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We address the problem of transmit beamspace design for multiple-input multiple-output (MIMO) radar with colocated antennas
in direction-of-arrival (DOA) estimation application. Three transmit beampattern sidelobe suppression strategies for designing
the transmit beamspace matrix are introduced. The design of transmit beamspace matrix is based on minimizing the difference
between a desired transmit beampattern and the actual one while keeping the sidelobe levels under control. Uniform elemental
power distribution across the transmit antenna is guaranteed; at the same time, signal rotational invariance property is considered,
which enables search-free based DOA estimation algorithms to be utilized at the receiver.The proposed optimization problems are
nonconvex and are solved by using semidefinite programming relaxation technique. Moreover, the DOA estimation Cramer-Rao
bound with transmit beamspace matrix is discussed. Simulation results show the superiority of the proposed techniques over the
existing methods.

1. Introduction

The emerging concept of multiple-input multiple-output
(MIMO) radar has been the focus of intensive research
recently [1]. Depending on the array element configuration,
MIMO radar can be classified into two categories: widely dis-
tributed [2–4] and colocated [5, 6]. In the widely distributed
case, the transmitting antennas are widely separated so that
each antenna may view a different aspect of the target, which
can increase the spatial diversity of the system. In colocated
systems, the transmitting antennas are closely spaced to view
the same aspect of the target, which can increase the spatial
resolution of the system [5]. Compared to phased-array radar,
MIMO radar enjoys the advantage of waveform diversity
but has drawbacks in terms of signal-to-ratio (SNR) loss. To
preserve the waveform diversity of MIMO radar while taking
the advantage of the coherent processing gain of phased-
array radar, new configuration of radar architecture such as
the phased-MIMO radar has been proposed [7, 8]. The ideas
discussed in these works are transmitting multiple beams
from subarrays, each ofwhich is generated by using a different
waveform.

Besides these array partitioning based techniques, several
transmit beamforming methods have been developed in the
literature to achieve transmit coherent gain in MIMO radar
under the assumption that the targets are located within an
already known spatial sector. The design of waveforms to
achieve desired beampattern is usually a two-step process.
In the first step, a covariance matrix of the waveforms is
synthesized to obtain the desired beampattern [9, 10]. In the
second step, the actual waveforms are designed to realize the
synthesized covariance matrix while keeping the designed
waveforms having low peak-to-average power ratios (PAPRs)
or having constant envelope. Note that these methods are
challenging and computationally demanding [11, 12].

To reduce the computational burden of the two-step
process, amore efficient technique called transmit beamspace
processing (TBP) was proposed in [13]. The TBP technique
introduces a beamspace weightingmatrix to several orthogo-
nal waveforms used in the standardMIMO radar. In this way,
the DOA estimation performance can be improved due to the
concentration of transmit power in the desired spatial sector,
and it is also possible to guarantee the rotational invariance
property (RIP) at the receive array. However, [13] suffers
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from the shortcoming that the transmit power distribution
across the antenna array elements is not uniform. In [14], two
kinds of weighting matrices are proposed which can be easily
optimized for desired beampattern by using hypersphere
coordinates transformation technique. The drawback of [14]
is that the resulting PAPR is a little great. In [15], the
TBP based beampattern design problem is reformulated and
a spatial-division based design method is also proposed,
resulting in DOA estimation improvement.

Although many solutions and discussions have been
made upon this problem, very little attention has been paid
to the sidelobe suppression issue in transmit beamspace
processing. In the design of transmit beampattern, sidelobe
suppression operation can reduce the transmit power loss
in the uninterested regions, which leads to higher SNR at
the receive antennas, and then a better DOA estimation
performance can be achieved potentially. In this paper, a
multiaspect discussion of transmit beamspace design with
sidelobe suppression operations for DOA estimation is pro-
vided, and the major contributions of this paper are noted
below:

(1) In the proposed scheme, sidelobe levels can be
restrained by using three different criteria. (a) Mini-
mize the error between the designed beampattern and
the desired one in the main-lobe region, and simul-
taneously guarantee that the sidelobe levels are lower
than a given threshold. (b) Minimize the sidelobe
levels, and at the same time guarantee that the error
between the designed beampattern and the desired
one is smaller than a certain value. (c) Minimize
the sidelobes, while keeping the main-beam pointing
toward a desired direction.

(2) In the proposed sidelobe suppression strategies, we
reformulate the nonconvex transmit beampattern
design problem as convex problems by means of
semidefinite programming relaxation (SDP) tech-
nique.Then, the problems can be efficiently solved by
using interior point method.

(3) To allow for simple search-free DOA estimation
algorithms, the RIP at the receiver is guaranteed by
imposing a specific structure on the transmit matrix.
Moreover, the DOA estimation Cramer-Rao bound
(CRB) with transmit beamspace matrix is analyzed.

