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Abstract

This paper presents a novel rate-dependent cohesive-zone model combining damage

and visco-elasticity and based on two fundamental assumptions. Firstly we postulate the

existence of an intrinsic (i.e. rate-independent) fracture energy. Secondly, within a ther-

modynamically consistent damage-mechanics framework we assume that the evolution

of the damage variable is related to the current free energy and to the intrinsic fracture

energy. The underlying idea is that the energy of the bonds at the micro-level is rate-

independent and that the rate-dependence of the overall dissipated energy during crack

propagation is a natural by-product of the visco-elastic dissipation lumped on the zero-

thickness interface. Quite good agreement within an expected range of loading rates

was obtained between numerical and experimental results for a DCB specimen with steel

arms bonded through a rubber interface. This is despite the fact that for this application

the model has been kept as simple as possible using a quadratic elastic energy and linear

visco-elasticity with one relaxation time only. Therefore, the presented results support

the fundamental principles behind the proposed approach and indicate that the model has

the potential to be refined into a highly accurate tool of analysis based on sound physical

arguments.
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1. INTRODUCTION

Cohesive zone models stem from the seminal work by Barenblatt [1] and have often

being coupled with interface elements for the purpose of modelling crack propagation

along interfaces. The first application in the context of finite-element methods is due to

Hilleborg [2]. The key idea of cohesive-zone modelling is to introduce a finite length

process zone at the crack tip, opposed to the classical Griffith’s approach where all the

dissipation occurs at a singularity at the crack tip. A cohesive-zone model is character-

ized by a "traction-discontinuity jump" relationship, playing a role analogue to a material

consitutive law for a continuum material. This relationship also provides, in the case of

infinitesimal elastic deformations, the link to Linear Elastic Fracture Mechanics as its in-

tegral equals the critical energy release rate. To allow the presence on the interface of a

discontinuity jump, in the sequel denoted as δ, the kinematics of the problem has to be en-

riched relaxing the regularity requirements on the displacement field u(x), not requiring

that u(x) ∈ C0. It is easy to see, at least heuristically, that the cohesive-zone approach

converges to Griffith’s crack model as the process zone length tends to zero (a claim that

has been rigorously proved by Giacomini [3]).

The rate dependence of the mechanical response leading to crack initiation and/or

growth can not be neglected for a wide class of engineering applications. The complexity

of the problem and the presence of numerous competing factors is evident from the fact

the fracture thoughness may not show a monotonic trend with respect to crack speed,

even when the latter is small enough not to consider intertial effects. Furthermore, even

when such trend is monotonic, fracture toughness can increase with crack speed for some

materials and decrease for others [4, 5, 6]. The importance of the problem has justified

numerous experimental investigations. For example, results for a DCB test on a rubber

modified epoxy show a decrease in fracture thoughness with increasing rate of applied

displacement [7], whilst for a DCB made of Al 6061-T6 adherends and polyethylene as

the adhesive the opposite trend has been reported [8].

Ancillary issues such as the possible sudden transition in some cases from stable to un-

stable propagation, also known as "stick - slip" behaviour, have been suggested to depend
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on the rate dependence of the fracture mechanism in the process zone [9, 10, 11].

In general, the overall rate dependence can arise as a consequence of the rate depen-

dence of the bulk material’s behaviour, of the interface response itself, or of both. A

number of cohesive zone models and modelling strategies have been presented covering

these different assumptions.

Among the first group we will refer to Geers et al. [12], who analyzed peel testing of

PET. They were able to capture the rate sensitivity of the test results by only modelling the

rate dependence of the bulk material. A similar approach is followed in a study by Nguyen

and Govindjee [13], who studied the propagation of a crack in an infinitely long strip of

visco-elastic material. To demonstrate how the total fracture energy dissipated during

crack propagation increases with the crack speed they use a cohesive-zone model with an

intrinsic fracture energy so that the rate-dependence originates from the bulk material

only. As examples of the second approach a reference is made to Xu et al. [8, 14]

who similarly constructed a rate-dependent model by adding the contributions from a

rate-independent and a rate-dependent element, the latter given by a Maxwell element.

