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THE HETEROCLINIC CONNECTION PROBLEM FOR GENERAL
DOUBLE-WELL POTENTIALS

CHRISTOS SOURDIS

Abstract. By variational methods, we provide a simple proof of existence of a heteroclinic
orbit to the Hamiltonian system u�� = ∇W (u) that connects the two global minima of a
double-well potential W . Moreover, we consider several inhomogeneous extensions.

1. Introduction

1.1. The problem. In this paper, we will prove existence of solutions u ∈ C2(R, Rn) to the
following problem:

uxx = ∇W (u), x ∈ R, lim
x→±∞

u(x) = a±, (1.1)

where

W ∈ C1(Rn), n ≥ 1, satisfy W (a−) = W (a+) = 0, W (u) > 0 if u �= a±, (1.2)

for some a− �= a+, and
lim inf
|u|→∞

W (u) > 0. (1.3)

Since a− �= a+, such a solution is called a heteroclinic connection, as opposed to a homo-
clinic. Motivated from mechanics, in relation with Newton’s second law of motion (where x
plays the role of time), we will often refer to W as a double-well potential (see also [6] and
the references therein).

We note that the quantity
1

2
|ux|2 −W (u)

is constant along solutions of the equation, which easily implies that W (a−) = W (a+) is a
necessary condition for a heteroclinic connection to exist between a− and a+.

We will also study the inhomogeneous problem

uxx = h(x)∇W (u), lim
x→±∞

u(x) = a±, (1.4)

under various assumptions on h.

1.2. Motivation. The theory of phase transitions has led to the extensive study of singularly
perturbed, non-convex energies of the form

Jε(u) =

�

Ω

�
ε

2
|∇u|2 +

1

ε
W (u)

�
dx,

where W is a nonnegative potential with multiple global minima. In the scalar case, this
problem was studied by Modica [33] using De Giorgi’s notion of Γ-convergence (see also
[3] and the references therein). In the vectorial case of two global minima, that is when
(1.2)-(1.3) hold, the Γ-limit of this energy was studied in [13], [24]. The case where W has
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more than two wells was considered in [12] (see also [40]). In this context, the heteroclinic
connections determine the interfacial energy.

In parallel, the interest in the heteroclinic connection problem stems also from the study
of the vectorial Allen-Cahn equation that models multi-phase transitions (see [1], [3], [5],
[6], [15], [19], and the references therein). Loosely speaking, the heteroclinic connections
are expected to describe the way in which the solutions to the multi-dimensional parabolic
system

ut = ε2∆u−∇W (u),

for small ε > 0, transition from one state to the other (see [18]).
The heteroclinic connection problem also comes up when studying phase coexistence in

consolidating porous medium (see [22] and the references therein), crystalline grain bound-
aries (see [17]), planar transition front solutions to the Cahn-Hilliard system [29], and domain
walls in coupled Gross-Pitaevskii equations (see [2] and the references therein).

We emphasize that some of these applications require a triple-well potential. Neverthe-
less, under a reflection symmetry assumption on W (which is frequently inherited from the
physical model), the problem can easily be reduced to the double-well case (see [39]).

For an application which requires one to consider potentials with degenerate minima, we
refer to [11].

Our motivation for the inhomogeneous problems is twofold:
In [34], among other things, by employing singular perturbation techniques, the author

constructed heteroclinic connections to the scalar spatially inhomogeneous Allen-Cahn equa-
tion

uxx = h(εx)W �(u) such that lim
x→±∞

u(x) = a±, (1.5)

provided that ε > 0 is sufficiently small, where W has the same features as in the present
paper but assuming non-degeneracy of the global minima; h is strictly positive, bounded,
and having at least one non-degenerate local minimum. The result relies on the fact that the
ε = 0 limit problem has a unique, asymptotically stable heteroclinic solution. Our results
provide existence for all ε > 0 and hold for systems with more general W . Moreover, we
believe that, with some more effort, they can provide information about the ε→ 0 asymptotic
behavior of the solutions.