This paper is organized as follows. Section 2 introduces
MIMO radar signal model with transmit beamspace matrix.
In Section 3, we propose three sidelobe suppression strategies
in the design of transmit beampattern. Section 4 provides
the performance analysis using numerical examples. The
conclusions are drawn in Section 5.

2. MIMO Radar Signal Model

Consider a monostatic MIMO radar system equipped with
a transmit array of 𝑀 collocated antennas with interelement
spacing 𝑑

𝑡
and a receive array of 𝑁 collocated antennas with

interelement spacing 𝑑
𝑟
. The transmit and receive arrays are

assumed to be close enough to each other such that the spatial

angle of a target in the far-field remains the same with respect
to transmit and receive arrays.

Instead of transmitting omnidirectionally as the tradi-
tional MIMO radar does, we intend to focus the transmitted
energy within an interested sector Θ by introducing a trans-
mit beamspace weighting matrix W. Therefore, the actual
transmitted signals are taken as linear combinations of 𝐾

traditional orthogonal waveforms 𝜑(𝑡) = [𝜑
1
(𝑡), . . . , 𝜑

𝐾
(𝑡)]

𝑇,
(𝐾 ≤ 𝑀). The baseband representation of the transmitted
signals can be written as s(𝑡) = [𝑠

1
(𝑡), . . . , 𝑠

𝑀
(𝑡)]

𝑇
= W∗
𝜑(𝑡),

where W = [w
1
, . . . ,w

𝐾
] is the 𝑀 × 𝐾 transmit beamspace

matrix, where w
𝑘
is the 𝑘th unit-form weight vector. It is

assumed that ∫𝑇

0
𝜑
𝑖
(𝑡)𝜑

∗

𝑗
(𝑡) = 𝛿(𝑖 − 𝑗), 𝑖, 𝑗 = 1, . . . , 𝐾, where 𝑇

is the pulse duration, (⋅)𝑇 and (⋅)
∗ stand for the transpose and

the conjugate, respectively, and 𝛿(⋅) denotes the Kronecker
delta.

By using TBPmodel, the received signal at location 𝜃 can
be written as [13]

x (𝑡, 𝜃) =

𝐾

∑

𝑘=1

a𝑇 (𝜃)w∗

𝑘
𝜑
𝑘
(𝑡) = (W𝐻a (𝜃))

𝑇

𝜑 (𝑡) , (1)

where a(𝜃) is the 𝑀 × 1 transmit array steering vector and
(⋅)

𝐻 denotes the conjugate transpose. Assume that 𝑃 targets
are present in the space. The reflection coefficient of each
target is assumed to be constant during the whole pulse
but varies independently from pulse to pulse; that is, they
obey the Swerling II target model. Therefore, receive array
observations can be written as

r (𝑡, 𝜏) =

𝑃

∑

𝑝=1

𝛽
𝑝
(𝜏) (W𝐻a (𝜃

𝑝
))

𝑇

𝜑 (𝑡) b (𝜃
𝑝
)

+ n (𝑡, 𝜏) ,

(2)

where 𝑡 is the time index within the radar pulse, 𝜏 is the
slow time index, that is, the pulse number, 𝛽

𝑝
(𝜏) is the

reflection coefficient, b(𝜃
𝑝
) is steering vector of the receive

array associated with the 𝑝th target, and n(𝑡, 𝜏) is the 𝑁 × 1

vector of zero-mean white Gaussian noise.
Exploiting the orthogonal property of the traditional

orthogonal waveforms, the components of received data
can be separated by using matched filtering technique. By
stacking the individual vector components in one column
vector, we can obtain the entire virtual receive data vector [15]

y (𝜏) =

𝑃

∑

𝑝=1

𝛽
𝑝
(𝜏) (W𝐻a (𝜃

𝑝
)) ⊗ b (𝜃

𝑝
) + ñ (𝜏) , (3)

where ⊗ denotes the Kronecker product, ñ(𝜏) =

[n𝑇

1
(𝜏), . . . ,n𝑇

𝐾
(𝜏)] is the 𝐾𝑁 × 1 Gaussian noise term

whose covariance is given by 𝜎
2

𝑛
I
𝐾𝑁

, and I
𝐾𝑁

is the identity
matrix of size 𝐾𝑁 × 𝐾𝑁.

3. Problem Formulation

The main goal of transmit beampattern design is to devise
a transmit beamspace matrix W which achieves a transmit
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beampattern that is as close as possible to the desired one.
Actually, the transmit beampattern at spatial angle 𝜃 can be
defined as [9]

𝑃 (𝜃) = a𝐻 (𝜃) 𝐸 {s (𝑡) s𝐻 (𝑡)} a (𝜃) =
󵄩󵄩󵄩󵄩󵄩
W𝐻a (𝜃)󵄩󵄩󵄩󵄩󵄩

2

=

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃) a𝐻 (𝜃)w

𝑘
.