This quite satisfactorily replicates a class of experimental results but suffers from some

inconsistencies in the formulation such as the fact that the traction discontinuosly goes

to zero after reaching a threshold displacement given by a critical separation. Corigliano

et al. [15] also focus on the rate-dependence of the interface to model a DCB carbon

fibre-Poly-Ether-Imide (PEI) specimen. The interface deterioration is reproduced using

two alternative phenomenological approaches, one of them based on softening plasticity

and a second one in which a rate-dependent damage evolution law is adopted. Another

example of this type of approach is the model proposed by Allen and Searcy [16], in which

the interface element is conceived through an homogenization procedure conducted at the

micromechanical scale.

Finally, Liechti et al. [17] introduced rate-dependent behaviour in both the bulk ma-

terial and the interface, motivating their decision by observing significant differences in

crack surface depending on test speed, which convinced them of the necessity of mod-

elling the viscous losses at the interface. They also assumed the interface strength could
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be assimilated to a non-linear elastic response summed to a viscous contribution, given

by a non-newtonian dashpot. Damage evolution is implicit in their formulation as the

elastic response is given by a bilinear elastic traction-separation law. Furthermore, the

authors suggest that the use of a non-newtonian dashpot could possibly reproduce the

rate-dependent nature of void formation. The model proposed by Hutchinson, Pardoen

and Landis [18] follows the same approach of introducing the rate-dependence in both the

bulk and the interface. They are able to investigate the competing effects and present an

explanation for the possible non-monotonic relationship between crack speed and tough-

ness. The rate dependence of the cohesive zone is taken to obey a functional form similar

to the elasto-viscoplastic formulation used to model the bulk material.

To the authors’ knowledge a rigorous discussion on the merit and fallacies of each of

the above mentioned general approaches has not been tackled. It is evident that the dis-

sipation occurring in the real material has to be accounted for in any realistic modelling

attempt, so the problem eventually condenses to whether it is possible to neglect the dis-

sipation occurring at the interface, capturing the overall behaviour by simply focusing on

the bulk material (as for example attempted with analytical tools by Xu et al. [19] and

Persson and Brener [20]). In our opinion the answer is negative. In the cohesive-zone

approach the zero-thickness interface is assigned a mechanical behaviour which indeed

originates from the interaction of the crack with a process zone which is possibly very

thin, yet of finite thickness. This region of finite measure is "lumped" into a line (or a sur-

face in 3D) and hence it seems to be necessary to account for its own time-dependence.

It is interesting to compare this observation with the experimental work of Hauch and

Marder [21]. They observed how the increase in fracture energy with crack speed was

matched by the development of a microstructure of branching transversal cracks whose

length and density was increasing too. They also noted though that below a certain speed

the fracture energy was still not constant in spite of the lack of any observable transver-

sal crack pattern. Upon dissection of the specimens it was found out that the additional

dissipation was likely to be connected with some "subsurface activity", in their terminol-

ogy. We postulate that these occurences can only be accounted for by introducing the
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rate-dependence at the interface level. Also it is worth noting that this approach has a

very significant advantage for the practising engineer. In many structures elastic mate-

rials are bonded using polymers, and the analysis could avoid modelling the polymeric

layer altogether, under certain restrictions, replacing it with interface elements.

As for the use of plasticity, it might be deemed not physically justified as it can hardly

be evoked to explain that tractions decrease to zero at incipient fracture. It is possibly an

effective numeric tool to reproduce softening but, as crack formation and/or propagation

ultimately involves breaking bonds at the molecular or atomic scale, it seems to be better

described by damage mechanics from the physical point of view.

In this paper we aim to capture the rate dependence within the process zone of the

interface itself regardless of the behaviour of the surrounding material, and we strive to

do so resorting to first principles. It is clear that assumptions are necessary to model such

a complex phenomenon as fracture, yet our aim is to develop a general, physically well

based cohesive model, without resorting to any phenomenological law other than basic

physical and engineering understanding.

