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A LIOUVILLE THEOREM FOR MINIMIZERS WITH FINITE
POTENTIAL ENERGY FOR THE VECTORIAL ALLEN-CAHN
EQUATION

CHRISTOS SOURDIS

ABSTRACT. We prove that if a globally minimizing solution to the vectorial Allen-Cahn
equation has finite potential energy, then it is a constant.

Consider the semilinear elliptic system
Au=VW(u) in R", n>1, (0.1)
where W : R™ — R, m > 1, is sufficiently smooth and nonnegative. It has been recently
shown in [1] that each nonconstant solution to the system (0.1) satisfies:
cR"? ifn >3,

1
/ {2|VU|Q+W(U)}d{E > (0.2)
Bgr clnR ifn=2,

for all R > 1, and some ¢ > 0, where By stands for the n-dimensional ball of radius R,
centered at the origin.
On the other side, if additionally W vanishes at least at one point, it is easy to see that

1
/ {QWuF + W (u)} der <CR"', R>0, (0.3)
Br

for some C' > 0 (see [4]).

The system (0.1) with W > 0 vanishing at a finite number of global minima (typically
nondegenerate), and coercive at infinity, is used to model multi-phase transitions (see [4] and
the references therein). In this case, the system (0.1) is frequently referred to as the vecto-
rial Allen-Cahn equation. In [7], we showed the following theorem for globally minimizing
solutions (see [5, 7] for the precise definition).

Theorem 0.1. Assume that W € CY(R™;R), m > 1, and that there exist finitely many
N > 1 points a; € R™ such that

Wi(u) >0 in R™\{ay, - ,an}, (0.4)

and there exists small g > 0 such that the functions

r+— W(a;+rv), where v € S', are strictly increasing for r € (0,7¢), i =1,---,N. (0.5)
Moreover, we assume that
lllr‘n inf W (u) > 0. (0.6)

If u € C*(R?*R™) is a bounded, nonconstant, and globally minimizing solution to the
elliptic system (0.1) with n = 2, there exist constants ¢y, Ry > 0 such that

W (u(z))dx > cgR for R > Ry.
Br
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In view of (0.3), the above result captures the optimal growth rate in the case n = 2.
The purpose of this note is to establish the following Liouville type theorem which holds
in any dimension. Similarly to [7], we combine ideas from the study of vortices in the
Ginzburg-Landau model [3] with variational maximum principles from the study of the
vector Allen-Cahn equation [2].

Theorem 0.2. Let W be as in Theorem 0.1. Suppose that u € C*(R™;R™), n > 2, is a
bounded and globally minimizing solution to the elliptic system (0.1) such that

” W (u(z)) de < oo.

Then, we have that
u=a; forsomeie{l,---, N}

Proof. 1t follows that there exists a constant Cy > 0 such that

W (u(z))dx < Cy, R>0. (0.7)

Br

Let

5—}1% and ug(y):u<g>, y € By.

Then, relation (0.7) becomes

w (U’E(y)) dy < 01€n7 € > 07 (08)

B1

for some C} > 0. Note that, by standard elliptic regularity estimates [6], we have that
luc| +e|Vu.| < Cy in R", ¢ >0, (0.9)

for some Cy > 0.

Let d > 0 be any small number. As in [3], by combining (0.8) and (0.9), we deduce that
the set where W (u.) is above d > 0 is included in a uniformly bounded number of balls of
radius €, as € — 0. Certainly, there exists r. € (i, i) such that

W (ue(y)) <d if |y| = re.

Since d > 0 is arbitrary, we are led to 7. € (i, %) such that

IH‘IaE( W (ue(y)) — 0 ase — 0.
Y|=re

In terms of w and R, we have
1 _3
Irr‘lax W (u(z)) =0 as R — oo, for some si € <4R, 4R> .
T|=SR
In view of (0.6), the above relation implies that there exist i; € {1,---, N} such that

max |u(z) — a;;| — 0 as R — oo.
lz|=sr !

By virtue of (0.5), as in [7], exploiting the fact that u is a globally minimizing solution, we
can apply a recent variational maximum principle from [2] to deduce that

max ‘u(x) - aij‘ < max |u(x) - aij| for R> 1.
lz|<sr lzl=sr
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The above two relations imply the existence of an iy € {1,---, N} such that
‘irllgz |u(z) —a;)]| = 0 as R — oc.
Since sp — 00 as R — oo, we conclude that u = a;,. U
REFERENCES
[1] N. D. ALIKAKOS, Some basic facts on the system Au—W,(u) = 0, Proc. Amer. Math. Soc. 139 (2011),

153-162.

N.D. ALikakos, and G. Fusco, A mazimum principle for systems with variational structure and an
application to standing waves, arXiv:1311.1022

F. BETHUEL, H. BREzIS, and F. HELEIN, Ginzburg-Landau vortices, PNLDE 13, Birkh&user Boston,
1994.

G. Fusco, Fquivariant entire solutions to the elliptic system Au — Wy (u) = 0 for general G-invariant
potentials, Cale. Var. DOI 10.1007/00526-013-0607-7

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure.
Appl. Analysis 13 (2014), 1045-1060.

D. GILBARG, and N. S. TRUDINGER, Elliptic partial differential equations of second order, second ed.,
Springer-Verlag, New York, 1983.

C. SOURDIS. Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn
equation, Arxiv 2014.

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF CRETE.
E-mail address: csourdis@tem.uoc.gr