(4)

Let 𝑃
𝑑
(𝜃

𝑙
) denote the desired beampattern value at the

location of 𝜃
𝑙
; then the transmit beamspace matrix design

problem can be formulated as

min{

𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃) a𝐻 (𝜃)w

𝑘
− 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

} , (5)

where 𝛼 is an optimal scaling factor and 𝑝 = 1, 2, or ∞

denotes the 𝑙
1
-norm, 𝑙

2
-norm, and 𝑙

∞
-norm, respectively.

Next, we want to transmit the same power from each
antenna. Let 𝑃

𝑡
be the total transmit power; we incorporate

the uniformpower distribution across transmit array antenna
elements by using the following constraints:

𝐾

∑

𝑘=1

󵄨󵄨󵄨󵄨w𝑘
(𝑗)

󵄨󵄨󵄨󵄨

2

=
𝑃
𝑡

𝑀
, 𝑗 = 1, . . . ,𝑀. (6)

In practice, each antenna in the transmit array usually uses
the same power amplifier and thus has the same dynamic
power range. If the power used by different antennas is
allowed to vary widely, this can severely degrade the perfor-
mance of the radar systemdue to the nonlinear characteristics
of the power amplifier.

3.1. Transmit Beampattern Design with Sidelobe Suppression.
By reducing transmit power in the sidelobe regions, the
amount of energy that otherwise could be wasted in the
undesired areas can be added to the amount of energy to be
transmitted within the desired spatial sector. As a result, the
signal strength within the desired sector can be increased,
which potentially leads to better achievable DOA estimation
performance. In this subsection, let 𝜃

𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿, and

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆, be a uniform grid of points that cover the

main-lobe regions and sidelobe regions, respectively. Three
sidelobe suppression strategies for designing the transmit
beamspace matrixW are proposed.

Strategy 1. Thecriterion is tominimize the 𝑙
2
-normdifference

between the desired beampattern and the actual beampattern,
while maintaining sidelobes to be lower than given threshold
𝜂 and at the same time ensuring equal transmit power
at each antenna. This strategy operates sidelobe restriction
directly by setting a threshold on the sidelobe level, which
can be usually applied to the scenario where small sidelobe

fluctuation is required. Mathematically, this kind of strategy
can be expressed as

min
𝛼,W

J
1
=

𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃

𝑙
) a𝐻 (𝜃

𝑙
)w

𝑘
− 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

s.t.
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃

𝑠
) a𝐻 (𝜃

𝑠
)w

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂,

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆

𝐾

∑

𝑘=1

󵄨󵄨󵄨󵄨w𝑘
(𝑗)

󵄨󵄨󵄨󵄨

2

=
𝑃
𝑡

𝑀
, 𝑗 = 1, . . . ,𝑀.

(7)

It should be noted that problem (7) belongs to the
category of nonconvex quadratically constrained quadratic
programming problems which are in general NP-hard. How-
ever, semidefinite programming relaxation technique [16] can
be used to approximately solve it. Introducing the auxiliary
variables X

𝑘
= w

𝑘
w𝐻

𝑘
, (𝑘 = 1, . . . , 𝐾), and according to

the properties w𝐻

𝑘
a(𝜃

𝑙
)a𝐻(𝜃

𝑙
)w

𝑘
= tr{a(𝜃

𝑙
)a𝐻(𝜃

𝑙
)w

𝑘
w𝐻

𝑘
}, the

problem can be equivalently written as

min
𝛼,X𝑘

𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

s.t.
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑠
) a𝐻 (𝜃

𝑠
)X

𝑘
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂,

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆

𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

rank (X
𝑘
) = 1, 𝑘 = 1, . . . , 𝐾,

(8)

where tr(⋅) stands for the trace, diag(⋅) denotes the diagonal
of a square matrix, and rank(⋅) denotes the rank of a matrix.
The optimization problem (8) remains nonconvex due to the
fact that the rank constraint rank(X

𝑘
) = 1 is nonconvex.

Therefore, by means of SDP relaxation technique, we can
relax the rank constraint from rank(X

𝑘
) = 1 to the constraint

that X
𝑘
is positively semidefinite; that is, X

𝑘
≥ 0. By

introducing new variables {𝛿
𝑙
}
𝐿

𝑙=1
(𝛿

𝑙
> 0, 𝑙 = 1, . . . , 𝐿),

problem (8) can be represented as a convex one

min
𝛼,X𝑘

𝐿

∑

𝑙=1

𝛿
𝑙

s.t.
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝛿
𝑙
,

𝜃
𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑠
) a𝐻 (𝜃

𝑠
)X

𝑘
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂,

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆
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𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

X
𝑘
≥ 0, 𝑘 = 1, . . . , 𝐾.

(9)

Note that the quadratic inequality constraint in the above
problem can be rewritten as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝛿
𝑙
⇐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

2 ⋅ tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 2𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝛿
2

𝑙
− 2𝛿

𝑙

+ 1 ≤ 𝛿
2

𝑙
+ 2𝛿

𝑙
+ 1.