As a cornestone of our modelling approach we recognize the existence of an intrin-

sic, i.e. rate-indipendent, fracture energy. This is related to an elastic energy threshold

needed to break bonds at the micro or possibly the atomistic scale [22]. We then use

a damage-mechanics approach and introduce a suitably defined damage variable whose

evolution is related to the difference between the energy threshold and the elastic en-

ergy. The rate-dependence of the overall dissipated energy during crack propagation is

a natural by-product of the visco-elastic dissipation lumped on the zero-thickness inter-

face. We postulate that a reasonable characterization of the interface rate-dependence

can be achieved by assuming that the interfaces behaves, in a suitably defined way, as

its constituent material considered as a continuum. We then present the cohesive model

formulation in the general framework of thermodynamics.

To validate the concept we (i) specialise our formulation to the case of a rubber in-

terface, (ii) make the simplest possible assumption by assuming a quadratic form for the

elastic energy and by choosing a linear viscoelastic law with exponential kernel and one
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relaxation time only and (iii) present a comparative analysis of numerical and experimen-

tal results.

The structure of the paper is as follows. In Section 2, starting from fundamental phys-

ical principles we derive a thermodynamically consistent formulation of our proposed

interface model and obtain the governing equations. The algorithmic implementation is

described in Section 3. Numerical results are then compared with experimental findings

in Section 4. Conclusions are finally drawn in Section 5 together with a discussion on

some of the opened perspectives.

2. FORMULATION OF THE INTERFACE MODEL

We postulate that the interface response can be described by resorting to the free en-

ergy potential of the material considered as a continuum. The functional dependence of

the free energy upon its arguments is kept the same as in the continuum case while the

variables themselves are suitably adapted. This is a result of the dimension reduction

implied by the use of a cohesive-zone model, whereby a thin layer is modelled as a sur-

face in 3D and a two dimensional slender region is shrunk into a line in 2D. Accordingly,

displacement discontinuity jumps at the interface replace continuum strains as new defor-

mation measures. Progressive degradation of the interface and its ultimate failure is then

reproduced naturally through a damage variable. No ad hoc phenomenon is invoked to

explain the additional dissipation other than the dissipative mechanisms inherent to the

material. More specifically, we assume the damage law to be rate-independent and to be

driven by the specific elastic energy.

In general, the traction σ at time t at a point of an interface with memory is char-

acterized by a functional F defined on a suitable set of displacement jump histories

δ : ]−∞, t ]→ <n:

σ(t) = F(δ) (1)

where n denotes the number of components of δ (and σ). In the framework of ther-

modynamics with internal variables, we consider all the past history as "condensed" in
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suitably defined internal variables, which together with the so-called observable variables

[10] fully define the state of the material.

The free energy Ψ can then be expressed as

Ψ = Ψ(δ,α,D) (2)

where δ represents the displacement discontinuity jump, α denotes internal variables

associated with the rate-dependence of the mechanical response and D represents an in-

ternal variable too, which is grouped separately as it exclusively describes the damaging

process. In a general case, δ, α and D are vectors and therefore they have been denoted

with boldface characters.

Following the classic definition of damage due to Kachanov [23] it is suggested that Ψ

will depend linearly on D, which is assumed to be m-dimensional:

Ψ(δ,α,D) = (1−D) · Ψ̃(δ,α) (3)

where Ψ̃ denotes a suitably defined vector of free-energy components, i.e. Ψ̃T = [Ψ1 Ψ2 . . . Ψm ],

‘·’ indicates the scalar product and 1 is the m-dimensional vector 1T = [ 1 1 . . . 1 ].

The choice of the number and type of the internal variables depends of course on the

phenomenon being addressed. The great flexibility and power of the procedure lies in that

these variables can be chosen to represent a vast range of physical phenomena occurring

within the material.