Recently, there has been an interest in constructing heteroclinic solutions to systems of
semilinear equations (see [9]). In that case, in order to exclude the possibility of construct-
ing the one dimensional heteroclinic, one has to impose some spatial inhomogeneity to the
problem. For related results concerning solutions of the system

∆u = ∇W (u), u : Rm → Rn, m, n ≥ 1,

connecting global minima of the potential W along certain directions, we refer the interested
reader to [1], [5], [7], [8], [19], [26], [27], [28], [36], and the references therein. We stress that,
even though some of the results of the current paper were previously proven by different
methods, our approach, a considerable refinement of that of [6], has the advantage of being
flexible enough to potentially treat the case of these semilinear elliptic systems.

1.3. Known results. The problem (1.1) is completely understood if n = 1, see for instance
[3], [16]; in fact, assumption (1.3) is not needed in that case.

If n ≥ 2, under assumptions (1.2)-(1.3), the existence of a heteroclinic orbit was proven
by Rabinowitz in [35] via a variational approach (see also [16, Thm. 2.3]).



THE HETEROCLINIC CONNECTION PROBLEM FOR GENERAL DOUBLE-WELL POTENTIALS 3

Under various additional nondegeneracy or geometric conditions near the global minima
of W , this problem has been dealt, mostly as a tangential issue, in several references. Under
the assumption that

W (a± + ρν) is increasing in ρ ∈ [0, δ], ∀ ν ∈ Sn−1, (1.6)

(for some small δ > 0), where Sn−1 stands for the unit sphere, the existence of the heteroclinic
connection was proven recently by Alikakos and Fusco in [6]. Their novelty was to employ
constraints which are subsequently removed. If W (a± + ρν) ≥ cργ, ρ ∈ [0, δ], for some
c, γ, δ > 0, and assuming that the level sets of W near a± are strictly convex, the existence
of the heteroclinic connection was proven very recently by Katzourakis in [32] in the spirit of
the concentrated compactness method. If the global minima of W are non-degenerate, that
is the Hessian ∂2W (a±) is positive definite, the existence of the heteroclinic connection was
proven by Sternberg in [40] by using techniques from Γ-convergence theory (an additional
growth condition as |u| → ∞ was also assumed). Other variational proofs which require
non-degeneracy of the global minima can be found in [1], [2], [5], [19], and [37]. In fact, as is
pointed out, the proof of [2] carries over to the case where W vanishes to finite order at a±.

1.4. The main result. Our primary goal is to give a new simple proof of the following
theorem.

Theorem 1.1. [35] Under assumptions (1.2) and (1.3), there exists a solution u ∈ C2(R, Rn)
to the problem (1.1).

Then, we adapt this proof to treat in a unified way a class of spatially inhomogeneous
problems.

1.5. Method of proof and outline of the paper. Our proof is motivated from the
constraint variational set up of [6] but, instead of using energy decreasing local replacement
arguments as a substitute of the maximum principle, we will use energy controlling local
replacements together with a clearing-out argument. In particular, we do not need to employ
the polar representation that was used in [6] (see also the introduction in [15]), that is to
write a function u ∈ W 1,2(R, Rn) as

u(x) = a± + ρ±(x)Θ±(x) whenever ρ±(x) = |u(x)− a±| �= 0; u(x) = a± otherwise,

which turns out to be a rather cumbersome issue (especially in the case of the corresponding
elliptic problems, see [9]).

To the best of our knowledge, besides of rendering the most general result, our proof is
the simplest available.

The outline of the paper is the following: In Section 2 we present the proof of Theorem
1.1, and in Section 3 we consider extensions to the inhomogeneous case.