(10)

Using standard properties of matrix norm, the quadratic
inequality can be expressed as a second-order cone in the
following form:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐾

∑

𝑘=1

2 ⋅ tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 2𝛼𝑃

𝑑
(𝜃

𝑙
)

𝛿
𝑙
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (𝛿
𝑙
+ 1)

2

⇐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐾

∑

𝑘=1

2 ⋅ tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 2𝛼𝑃

𝑑
(𝜃

𝑙
)

𝛿
𝑙
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (𝛿
𝑙
+ 1) ,

(11)

where ‖ ⋅ ‖ denotes the Frobenius matrix norm. Therefore,
problem (9) can be formulated as the following second-order
cone programming (SOCP) problem:

min
𝛼,X𝑘

𝐿

∑

𝑙=1

𝛿
𝑙

s.t.

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐾

∑

𝑘=1

2 ⋅ tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
} − 2𝛼𝑃

𝑑
(𝜃

𝑙
)

𝛿
𝑙
− 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (𝛿
𝑙
+ 1) ,

𝜃
𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑠
) a𝐻 (𝜃

𝑠
)X

𝑘
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂,

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆

𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

X
𝑘
≥ 0, 𝑘 = 1, . . . , 𝐾.

(12)

Note that this SOCP problem can be efficiently solved
using well-established interior point methods software tools.
Specifically, the CVX MATLAB toolbox [17] is used in this
paper.

Strategy 2. The goal of this strategy is to minimize the peak
sidelobe level by using minimax criterion, as well as keeping

the difference between the desired beampattern and the
actual one below a certain level 𝜉, and ensure equal transmit
power at each antenna. Such a strategy can be formulated as

min
𝛼,W

max
𝜃𝑠

J
2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃

𝑠
) a𝐻 (𝜃

𝑠
)w

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

s.t.
𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

w𝐻

𝑘
a (𝜃

𝑙
) a𝐻 (𝜃

𝑙
)w

𝑘
− 𝛼𝑃

𝑑
(𝜃

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜉,

𝜃
𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿

𝐾

∑

𝑘=1

󵄨󵄨󵄨󵄨w𝑘
(𝑗)

󵄨󵄨󵄨󵄨

2

=
𝑃
𝑡

𝑀
, 𝑗 = 1, . . . ,𝑀,

(13)

where 𝜉 is a given difference upper bound between the desired
beampattern and the actual one in 𝑙

1
-norm.Note that Strategy

2 uses an opposite way to restrict sidelobes compared with
Strategy 1 which directly imposes a threshold on the sidelobe
level. Because this optimization problem is nonconvex, in a
similar way, we substitute variable X

𝑘
= w

𝑘
w𝐻

𝑘
in (13) and

utilize the SDP relaxation technique, and then the problem
can be rewritten as

min
𝛼,X

max
𝜃𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑠
) a𝐻 (𝜃

𝑠
)X

𝑘
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

s.t.
𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X

𝑘
− 𝛼𝑃

𝑑
(𝜃

𝑙
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜉,

𝜃
𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿

𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

X
𝑘
≥ 0, 𝑘 = 1, . . . , 𝐾.

(14)

After introducing a new auxiliary variable 𝛿 (𝛿 > 0), problem
(14) can be equivalently expressed as

min
𝛼,X

𝛿

s.t.
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑠
) a𝐻 (𝜃

𝑠
)X

𝑘
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛿,

𝜃
𝑠
∈ Θ, 𝑠 = 1, . . . , 𝑆

𝐿

∑

𝑙=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾

∑

𝑘=1

tr {a (𝜃
𝑙
) a𝐻 (𝜃

𝑙
)X − 𝛼𝑃

𝑑
(𝜃

𝑙
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜉,

𝜃
𝑙
∈ Θ, 𝑙 = 1, . . . , 𝐿

𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

X
𝑘
≥ 0, 𝑘 = 1, . . . , 𝐾.

(15)
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In a similar way, problem (15) can be efficiently solved via the
CVX toolbox.
Strategy 3. Motivated by the sidelobe suppressionmethod for
traditional beampattern design proposed in [18], we extend

the idea into the TBP model. The criterion is to maximize
the difference between the main-beam and the peak sidelobe
level under the constraint that the 3 dB width of the main-
beam is given. This strategy can be formulated as follows:

min
X

max
𝜃𝑠

J
3
= −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾
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0
) a𝐻 (𝜃
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)w
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−
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𝐾
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)w

𝑘
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𝐾

∑

𝑘=1
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𝑘
a (𝜃

0
) a𝐻 (𝜃

0
)w

𝑘

𝐾

∑

𝑘=1

󵄨󵄨󵄨󵄨w𝑘
(𝑗)

󵄨󵄨󵄨󵄨

2

=
𝑃
𝑡

𝑀
, 𝑗 = 1, . . . ,𝑀,

(16)

where 𝜃
0
denotes the direction of the main-beam and 𝜃

2
−

𝜃
1
(𝜃

0
> 𝜃

1
, 𝜃

2
> 𝜃

0
) determines the 3 dB main-beam width.