In this paper attention is devoted to mode-I crack propagation and therefore the dis-

placement jump specialises to a scalar δ. Also, we deem it appropriate, for the purposes of

the proof of concept, to initially present results obtained resorting to a very simple time-

dependent law, with only one characteristic time. Accordingly, the rheological model

represented in Figure 1 is introduced and a single scalar α is used as internal variable,

which denotes the inelastic displacement jump in the viscous unit.

The following relation between total (observable) displacement jump δ and the internal

variable α is stated
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Figure 1: Reological representation of the model

δ = δe + α (4)

where δe represents the internal elastic displacement jump within the inelastic arm.

We choose the following expression for the free energy introducing a (formally) two-

component damage vector DT = [D1 D2 ] (i.e. m = 2):

Ψ = Ψ(δ, α,D) = (1−D) ·


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

+Kc1 ·


1
2
E1 < δ >2

−

1
2
E2 < δ >2

−

 (5)

where symbols < • >+ and < • >− represent the positive and negative parts of the

argument, respectively, while E1 and E2 are the elastic stiffness values in the elastic and

the inelastic arm of the rheological model. The second term at the RHS in the above

equation reflects the further assumptions that, in compression, damage does not influence

the response due to crack closure, rate-dependence is negligible and the interface stiffness

is amplified by a scalar Kc. Notice that the last two assumptions are physically justified

by the typical behaviour of rubber under confined compression [24].

2.1. Thermodynamical Consistency

The definition of evolution laws for the internal variables cannot be established with-

out ensuring such laws do not violate the second principle of thermodynamics for any
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arbitrary process, following the rational mechanics approach introduced by Coleman and

Noll [25].

We assume the process is isothermal and, by considering the explicit free-energies of

interest in the Clausius-Duhem inequality, in Section 7.1 of the Appendix it is shown that

the following conditions are sufficient for thermodynamical consistency:



σ = (1−D) ·


E1 < δ >+

E2 < δ − α >+

+Kc1 ·


E1 < δ >−

E2 < δ >−


∂Ψ̃2

∂α
α̇ = E2 α̇ < δ − α >+≥ 0

Ḋ1, Ḋ2 ≥ 0

D1, D2 ≤ 1

(6)

where σ denotes the normal interface stress.

2.2. Internal Variables Evolution Law

Having established the thermodynamical constraints for the internal variables, com-

plying evolution laws can be chosen. With regards to the internal variable α, a simple

candidate equation capable of fulfilling Equations (6) is then found in:

α̇ =
σ − σ1
η

(7)

where σ1 denotes the stress in the elastic arm of the rheological model and η is a positive

constant. With this choice linear visco-elasticity with an exponential kernel is recovered.

This law is considered sufficiently accurate to model the process zone in order to capture

the essential aspects of the time-dependent response within an expected range of validity.

It has to be stressed however that the presented formulation can be easily enriched using

more complex viscous laws.

As far as D is concerned, it has be noted that a characterization of its evolution should

rely on the availability of a micromechanical argument. In more detail, once attention

is directed towards a specific material, micromechanics might suggest different evolution
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laws to be tailored for the components of D. For the purposes of the algorithm presenta-

tion it is assumed without loss of generality that D1 = D2, reducing hence D to a scalar

variable D.

For the evolution of D = D1 = D2 the law proposed in Ref. [26] is chosen, as a result

of the fact it reflects our assumption that damage is driven solely by local elastic energy.

An energy threshold for damage growth Yc = Yc(D) is introduced and the following

Khun-Tucker constraints are then obtained:

Y ≤ Yc Ḋ ≥ 0 (Y − Yc)Ḋ = 0 (8)

where

Y =
∂Ψ1

∂δ
(9)

It is important to underline the choice made on the damage-driving function Y , which

does not depend on Ψ but only on Ψ̃1. This decision is motivated by rubber’s microstruc-

ture. In more detail, the attempt of using linear visco-elasticity to model rubber could rely

on assuming that its free energy is the sum of an elastic contribution and viscous contribu-

tion. The former is thought to be related to the stretch and distorsion of the load-bearing

network, while the latter originates from entanglements and motions of parts of the net-

work that are deforming with the main load-bearing network as a result of topological

constraints (sulphur bonds as a first example), more details can be found in [27]. Within

this conceptual scheme we notice that, as fracture is caused by failure in the load-bearing

network, the damage variable has to be driven by its related energy exclusively.