2. Proof of the main result

Proof of Theorem 1.1. The main part of the proof will be devoted in showing that there
exists a solution u ∈ C2(R, Rn) to the equation

uxx = ∇W (u), (2.1)

and an L > 0, such that

|u(x)− a−| < δ, x ≤ −L; |u(x)− a+| < δ, x ≥ L, (2.2)
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for some small δ < |a+ − a−|. To this end, as in [6], for L > 2, let

X−
L =

�
u ∈ W 1,2

loc (R, Rn) : |u(x)− a−| ≤ δ, x ≤ −L
�

, (2.3)

X+
L =

�
u ∈ W 1,2

loc (R, Rn) : |u(x)− a+| ≤ δ, x ≥ +L
�

. (2.4)

It is standard to show that there exists a uL ∈ X−
L ∩X+

L such that

J(uL) = inf
u∈X−

L ∩X+
L

J(u) <∞,

where J : W 1,2
loc (R, Rn)→ [0,∞] is the associated energy functional

J(u) =

�

R

�
1

2
|ux|2 + W (u)

�
dx,

(see [6]). Our goal is to show that there exists L � 1 such that uL (or a translate of it)
satisfies (2.2), since this will imply that uL is a classical solution to (2.1). We note that, a-
priori, the minimizer uL is C2 and satisfies the Euler-Lagrange equation (2.1) only in (−L, L)
and wherever it is away from the cylindrical boundary of the constraints.

By constructing a piecewise linear competitor that is identically equal to a− for x ≤ −1
and equal to a+ for x ≥ 1, it is easy to show that

J(uL) ≤ C1, (2.5)

where the constant C1 > 0 is independent of L > 2 (an analogous argument also appears in
[20]).

We claim that, given any d ∈ (0, δ), there exists ε ∈ (0, d
2), independent of L > 2, such

that
if x2 − x1 ≥ 3 and |uL(xi)− a±| ≤ ε, i = 1, 2, (2.6)

then
|uL(x)− a±| < d, x ∈ [x1, x2]. (2.7)

It is clear that we only have to verify this claim for the + case. To this end, assume (2.6)+.
The minimality property of uL implies that there exists a constant C2 > 0, independent of
ε, x1, x2, L, such that � x2

x1

�
1

2
|(uL)x|2 + W (uL)

�
dx ≤ C2ε, (2.8)

(if W was C2, we would have ε2). (Indeed, one can easily cook up a suitable competitor
which agrees with uL outside of (x1, x2) and is equal to a+ over [x1 + 1, x2 − 1], see also
[10, Rem. 2.3]). The desired claim now follows by applying the clearing-out lemma in [15]
(see Lemma 1 therein). For the sake of completeness, let us present a different argument.
Suppose to the contrary that there exists x∗ ∈ (x1, x2) such that

|uL(x)− a+| < d, x ∈ [x1, x∗), and |uL(x∗)− a+| = d. (2.9)

Note that there exists a V ∈ C[0, δ], V > 0 on (0, δ], such that

W (a± + ρν) ≥ V (ρ) ∀ ρ ∈ [0, δ], ν ∈ Sn−1. (2.10)

Indeed, plainly set V (ρ) = min{V−(ρ), V+(ρ)}, where

V±(ρ) = min
ν∈Sn−1

W (a± + ρν), ρ ∈ [0, δ].
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Moreover, observe that uL(x) �= a+, x ∈ [x1, x∗] (if not and uL(x̄) = a+ for some x̄, the
function which is identically uL for x < x̄ and a+ for x ≥ x̄ would have less energy than the
minimizer uL). Armed with this information, we have

� x∗
x1

�
1
2 |(uL)x|2 + W (uL)

�
dx

(2.10)

≥
� x∗

x1

�
1
2 |(uL − a+)x|2 + V (|uL − a+|)

�
dx

via the diamagnetic inequality [25, Prop. 2.1.2]: ≥
� x∗

x1

�
1
2 |uL − a+|2x + V (|uL − a+|)

�
dx

as in [33]: ≥
√

2
� x∗

x1
|uL − a+|xV

1
2 (|uL − a+|) dx

≥
√

2
� d

d
2
V

1
2 (ρ)dρ.