In a similar way, by introducing a new auxiliary variable 𝜎

(𝜎 > 0) and utilizing the SDP relaxation technique, problem
(16) can be equivalently expressed as

min
X

− 𝜎

s.t.
𝐾

∑

𝑘=1

tr {a (𝜃
0
) a𝐻 (𝜃

0
)X

𝑘
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−

𝐾
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𝑠
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𝑠
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𝑘
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𝐾
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𝑘
}

𝐾
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2
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2
)X

𝑘
}
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𝐾

∑

𝑘=1

tr {a (𝜃
0
) a𝐻 (𝜃

0
)X

𝑘
}

𝐾

∑

𝑘=1

diag {X
𝑘
} =

𝑃
𝑡

𝑀
1
𝑀×1

X
𝑘
≥ 0, 𝑘 = 1, . . . , 𝐾.

(17)

Apparently, problem (17) is convex, which can be efficiently
solved via optimization toolbox CVX.

3.2. Enforcing the RIP and Solving the Beamspace Matrix. We
consider to ensure that the received signal holds the rotational
invariance property. RIP can enable us to use search-free
ESPRIT-based DOA estimation techniques, which require
small computational cost compared with MUSIC-based
DOA estimation techniques. Enforcing the RIP is equivalent
to ensuring that the following relationship holds [15]:

󵄨󵄨󵄨󵄨󵄨
a (𝜃)𝐻w

𝑘

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
a (𝜃)𝐻w

𝐾/2+𝑘

󵄨󵄨󵄨󵄨󵄨
,

𝜃 ∈ [−
𝜋

2
,
𝜋

2
] , 𝑘 = 1, . . . ,

𝐾

2
,

(18)

where 𝐾 is assumed to be an even number. Under the
assumption of ULA at the MIMO radar transmitter, the RIP
can be satisfied by choosing the transmit beamspace matrix
to take the form

W = [w
1
, . . . ,w

𝐾/2
, w̃∗

1
, . . . , w̃∗

𝐾/2
] , (19)

where w̃ is the flipped version of vector w; that is, 𝑤̃
𝑘
(𝑖) =

𝑤
𝑘
(𝑀−𝑖+1), 𝑖 = 1, . . . ,𝑀.We consider𝐾 = 2 as a special case

to explain the reason thatW in (18) ensures the RIP. Actually,
when 𝐾 = 2, the transmit beamspace matrix takes the form
W = [w, w̃∗

], and thus the following relationship holds:

a (𝜃)𝐻w =

𝑀

∑

𝑘=1

𝑤
𝑘
𝑒
−𝑗2𝜋 sin(𝜃)(𝑘−1)

, (20)

a (𝜃)𝐻 w̃∗
=

𝑀

∑

𝑘=1

𝑤
∗

𝑘
𝑒
−𝑗2𝜋 sin(𝜃)(𝑀−𝑘)

. (21)
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By factoring out the term 𝑒
−𝑗2𝜋 sin(𝜃)(𝑀−𝑘) from the right hand

side of (20) and conjugating it, (21) can be equivalently
rewritten as

a (𝜃)𝐻 w̃∗
= (

𝑀

∑

𝑘=1

𝑤
𝑘
𝑒
−𝑗2𝜋 sin(𝜃)(𝑘−1)

)

∗

𝑒
−𝑗2𝜋 sin(𝜃)(𝑀−𝑘)

= (a (𝜃)𝐻w)
∗

𝑒
−𝑗2𝜋 sin(𝜃)(𝑀−1)

.

(22)

From (22), it can be seen that the terms a(𝜃)𝐻w and a(𝜃)𝐻w̃∗

are identical in magnitude; therefore, the relationship in (18)
is satisfied, that is, the RIP is ensured. For the case that𝐾 > 2,
the RIP can be demonstrated to be held in the same way.

After obtaining the solutions of the three relaxed versions
of problems (7), (13), and (16) via CVX in the previous
section, then we consider extracting the original solutions
of them via the so-called Gaussian randomization technique
[19]. Note that we can obtain the transmit beamspace matrix
if only the terms w

1
, . . . ,w

𝐾/2
are resolved. The algorithm to

solve the transmit beamspace matrix is summarized in the
following part.

The Gaussian Randomization Algorithm to Solve
the Transmit Beamspace Matrix

Step 0. Set the number of randomization, 𝑁
𝑔
. Let Xopt

𝑘
,

(𝑘 = 1, . . . , 𝐾/2), denote the optimal solution of the relaxed
problem.