Hence, the following relationship between Yc and D is assumed

Yc =



G0 if D = 0

G0(
1− Gc −G0

Gc

D
)2 if 0 ≤ D ≤ 1

Y c if D = 1

(10)

where Gc is the intrinsic fracture energy, G0 the elastic energy threshold below which

there cannot be damage growth and Y c = maxτ≤t Y is the maximum of Y over the pre-

vious history. Notice that Equation (10)3 is introduced for completeness, so that Equation
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(8)1 continues to be satisfied, but it only has a formal importance, because when D = 1

cohesion is lost and no more energy is dissipated. It was shown in Ref. [26] that this rela-

tionship, when used in conjunction with a free energy of the form Ψ(δ,D) = 1
2
(1−D)Eδ2,

results in the widely used bilinear traction-discontinuity jump law. Also, it was shown in

[26] how the proposed relationship between Yc and D is equivalent to stating that

D =


0 if δmax ≤ δ0

min

{
1,
(

Gc

Gc −G0

) (
1− δ0

δmax

)}
if δmax ≥ δ0

(11)

where δmax is defined as follows:

δmax = δmax(t) = max
τ≤t

δ(τ) (12)

and δ0 =
√
2G0/E1 is the value of the displacement jump at which damage starts growing

in the elastic arm.

Notice that Y is path independent because it only depends on the current value of the

relative displacement, whereby the energy eventually dissipated in the elastic arm of the

rheological model, after complete decohesion, is always equal to Gc. Instead, the total

energy dissipated does depend on the whole displacement history δ :] − ∞, t] → <,

because it is the sum of Gc and of the the energies dissipated in the spring and in the

damper of the inelastic arm. This introduces rate-dependence in the simulated dissipative

process within the process zone at the interface.

The proposed model reproduces a bilinear traction-separation law only in the extreme

cases of instantaneous and infinitely slow loading, in total analogy with how linear vis-

coelasticity reduces to linear elasticity in the fast and slow rate limit.

The time-integration algorithm required to solve the obtained governing equations is

described in the next section.

3. ALGORITHMIC IMPLEMENTATION

This section describes how the constitutive equations of the interface are solved during

an incremental step, in the context of a general displacement-based finite element method.
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Limiting the discussion for the sake of simplicity to a specific integration point, the

problem essentially consists of determining the traction σ(t) corresponding to a given

displacement-jump history δ : ]−∞, t ] → <. Without loss of generality we assume

that limt→−∞ δ(t) = 0, whereby the problem consists in solving the following system of

differential equations in the unknown functions σ(t), D(δmax):



σ(t) = [1−D(δmax(t))] <
∫ t

−∞
J (t− τ) δ̇(τ) dτ >+ +[1−D(δmax(t))]E1 < δ >+

+Kc (E1 + E2) < δ >−

D(δmax) =


0 if δmax ≤ δ0

min

{
1,
(

Gc

Gc −G0

) (
1− δ0

δmax

)}
if δmax ≥ δ0

δmax = maxτ≤t δ(τ)
(13)

where J is the relaxation function, defined by

J (s) = E2 e
− s
λ (14)

and λ is the relaxation time λ = η/E2.

Equations (13) cannot be solved by analytical means in the general case and a nu-

merical integration scheme has to be employed. Evidently all the difficulty arises from

Equation (13)1, as Equation (13)2 is an algebraic equation and Equation (13)3 can be

easily implemented.

Equation (13)1 is approximated by adapting a widely used recursive algorithm [28].

