𝛼𝛽
is just the extrinsic

curvature which has been intensively used in both the brane-
world theory (cf. [9]) and space-time-matter theory (cf. [19]).

Coming back to the general case, we say that a curve 𝐶
in𝑀 is an asymptotic line for 𝐻𝑀 if it is a horizontal curve
satisfying

𝐾
𝑘

𝛼𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0. ∀𝑘 ∈ {4, . . . , 3 + 𝑛} . (103)

Then taking into account the skew symmetry of 𝐹𝑘
𝛼𝛽
, we

deduce that (103) is equivalent to (99b). Summing up this
discussion and using assertion (i) in Theorem 9, we can state
the following characterization of horizontal geodesics.
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Corollary 10. A curve 𝐶 is a horizontal geodesic of (𝑀, 𝑔,

𝐻𝑀) if and only if the following conditions are satisfied:

(a) 𝐶 is an autoparallel curve with respect to the Rieman-

nian horizontal connection
ℎ

∇ on𝐻𝑀;
(b) 𝐶 is an asymptotic line for𝐻𝑀.

Remark 11. A similar characterization can be given for
vertical geodesics in (𝑀, 𝑔,𝐻𝑀). However, we omit it here
because as we will see in the last part of the paper the vertical
geodesics do not induce any motion on the base manifold.

Next, we consider the case of the integrable horizontal
distribution; that is, (86b) is satisfied. Then, any leaf of 𝐻𝑀
is locally given by the equations

𝑦
𝑖

= 𝑐
𝑖

, 𝑖 ∈ {4, . . . , 3 + 𝑛} , (104)

and it is denoted by𝑀(𝑐). In this case, any horizontal geodesic
must lie in only one leaf of𝐻𝑀, and byTheorem 9 it is given
by the following system of equations:

𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽
(𝑥, 𝑐)

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0, (105a)

𝐻
𝑘

𝛼𝛽
(𝑥, 𝑐)

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
= 0, (105b)

𝐿
𝑘

𝛼
(𝑥, 𝑐)

𝑑𝑥
𝛼

𝑑𝑡
= 0, (105c)

for all 𝛾 ∈ {0, 1, 2, 3} and 𝑘 ∈ {4, . . . , 3 + 𝑛}. By (105a)
we see that horizontal geodesics in (𝑀, 𝑔,𝐻𝑀) are in fact
some particular geodesics of the 4D Lorentz manifolds
(𝑀(𝑐), 𝑔

𝛼𝛽
(𝑥, 𝑐)).

Now, we say that 𝐶 is an oblique geodesic through a point
𝑃
0
if both the 4D velocity and 𝑛D velocity are nonzero at 𝑃

0
.

By continuity, we deduce that 𝐶 is an oblique geodesic if and
only if both 𝑈(𝑡) and𝑊(𝑡) are nonzero for any 𝑡 ∈ [𝑎, 𝑏]. It
is important to note that both velocities 𝑈(𝑡) and 𝑊(𝑡) are
involved in the equations of motion in (𝑀, 𝑔,𝐻𝑀). First, by
using (90), (96), and theRiemannian adapted connection∇ =

(
ℎ

∇,
V
∇) given by (63a), (63b), (63c), and (63d), we obtain

ℎ

∇
𝑑/𝑑𝑡

𝑈 (𝑡)

= {
𝑑
2

𝑥
𝛾

𝑑𝑡
2
+ Γ
𝛾

𝛼 𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝑑𝑡
+ 𝐻
𝛾

𝑖𝛼

𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
}

𝛿

𝛿𝑥
𝛾
,

(106a)

V
∇
𝑑/𝑑𝑡

𝑊(𝑡)

= {
𝑑

𝑑𝑡
(
𝛿𝑦
𝑘

𝛿𝑡
) + Γ

𝑘

𝑖 𝛼

𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
+ Γ
𝑘

𝑖 𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
}

𝜕

𝜕𝑦
𝑘

.

(106b)

Then, taking into account (106a) and (106b) in (85a) and (85b)
we can state the following.