Therefore, on account of (2.8), we can exclude the possibility (2.9) by choosing

ε ∈
�

0,
d

2

�
such that ε <

1

C2

� d

d
2

V
1
2 (ρ)dρ. (2.11)

In fact, if (1.6) holds, as in [6], it follows from (2.6) that |uL(x)− a±| ≤ ε, x ∈ [x1, x2].
Next, we claim that, for any ζ > 0 sufficiently small, there exists M > 3, independent of

L, and a sequence of positive numbers x+
1 < x+

2 < · · · , with

M < x+
i+1 − x+

i < 3M, i ≥ 1, (2.12)

such that
W

�
uL(x+

i )
�
≤ ζ, i ≥ 1. (2.13)

To see this, plainly take
M = C1ζ

−1, (2.14)

where C1 is as in (2.5) (we may assume that M > 3), and apply the mean value theorem in
the intervals [0, M ], [2M, 3M ], · · · . Analogously, given ζ > 0 sufficiently small, we can find
negative numbers · · · < x−2 < x−1 , with M < x−i − x−i+1 < 3M (increasing the value of M if
needed), such that W

�
uL(x−i )

�
≤ ζ, i ≥ 1.

Let ε > 0 be as in (2.11) with d = δ, and ζ > 0 be such that

W (u) ≤ ζ implies that |u− a−| ≤ ε or |u− a+| ≤ ε. (2.15)

We then choose
L = 1000M,

where M > 3 is as in (2.14). From (2.6), (2.7), (2.12), (2.13), and (2.15), we certainly have
that

|uL(x)− a−| < δ if x ≤ −1010M ; |uL(x)− a+| < δ if x ≥ 1010M. (2.16)

In view of (2.13) and (2.15), only two possibilities can occur:
(1) |uL(x+

1 )−a+| ≤ ε. Then, by the property (2.6)–(2.7) and the second part of (2.16), we
infer that |uL(x)− a+| < δ for x ≥ x+

1 ∈ (0, M). Hence, by abusing notation and replacing
uL with its translate uL(·− 20M) ∈ X−

L ∩X+
L , if necessary (they have the same energy), via

the first part of (2.16), we deduce that (2.2) holds, as desired.
(2) |uL(x+

1 ) − a−| ≤ ε. Then, we have that |uL(x) − a−| < δ for x ≤ x+
1 ∈ (0, M) (from

(2.6)-(2.7) and the first part of (2.16)). In that case, as before, replacing uL by the translated
minimizer uL(· + 20M), if necessary, we find that (2.2) holds, as desired.
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We have thus shown that the minimizer uL satisfies (2.2). In particular, by standard
arguments (see [6]), it induces a classical solution to (2.1). To complete the proof of the
theorem, we will show that limx→±∞ uL(x) = a±. Indeed, for any arbitrarily small d > 0,
by (2.13)–(2.15), there exists a sequence xi →∞ such that |uL(xi)− a+| < ε, where ε as in
(2.11). Then, in view of (2.6)-(2.7), we obtain that |uL(x)− a+| < d, x ≥ x1. Similarly, we
can show that limx→−∞ uL(x) = a−.

The proof of the theorem is complete. �
Remark 2.1. The proof of Theorem 1.1 carries over without difficulty to the quasi-linear
setting: �

|ux|p−2ux

�
x

= ∇W (u), lim
x→±∞

u(x) = a±, (p > 2),

that was considered very recently in [31], and the references therein, under assumption (1.6).
The only essential difference is that one has to modify slightly the proof of the clearing-out
lemma of [15] by using the Hölder inequality instead of the Cauchy-Schwarz .

3. Inhomogeneous problems

3.1. The periodic inhomogeneity.

Theorem 3.1. Assume that h ∈ C(R) is T -periodic and positive. Under assumptions (1.2)
and (1.3), there exists a solution to the problem (1.4).

Proof. The proof is completely analogous to that of Theorem 1.1. The only difference is that
we take M in (2.14) to be a large multiple of the period T . �
Remark 3.1. In the scalar case (n = 1), further assuming that a± are non-degenerate
minima of W , this problem was considered in [4], and for W as above in [16].