Assuming (again without loss of generality) that the displacement-jump history is nihil

before t = 0 the time interval over which the computation is to be carried out, [0, T ], is

discretized into a partition of N time increments:

[0, T ] =
N⋃
n=1

[tn, tn+1] tn+1 = tn +∆tn (15)

In the n-th time step, the times at the start and the end of the increment are tn and tn+1,

respectively.
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Therefore, using also Equation (14), the integral in equation (13)1 can be evaluated for

t = tn+1 as follows:

∫ tn+1

−∞
J (tn+1 − τ) δ̇(τ) dτ = E2

(∫ tn

−∞
e−

tn+1−τ
λ δ̇(τ) dτ +

∫ tn+1

tn
e−

tn+1−τ
λ δ̇(τ) dτ

)
(16)

By approximating δ̇ with its finite-difference expression

δ̇ =
δ(tn+1)− δ(tn)

∆tn
(17)

and using the properties of the exponential functions, one obtains:

1

E2

∫ tn+1

−∞
J (tn+1 − τ) δ̇(τ) dτ =

= e−
∆tn
λ

∫ tn

−∞
e−

tn−τ
λ δ̇(τ) dτ +

δ(tn+1)− δ(tn)
∆tn

∫ tn+1

tn
e−

tn+1−τ
λ δ̇(τ) dτ

= e−
∆tn
λ δe(tn) + [δ(tn+1)− δ(tn)]

1− e−∆tnλ
∆tn
λ

(18)

The solution scheme proceeds iteratively, so it sufficies to describe one iteration step.

At the beginning of a generic time step n the following quantities are known: δn = δ(tn),

δe,n = δe(tn), δmax,n = δmax(tn) and Dn = D(tn). Their knowledge completely defines

the state of the interface. Given a tentative relative displacement δn+1 = δ(tn+1) all the

pertinent quantities are then updated as follows



δmax,n+1 = max(δmax,n, δn+1)

Dn+1 = max

{
Dn,min

{
1,
(

Gc

Gc −G0

)(
1− δ0

δmax,n+1

)}}

σn+1 = (1−Dn+1)E2 <
[
e−

∆tn
λ δe,n +

1−e
−∆tn
λ

∆tn
λ

(δn+1 − δn)
]
>+ +

+(1−Dn+1)E1 < δn+1 >+ +Kc (E1 + E2) < δn+1 >−

(19)

The algorithm and its associated tangent operator, reported in Section 7.2 of the Ap-

pendix, have been implemented as the constitutive law of interface elements within an

in-house non-linear finite-element code, which has been used to conduct the numerical

simulation discussed in the next section.
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Figure 2: Geometry and loading of the tested DCB specimen.

4. ANALYSIS OF EXPERIMENTAL AND NUMERICAL RESULTS

A 25mm wide double-cantilever-beam (DCB) specimen made of 8mm thick steel arms

separated by a 1mm thick interface of SBR / NR blend rubber has been tested under

displacement control and at six different rates of the monotonically increasing prescribed

cross-head displacement, equal to 0.01, 0.1, 1, 10, 100 and 500 mm min−1. The geometry

of the specimen is sketched in Figure 2. A close-up of the delamination front is presented

in Figure 3.

For the numerical analysis a Young’s modulus of 210 GPa and a Poisson’s ratio of 0.3

have been used for the steel arms. For the interface the constants reported in the Table 1

have been used. The first three parameters in the table have been calibrated based on the

test speed of 100 min mm−1. For the relaxation time and the ratio between E2 and E1 the

additional test speed of 10 min mm−1 has been used.

Due to simmetry with respect to the crack plane only the top half of the specimen was

modelled. The metallic arm was meshed using a single row of 100 8-node (i.e. quadratic)

plane-strain fully-integrated elements, each one being 2mm long. The rubber interface

was modelled using 60 6-node interface elements, of the same size, with 3 integration

points and a Newton-Cotes integration rule. Of course the 2D approximation cannot

14



(a)

(b)

Figure 3: Experimental test: particular of the (a) undeformed and (b) deformed specimen.