Step 1. If the rank of Xopt equals one, the optimal solution
of w

𝑘
can be obtained by simply finding the principal

eigenvector of Xopt
𝑘
; else if the rank of matrix Xopt

𝑘
is higher

than one, letXopt
𝑘

= U
𝑘
Σ
𝑘
U𝐻

𝑘
denote the eigendecomposition

of Xopt
𝑘
, where U

𝑘
and Σ

𝑘
are the matrix of eigenvectors and

the diagonal matrix of the eigenvalues of Xopt
𝑘
, respectively.

The candidate vector w𝑙

𝑘
can be chosen as w𝑙

𝑘
= U

𝑘
Σ
1/2

𝑘
k𝑙
𝑘
,

where V𝑙
𝑘
(𝑙 = 1, . . . , 𝑁

𝑔
) is a random vector whose elements

are random variables uniformly distributed on the unit circle
in the complex plane.

Step 2. If the constraint that each element of the vector
∑

𝐾

𝑘=1
diag{w𝑙

𝑘
(w𝑙

𝑘
)
𝐻
} equals 𝑃

𝑡
/𝑀 × 1

𝑀×1
does not hold, we

map the resulting random vectors to a nearby feasible point
w𝑙

𝑘,new by scaling the elements of each candidate vector so that
the aforementioned constraint is satisfied.

Step 3. For Strategy 1, calculate the objective function J
1
in (7).

For Strategy 2, calculate the objective function J
2
in (13), and

for Strategy 3 calculate the objective function J
3
in (16).

Step 4. Among the candidate vectors, choose the one which
gives the minimum objective function; then, the problem is
solved.

After the transmit beamspace matrix is solved by using
the proposed randomization algorithm, the actual transmit
signal can be determined according to the following relation-
ship: s(𝑡) = [𝑠

1
(𝑡), . . . , 𝑠

𝑀
(𝑡)]

𝑇
= W∗
𝜑(𝑡).

3.3. Cramer-Rao Bound. The CRB for DOA estimation of
unknown target represents the best performance of any
unbiased estimator. As the signal model in (3) satisfies the
statistical model y(𝜏) ∼ 𝑁

𝑐
{𝜇(𝜏),Cov}, where 𝑁

𝑐
{⋅} denotes

the complex Gaussian probability density function, 𝜇(𝜏) is
the mean of y(𝜏) and Cov is its covariance matrix. The CRB
on estimating DOAs is derived by assuming 𝜇(𝜏) = 0 and
Cov = 𝐸{y(𝜏)y(𝜏)𝐻} = VSV𝐻

+ 𝜎
2

𝑛
I
𝐾𝑁

. Note that the signal
model has the same form as the signal model used in [20]
to derive the CRB for DOA estimation in conventional array
processing. Therefore, the CRB matrix for DOA estimation
with transmit beamspace matrix can be calculated as follows:

CRB (𝜃) =
𝜎
2

𝑧
𝐾

2𝑇𝑃
𝑡

{Re (D𝐻P⊥

VD ⊙ G𝑇
)}

−1

, (23)

where ⊙ denotes the Hadamard product, 𝑇 is the number
of snapshots, 𝑃

𝑡
is the total transmit energy, and P⊥

V =

I
𝐾𝑁

− V(V𝐻V)
−1V𝐻 is the projection matrix onto the

space spanned by the columns of V. V = [(W𝐻a(𝜃
1
)) ⊗

b(𝜃
1
), . . . , (W𝐻a(𝜃

𝑃
)) ⊗ b(𝜃

𝑃
)] represents the virtual steering

vector, G = SV𝐻R−1VS, where R stands for the covariance
matrix of the received signal and S is the covariance matrix
of reflection coefficients. D = [d(𝜃

1
), . . . , d(𝜃

𝑃
)] is the matrix

whose 𝑙th column is given by the derivative of the 𝑙th column
of V with respect to 𝜃

𝑙
; that is,

d (𝜃
𝑙
) =

𝜕v (𝜃
𝑙
)

𝜕𝜃
𝑙

=

𝜕 (W𝐻a (𝜃
𝑙
)) ⊗ b (𝜃

𝑙
)

𝜕𝜃
𝑙

= W𝐻a󸀠 (𝜃
𝑙
) ⊗ b (𝜃

𝑙
) +W𝐻a (𝜃

𝑙
) ⊗ b󸀠 (𝜃

𝑙
) ,

(24)

where a󸀠(𝜃
𝑙
) = 𝜕a(𝜃

𝑙
)/𝜕𝜃

𝑙
and b󸀠(𝜃

𝑙
) = 𝜕b(𝜃

𝑙
)/𝜕𝜃

𝑙
. It is worth

noting that three proposed sidelobe suppression strategies
lead to different transmit beamspacematrices, which result in
DOA estimation performance divergence. A comprehensive
comparison between the aforementioned strategies is taken
in the following section.