3.2. The asymptotically constant inhomogeneity.

Theorem 3.2. Assume that h ∈ C(R) is positive, bounded,

lim
x→±∞

h(x) = h∞ > 0 and h(x) ≤ h∞, x ∈ R. (3.1)

Under assumptions (1.2) and (1.3), there exists a solution to the problem (1.4).

Proof. The main difference of the problem at hand with the previous ones is that there is no
translation invariance (continuous or discrete).

As before, for L > 2, let
mL = inf

u∈X−
L ∩X+

L

J(u), (3.2)

where X±
L are as in (2.3)–(2.4), and

J(u) =

�

R

�
1

2
|ux|2 + h(x)W (u)

�
dx. (3.3)

It is easy to show that the infimum is attained at some uL ∈ X−
L ∩X+

L .
Motivated from [14], where ground states to the nonlinear Schrödinger equation with

potential h were considered, we will compare mL with

m∞,L = inf
u∈X−

L ∩X+
L

�

R

�
1

2
|ux|2 + h∞W (u)

�
dx,
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which, as we have already shown in Theorem 1.1, is attained by a classical solution u∞,L ∈
X−

L ∩X+
L of the problem

uxx = h∞∇W (u), lim
x→±∞

u(x) = a±,

provided that L is sufficiently large. We may assume that h(x) < h∞ somewhere, say that

h(x) < h∞, x ∈ (x−, x+), (3.4)

for some x−, x+ ∈ R. By translating u∞,L, if necessary, we may assume that

|u∞,L(x−)− a−| ≥ δ and |u∞,L(x−)− a+| ≥ δ,

for large L. Observe that, from the proof of Theorem 1.1, this can be achieved while keeping
that u∞,L ∈ X−

L ∩X+
L (intuitively, u∞,L has at most 3M time to transition from a− to a+).

Therefore, by the analog of (2.5), it is easy to see that

|u∞,L(x)− a−| ≥
δ

2
and |u∞,L(x)− a+| ≥

δ

2
for x ∈

�
x−, x− +

δ2

8C1

�
, (3.5)

(the point being that this interval is independent of large L). Indeed, if x ∈
�
x−, x− + δ2

8C1

�
,

letting ρ±(x) = |u∞,L(x)− a±|, we have

|ρ±(x)− ρ±(x−)| ≤
� x

x−

|u∞,L − a±|tdt ≤
� x

x−

|(u∞,L)t| dt ≤ |x− x−|
1
2 (2C1)

1
2 ≤ δ

2
.

Then, using u∞,L as a test function, we find that

mL ≤
�

R
�

1
2 |(u∞,L)x|2 + h(x)W (u∞,L)

�
dx

=
�

R
�

1
2 |(u∞,L)x|2 + h∞W (u∞,L)

�
dx +

�
R (h(x)− h∞) W (u∞,L)dx

via (3.4), (3.5) ≤ m∞,L − c
(3.6)

where c > 0 is independent of large L.
Observe that all the properties in the proof of Theorem 1.1 up to (2.15) remain true for this

uL with the obvious changes (with h in from of W ); in fact, let us keep the same notation.
This time we let

L = Lj = jM,

with j a sufficiently large integer that is to be determined so that (2.2) holds, which in
particular will imply that uL is a classical solution to

uxx = h(x)∇W (u). (3.7)

Suppose, to the contrary, that there exists a sequence of Lj → ∞ such that (2.2) with
L = Lj is violated at some x ≤ −Lj (the other case is completely analogous). Then, by the
analogous property to (2.6)-(2.7), denoting uLj by uj, we would have that

|uj(x)− a−| < δ if x ≤ −(j + 10)M ; |uj(x)− a+| < δ if x ≥ −(j − 10)M. (3.8)

From the second part of the above relation (which implies that uj solves (3.7) for x >
−(j − 10)M), making use of Arczela-Ascoli’s theorem and the standard diagonal argument,
passing to a subsequence if needed, we find that

uj → U in C1
loc(R, RN),
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where U satisfies