Gc (N mm−1) G0 (N mm−1) E1 (N mm−3) E2 (N mm−3) λ (s)

9.5 3.8 33 27 250

Table 1: Input parameters used for the rubber interface

capture the fact that the crack front is not a straight line, but it was shown in Ref [29] that

in general this leads to reasonably accurate results for wide enough specimen, such as the

one tested in our case.

Figure 4 shows the experimental and the numerical load-displacement curves for the

case of test speed of 100 min mm−1 and shows that the numerical model can correctly

capture all aspects of the experimental behaviour, with good agreement both qualitatively

and quantitatively. In this figure five points of the debonding process have been marked

with the letters a, b, c, d and e, to identify the following five essential parts or moments

of the debonding process: (a) elastic loading, (b) onset of fracture, (c) self-similar crack

propagation, (d) disruption of self-similarity due to the crack-tip field reaching the spec-

imen boundary and (e) almost-rigid rotation following the almost complete propagation

of the crack.
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Figure 4: Numerically and experimentally obtained load-displacement curves for the test speed of 100 min

mm−1, showing the points of the debonding process referred to in Figure 5.

The direct stress in the vertical direction across the steel arm (σyy in the model refer-

ence system) has been chosen as a reasonable indicator of the process-zone activity and

Figures 5.(a)-(e) show the contour plots of σyy at the points of the debonding process

indicated in Figure 4. At point a (elastic loading), a stress concentration is forming at

the crack tip: the interface discontinuity-jump, albeit non zero, is ‘small’, and the stress

profile resembles the singularity field characteristic of classical continuum elements. At

point b, the crack has just started propagating, causing the stress distribution to be more

spread. At point c the crack is now moving in a self-similar way. This is happening on

a rather limited length due to the relatively large size of the process zone in relation to

the sample. At point d the compression distribution at the far left side is changing, as the

lack of available space and the need of maintaining the overall resultant bending moment

lead to a narrower and more intense stress distribution. Finally, at point e debonding is

almost complete, the arm can only sustain negligible bending and the total force has now

reduced to almost zero.
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Figure 5: Contours plots of the direct stress in the vertical direction at the points of the debonding process

indicated in Figure 4.
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Figure 6 shows a comparison of the numerical and experimental load-displacement

curves for all the considered test speeds. Therefore, their analysis allows validating the

capability of the model to capture rate dependence. The numerical curve obtained at 500

min mm−1 has not been reported because it practically overlaps with the one obtained

at 100 min mm−1. The model prediction is satisfactory only on a range of applied dis-

placement rates. More in detail, it can be seen that the model does not capture the change

of the curve when the applied rate is increased from 100 min mm−1 to 500 min mm−1.

The same happens at the low range of speed, indeed the computed response at 0.1 min

mm−1 is rather close to the computed response at 0.01 mm/min, while the experimental

response is characterized by lower global loads. This lack of ability to predict the rate

dependence over 5 logarithmic decades of applied displacement rate is not surprising at

all. The same qualitative behaviour can be seen in similar visco-elastic analyses if the

relaxation spectrum employed in the costituive model is too narrow with respect to the

real material. This is certainly our case, as we are using a discrete spectrum with a single

relaxation time to model rubber behaviour, whose spectrum is not only continuous but

rather wide too, spanning no less than 5 logarithmic decades.

On the other hand, a visco-elastic model with one relaxation time is expected to capture

relatively well the rate dependence roughly over two logarithmic decades. This is indeed

what happens in our model, which is an extremely promising result, because it indicates

that the use of a wider relaxation spectrum or of a more complex, possibly nonlinear, vis-

coelastic law is expected to improve the predicitve capacity without substantially altering

the conceptual framework herein presented.