Corollary 12. An oblique geodesic of (𝑀, 𝑔,𝐻𝑀) is given by
the system of equations

(
ℎ

∇
𝑑/𝑑𝑡

𝑈(𝑡))

𝛾

= 𝑉
𝛾

𝑖𝑗

𝛿𝑦
𝑖

𝛿𝑡

𝛿𝑦
𝑗

𝛿𝑡
− (𝐻

𝛾

𝑖𝛼
+ 𝐹
𝛾

𝑖𝛼
)
𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
,

(107a)

(
V
∇
𝑑/𝑑𝑡

𝑊(𝑡))

𝑘

= 𝐻
𝑘

𝛼𝛽

𝑑𝑥
𝛼

𝑑𝑡

𝑑𝑥
𝛽

𝛿
− 𝑉
𝑘

𝛼𝑖

𝑑𝑥
𝛼

𝑑𝑡

𝛿𝑦
𝑖

𝛿𝑡
. (107b)

Next, we say that 𝐶 passing through 𝑃
0

∈ 𝑈 is a
projectable curve around 𝑃

0
, if its 4D velocity is nonzero

around 𝑃
0
. Taking into account (90), we deduce that through

the projection point𝑄
0
of 𝑃
0
on𝑀 is passing a smooth curve

𝐶 in𝑀 given by the equations (see (78a) and (78b))

𝑥
𝛼

= 𝑥
𝛼

(𝑡) , 𝑡 ∈ [𝑎, 𝑏] , 𝛼 ∈ {0, 1, 2, 3} . (108)

In case 𝐶 is a geodesic in (𝑀, 𝑔,𝐻𝑀), we call 𝐶 the induced
motion on 𝑀 by the motion 𝐶 in 𝑀. Taking into account
the definitions of the above three categories of geodesics
in (𝑀, 𝑔,𝐻𝑀) we conclude that horizontal geodesics and
oblique geodesics are projectable curves, and therefore they
will induce some motions in the base manifold 𝑀. Hence,
the vertical geodesics have no influence on the 4D dynamics
in 𝑀. According to the two particular cases considered
at the end of Section 5 (see (88) and (89)) we conclude
that, in general, the induced motions on 𝑀 bring more
information than both the motions from general relativity
and the solutions of the Lorentz force equations. This is
due to the existence of extra dimensions and to the action
of the Lie group 𝐺 on 𝑀. Something interesting can be
observed from the particular case, where 𝐻𝑀 is integrable
(see (105a), (105b), and (105c)). Let 𝐶

1
and 𝐶

2
be two hori-

zontal geodesics in𝑀(𝑐
1
) and𝑀(𝑐

2
), with initial conditions

{(𝑥
𝛼

0
, 𝑐
𝑖

1
), (𝑢
𝛼

, V𝑖
1
)} and {(𝑥

𝛼

0
, 𝑐
𝑖

2
), (𝑢
𝛼

, V𝑖
2
)}, respectively. Then

the induced motions 𝐶
1
and 𝐶

2
on 𝑀 have the same initial

conditions (𝑥𝛼
0
, 𝑢
𝛼

), but they come from different systems of
equations, and therefore they do not necessarily coincide.
Thismight be used to detect extra dimensions experimentally.

7. Conclusions

In the present paper we obtain, for the first time in the
literature, the fully general equations of motion in a general
gauge Kaluza-Klein space (cf. (85a) and (85b)). We pay
attention to the 4D equations of motion, which of course
modify the well-known motions in 4D Einstein gravity.
Comparing (85a) with usual 4D equations of motion (88),
we note two important differences. First, the local coefficients
of the Riemannian horizontal connection (Γ

𝛾

𝛼 𝛽
, 𝐻
𝛾

𝑖𝛼
) do

depend on the extra dimensions. Then, there are some extra
terms given by the 4D tensor fields (𝐹 𝛾

𝑖𝛼
, 𝑉
𝛾

𝑖𝑗
), which, in

principle, can be used to test the theory. Such terms in
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astrophysics might appear for usual velocities of galaxies or
clusters of galaxies.

The method developed in the present paper opens new
perspectives in the study of some other important concepts
from higher dimensional physical theories. Here we have in
mind an approach of the dynamics in such spaces under
the effect of an extra force whose existence is guaranteed by
the extra dimensions. In a particular case (see Section 5) we
have seen that such force does not contradict the 4D physics.
It is an open question whether this result is still valid in
case of a general gauge Kaluza-Klein space. Also, we should
stress that the Riemannian adapted connection constructed
in Section 4 plays in this general theory the same role as the
Levi-Civita connection on the 4D spacetime in the classical
Kaluza-Klein theory. This connection together with theory
of adapted tensor fields (see Section 3) enables us to think of
some 4D Einstein equations induced by the (4+𝑛)D Einstein
equations on the ambient space.

All these problems deserve further studies which might
show how far the concepts induced by the extra dimensions
can be related to the real matter.
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