Note that the complexity of eigendecomposition based
DOA estimation techniques, such as ESPRIT, will increase
with the numbers of the transmitted orthogonal waveforms
𝐾 and the receive array antennas 𝑁. The proposed model
can transmit fewer orthogonal waveforms by introducing
transmit beamspacematrixwith theDOAestimation compu-
tational complexity of𝑂(𝐾

3
𝑁

3
). On the other hand, theDOA

estimation computational complexity of traditional MIMO
radar is 𝑂(𝑀

3
𝑁

3
), where 𝑀 ≥ 𝐾 and 𝑀 is the number

of transmit array antennas. Therefore, the proposed method
enjoys a lower DOA estimation computational complexity
compared with traditional MIMO radar.

4. Simulation Results

In this section, to validate the performance of the proposed
sidelobe suppression strategies, some numerical examples are
presented. In all of the following simulations, we assume a
uniform linear transmit array of 𝑀 = 10 antennas spaced
half a wavelength apart and a nonuniform linear receive array
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Figure 1: Transmit beampatterns of the orthogonal waveforms,
method in [15], and the proposed strategies in Example 1.

of 𝑁 = 10 elements. The locations of the receive antennas
are randomly drawn from the set [0, 9] measured in half
a wavelength. Noise signals are assumed to be Gaussian,
zero-mean, and white both temporally and spatially. In each
example, targets are assumed to lie within a given spatial
sector, the total transmit energy 𝑃

𝑡
= 𝑀, and the orthogonal

waveforms number 𝐾 = 2. The proposed methods are
compared with traditional MIMO radar and the waveforms
designed in [15], and the ESPRIT algorithm is used for
DOA estimation for all tested methods. The orthogonal
baseband waveforms used for the traditional MIMO radar
are 𝜑

𝑘
(𝑡) = √1/𝑇

𝑝
𝑒
𝑗2𝜋𝑚𝑡/𝑇𝑝 , (𝑚 = 1, . . . ,𝑀), where 𝑇

𝑝
is

the pulse duration. For the proposed method, the first 𝐾 =

2 orthogonal waveforms are employed as the base signal.
Throughout all simulations, the number of radar pulses used
is 50 and the number of samples within one radar pulse is
1024. The DOA estimation simulation results are calculated
based on 500 independent Monte Carlo runs.

Example 1 (transmit energy focusing on a single sector). In
this example, the sector of interest Θ = [−10

∘
, 10

∘
] is taken,

and the out-of-sector region is taken as Θ = [−90
∘
, −20

∘
] ∪

[20
∘
, 90

∘
]. The number of uniform sampling points in sector

Θ and out-of-sector Θ are set as 𝐿 = 100 and 𝑆 = 400,
respectively. In Strategy 1, the sidelobe threshold is set as
an empirical value 𝜂

𝑠
= 0.01. The upper bound of the

error between desired beampattern and the actual one in
Strategy 2 is also set as 𝜉 = 0.01. Figure 1 shows the transmit
beampatterns of the traditional MIMO radar, the method
of [15], and the proposed sidelobe suppression methods. It
can be seen from this figure that the power distribution of
orthogonal waveforms is uniform within the desired sector.
The method of [15] provides concentration of power in the
desired sector with high sidelobes. For the proposed method,
Strategy 1 has the lowest sidelobes but results in relatively

large ripples in themain-lobe region. Strategy 2 hasminimum
main-lobe ripples but the beampattern sidelobes are higher
than Strategies 1 and 3. Note that Strategy 2 ismore suitable to
the scenario where tough ripple control within themain-lobe
region is required. Strategy 3 shows a peak appearance in the
main-lobe region and scrolls down in the sidelobe regions. It
can be seen that the sidelobe suppression ability of Strategy 3
lays between Strategies 1 and 2.

To verify the DOA estimation performance of the pro-
posed method, two targets are assumed to be located at
𝜃
1

= −5
∘ and 𝜃

2
= 5

∘. Figure 2 shows the RMSEs
and CRBs versus SNR for all the methods tested. Here,
the RMSE of DOA estimation is defined as RMSE =

√(1/2𝑄) ⋅ ∑
𝑄

𝑞=1
[(𝜃

1
− 𝜃̂

1,𝑞
)
2
+ (𝜃

2
− 𝜃̂

2,𝑞
)
2
], where 𝑄 is the

number of Monte Carlo trials and 𝜃̂
𝑙,𝑞

is the angle estimate
of 𝜃

𝑙
(𝑙 = 1, 2) at the 𝑞th trial. As we can see from the

figure, the beampattern synthesized exploiting orthogonal
waveforms provides the worst CRB and RMSE performances
as compared to other methods. The reason for this is
that partial transmit energy is wasted in undesired sector,
resulting in low SNR at the receiver. Because transmit
power is focused in the desired sector, the DOA estimation
performance of the method of [15] is better than orthogonal
waveforms. For the proposed method, all of three sidelobe
suppression strategies exhibit DOA estimation performance
improvement compared to [15]. It can be observed from
the figure that the performances of the three proposed
strategies are near. Specifically, Strategy 1 has the best CRB
and RMSE performances, which can be attributed to the
fact that Strategy 1 has the lowest sidelobes, and the DOA
estimation performance of Strategy 3 is slightly better than
Strategy 2.