Uxx − h(x)∇W (U) = 0, |U(x)− a+| ≤ δ, x ∈ R. (3.9)

Furthermore, from the analog of (2.5), we obtain that

J(U) ≤ C1, (3.10)

where J is the energy in (3.3). Moreover, from the minimality of uj, and the second part of
(3.8), it follows readily that U is a minimizer of the energy subject to its boundary conditions,
that is

J(U) ≤ J(U + ϕ) ∀ ϕ ∈ W 1,2
0 (I) and any interval I,

(this can be proven as in [23]). As in the proof of Theorem 1.1, given any d ∈ (0, δ), there
exists ε ∈

�
0, d

2

�
such that property (2.6)+ − (2.7)+ holds for U . Combining (2.15), (3.10),

and the fact that h is bounded from below by some positive constant, we find that U ≡ a+ (in
the case where (1.6) holds, not necessarily with a strict inequality, this can also be deduced
by the weak sub-harmonicity of the function ρ = |U−a+|, which follows directly from (3.9)).
In particular, we get that

W (uj)→ 0 in Cloc(R). (3.11)

On the other hand, we have

mLj =
�

R
�

1
2 |(uj)x|2 + h(x)W (uj)

�
dx

=
�

R
�

1
2 |(uj)x|2 + h∞W (uj)

�
dx +

�
R (h(x)− h∞) W (uj)dx

via (3.1) and (3.11) : ≥ m∞,Lj + o(1),

where o(1)→ 0 as j →∞, which contradicts (3.6).
Having established that (2.2) holds for sufficiently large L, the rest of the proof proceeds

verbatim as that of Theorem 1.1. �

Remark 3.2. Using a different variational argument, the above theorem was proven in the
scalar case in [16, Thm. 2.2].

In the vector case, under additional assumptions which include the non-degeneracy of the
global minima, related results have been obtained in [21].

3.3. The diverging inhomogeneity.

Theorem 3.1. Assume that h ∈ C(R) is nonnegative, and

lim
x→±∞

h(x) =∞. (3.12)

Under assumptions (1.2) and (1.3), there exists a solution to the problem (1.4).

Proof. Our strategy remains the same. We consider the constraint minimization problem
(3.2)-(3.3) and show that any minimizer uL (which exists by standard arguments) satisfies
(2.2), provided that L is sufficiently large. Clearly, estimate (2.5) holds (abusing notation).

We claim that, for large L, we have that

|uL(x)− a+| < δ, x ≥ L.
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Indeed, suppose to the contrary that there exists x+ ≥ L such that |uL(x+)−a+| = δ. Then,
arguing as in (3.5), we find that

|uL(x)− a+| ≥
δ

2
for x ∈

�
x+, x+ +

δ2

8C1

�
.

In turn, this implies that

W (uL(x)) ≥ c > 0, x ∈
�
x+, x+ +

δ2

8C1

�
,

where the constant c > 0 is independent of large L. On the other hand, if L is sufficiently
large, the above relation contradicts the fact that

� ∞

L

W (uL(t)) dt→ 0 as L→∞,

which follows directly from (2.5) and (3.12). Analogously, we can show that

|uL(x)− a−| < δ, x ≤ −L.

Having established that uL satisfies (2.2) (and as a consequence (3.7)), for sufficiently large
L, we can proceed in a similar manner to show that it also satisfies the desired asymptotic
behavior at respective infinities. �
Remark 3.3. If h(x) > 0, x ∈ R, the above theorem is contained in [30].

Remark 3.4. In [38], relying on the oddness of the nonlinearity, we used a shooting argument
to show that there exists a unique odd solution to the problem

uxx = |x|α(u3 − u), lim
x→±∞

u(x) = ±1,

where α > 0. Moreover, this solution is increasing and asymptotically stable. This hetero-
clinic connection describes the profile of the transition layer, near x = 0, of the singular per-
turbation problem (1.5) with h ∼ |x|α as x→ 0 and h > 0 elsewhere (here W (u) = (u2−1)2

4 ).
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