5. Conclusions

A novel cohesive-zone model suitable for the simulation of rate-dependent crack prop-

agation along interfaces has been presented. Recognizing the existence of an intrinsic,

rate-indipendent, fracture energy and introducing damage as the most physically appro-

priate internal variable to reproduce fracture, a consistent thermodynamical formulation

is obtained. It is postulated that the rate-dependent dissipation on the interface is a re-
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Figure 6: Experimental vs. numerical load - deflection curves for the six considered test speeds.
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sult of the same mechanisms observable in the interface material when considered as a

continuum. In this way, the procedure reproduces the rate dependence of the ‘measured’

fracture energy, i.e. of the total energy dissipated within the real (finite-thickness) inter-

face, naturally without further phenomenological assumptions.

The model was specialized to linear visco-elasticity, considered to provide a suffi-

ciently accurate constitutive law for the simulation of the experimental response within a

(predictable) range of loading rates and, at the same time, a simple enough law to focus

on the essence of the concept, whose proof of validity was the ultimate aim of this work.

In the same spirit the model has been specialised to pure mode-I only.

The comparison of the numerical predictions with the experimental results is very

satisfactory in this respect, because in the expected range of validity of the model, i.e. the

two logaritmic decades of loading rates typically captured by a linear visco-elastic model

with one relaxation time, substancially good agreement was obtained. In fact, in addition

to the rate dependence, within this interval all the essential features of the experimental

results are reproduced with good agreement.

The loss of accuracy at the extremities of the interval of considered test speeds is dis-

cussed, pointing at the most natural solution. Since in our opinion the general framework

has been successfully established, we are optimistic that future work can lead to obtain

greater accuracy of the numerical prediction within a much wider range of test speeds, and

possibly even at any test speed, by adopting a more refined visco-elastic law for the rubber

layer. Future outlook also includes the extension to pure mode II and to mixed-mode and

an investigation on how both the constitutive assumptions and the input parameters of the

interface model can be determined via experimental testing of the bulk material and/or

numerical simulation or simplified analytical modelling at the micromechanical level.

Regarding the first point, in the authors’ opinion the extension to pure mode-II cases is

quite straightforward, the only difference being that the decomposition of the relative dis-

placement into positive and negative parts is not needed. The extention to mixed-mode

does not seem to require any alteration of the conceptual framework, but its experimental

validation and calibration are expected to be more complex and time consuming.
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7. APPENDIX

7.1. THERMODYNAMICAL CONSISTENCY

We assume that the process is isothermal and therefore the second law specialises [30]

to the following:

σδ̇ − Ψ̇ ≥ 0 (20)

For the free energy of our choice

Ψ = Ψ(δ, α,D) = (1−D) ·


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

+Kc1 ·


1
2
E1 < δ >2

−

1
2
E2 < δ >2

−

 (21)

an application of the chain rule yields:

Ψ̇ =

(1−D) ·


E1 < δ >+

E2 < δ − α >+

+Kc1 ·


E1 < δ >−

E2 < δ >−


 δ̇

+

(1−D) ·


0

−E2 < δ − α >+

+Kc1 ·


0

0


 α̇

−


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

 · Ḋ

(22)

Upon inserting in Equation (20) and factorising δ̇
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σ −
(1−D) ·


E1 < δ >+

E2 < δ − α >+

+Kc1 ·


E1 < δ >−

E2 < δ >−



 δ̇+

+

(1−D) ·


0

E2 < δ − α >+

+Kc1 ·


0

0


 α̇+

+


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

 · Ḋ ≥ 0

(23)

Sufficient conditions for the above inequality to hold are as follows:



σ = (1−D) ·


E1 < δ >+

E2 < δ − α >+

+Kc1 ·


E1 < δ >−

E2 < δ >−


∂Ψ̃2

∂α
α̇ = E2 α̇ < δ − α >+≥ 0

Ḋ1, Ḋ2 ≥ 0

D1, D2 ≤ 1

(24)

7.2. TANGENT OPERATOR

The consistent tangent stiffness is computed through routine algebraic manipulations

as follows:

∂σ

∂δ
=



0 if D = 1∀δ

(1−D)[E1 + E2
λ

∆t
(1− e

−∆t
λ )]− ∂D

∂δ
σ if D 6= 0 and δ ≥ 0

Kc if D 6= 0 and δ ≤ 0

(25)
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