To assess the proposed method’s ability to resolve closely
located targets, we move two targets to the locations 𝜃

1
=

7
∘ and 𝜃

2
= 8

∘. The performance of all methods tested
is given in terms of the probability of target resolution.
Note that the targets are considered to be resolved if the
condition |𝜃̂

𝑙
− 𝜃

𝑙
| ≤ Δ𝜃/2, 𝑙 = 1, 2 is satisfied, where

Δ𝜃 = |𝜃
2
− 𝜃

1
| and 𝜃̂

𝑙
denotes the estimation of 𝜃

𝑙
. The

probability of source resolution versus SNR for all methods
tested is shown in Figure 3. It can be seen from the figure that
traditional MIMO radar exploiting orthogonal waveforms
have the worst probability of target resolution because of the
fact that it does not incorporate any type of transmit energy
focusing technique. For the proposedmethod, all of the three
sidelobe suppression strategies exhibit better target resolution
performance than traditionalMIMOradar and themethod of
[15]. Specifically, Strategy 1 has the best probability of target
resolution performance, and Strategy 3 is slightly better than
Strategy 2. It can be indicated that transmit beampattern
with low sidelobe levels achieves better performance of target
resolution.

Example 2 (transmit energy focusing onmultiple sectors). In
this example, two targets are assumed to lie within two spatial
sectors, which are taken as Θ = [−40

∘
, −20

∘
] ∪ [20

∘
, 40

∘
].

The out-of-sector regions are taken as Θ = [−90
∘
, 50

∘
] ∪

[−10
∘
, 10

∘
] ∪ [50

∘
, 90

∘
]. The number of uniform sampling
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Figure 2: (a) CRB versus SNR in Example 1. (b) RMSE versus SNR in Example 1.
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Figure 3: Probability of target resolution versus SNR in Example 1.

points in sector Θ and out-of-sector Θ are set as 𝐿 = 200

and 𝑆 = 300, respectively. Figure 4 shows that the transmit
beampattern synthesized exploiting orthogonal waveforms
has uniform transmit power distribution. It can be seen from
the figure that the method of [15] provides concentration
of power in the two desired sectors with high sidelobe
levels. Strategy 1 provides a transmit beampattern with lowest
sidelobes but has relatively larger ripples in both desired
sectors. Strategy 2 obtains the most even concentration of
power in the desired sectors; however, the beampattern
sidelobes of Strategy 2 are higher than Strategies 1 and 3. The
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Figure 4: Transmit beampatterns of the orthogonal waveforms,
method in [15], and the proposed strategies in Example 2.

sidelobe suppression ability of Strategy 3 still lays between
Strategies 1 and 2.

Figure 5 shows the RMSEs and CRBs versus SNR for all
themethods testedwhen the targets are assumed to be located
at 𝜃

1
= −30

∘ and 𝜃
2
= 25

∘ with two desired sectors. It can be
seen from the figure that the DOA estimation performance of
themethod of [15] is better than traditionalMIMO radar that
exploits orthogonal waveforms as expected. The proposed
methods outperform themethod of [15]; that is, Strategy 1 has
the best CRB and RMSE performances, and the DOA estima-
tion performance of Strategy 3 is slightly better than Strategy
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Figure 5: (a) CRB versus SNR in Example 2. (b) RMSE versus SNR in Example 2.
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Figure 6: Probability of target resolution versus SNR in Example 2.

2. This confirms again the observation from the previous
example that proposed sidelobe suppression strategies are
effective. Moreover, by comparing the results in Figures 2 and
5, it can be concluded that the DOA estimation performance
with two desired sectors is poorer than one single desired
sector case as the width of each sector is the same.The reason
for this is that two-desired-sector case suffers the transmit
energy dispersion compared with the single one case.

Figure 6 shows the probability of target resolution for all
aforementioned methods after locating both targets at the
locations 𝜃

1
= 21

∘ and 𝜃
2
= 22

∘.The result is analogous to the
single desired sector example. In a similar way, by comparing

Figures 3 and 6, we can observe that the target resolution
performance of the single desired sector case is superior to
the two-desired-sector case as maintaining the width of each
sector invariant.

5. Conclusion
The problem of MIMO radar transmit beamspace design
with sidelobe suppression for DOA estimation application
has been considered.Three sidelobe suppression strategies for
designing the transmit beamspace matrix that enable the use
of ESPRIT estimation technique have been introduced.Thus,
it allows achieving a better estimation performance at lower
computational cost. Semidefinite relaxation technique is used
to recast the optimization problems as convex ones. Then, a
randomization algorithm is proposed to extract the solutions
of the original problems. CRB expression as functions of
the transmit beamspace weight matrix is given. Simulation
results have demonstrated the improvement in the DOA esti-
mation performance offered by using the proposed methods
as compared to the existing techniques.
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