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Stimulated Acoustic Emissions from Coupled Strings 
 
Richard S. Chadwick1, Jessica S. Lamb1, Daphne Manoussaki2 
 
1Section on Auditory Mechanics, NIDCD, Bethesda MD, USA, 2Department of Sciences 
/ Division of Applied Mathematics, Technical University of Crete, Hania, Crete, Greece 
 
Abstract 
 
We consider traveling transverse waves on two identical uniform taut strings that are 
elastically coupled through springs that gradually decrease their stiffness over a region of 
finite length. The wave system can be decomposed into two modes: an in-phase mode (+) 
that is transparent to the coupling springs, and an out-of-phase mode (-) that engages the 
coupling springs and can resonate at a particular location depending on the excitation 
frequency. The system exhibits linear mode conversion whereby an incoming (+) wave is 
reflected back from the resonance location both as a propagating (+) wave and an 
evanescent (-) wave, while both types emerge as propagating forward through the 
resonance location. We match a local transition layer expansion to the WKB expansion to 
obtain estimates of the reflection and transmission coefficients. The reflected waves may 
be an analog for stimulated emissions from the ear. 
 
Introduction 

 Linear mode conversion is a phenomenon that has been studied for several 

decades and finds application in plasma physics, geophysics, and biophysics [1, 2, 3]. 

The slowly varying WKB approximation becomes singular at such a mode conversion 

point. Here we examine a simple mechanical system that illustrates that effect. Typically, 

one propagating wave can excite another at a location where the wavelengths of the 

different modes become similar and energy can be exchanged, although here an internal 

resonator excites the second mode. Of particular interest is to understand how a reflection 

can occur when there are no discontinuities in physical properties. Originally, Rayleigh 

[4] found reflections on a single string having smoothly varying mass over a finite 

transition region. Here we find reflections on two coupled strings with no discontinuities 

in physical properties. Our motivation is to find a simple model for stimulated emissions 

from the ear, a sub class of emissions found in the ear that occur at the frequency of the 

incoming stimulus. 

 

Coupled strings model 

We consider the following coupled system: 



 

          (1) 

 

where (y1, y2) are the transverse displacements, ! is the density, T is the tension and K(x) 

is the variable stiffness of the coupling spring, which is assumed to exert a restoring force 

proportional to the difference in displacements of the two strings. It is easy to see that the 

system admits two uncoupled modes (+, -). The (+) mode doesn’t engage the coupling 

spring and is governed by the homogenous wave equation 

 

     .    (2) 

This equation can be obtained by adding the two equations in (1) and defining y+ = y1 + 

y2. The (-) mode is governed by the inhomogeneous telegraph equation 

 

     .   (3) 

This equation can be obtained by subtracting the second equation in (1) from the first and 

defining y- = y1 - y2.  It then follows that y1
 =(y+

 + y-)/2  and y2
 =( y+

 - y-)/2. These latter 

relations allow us to transform from modal coordinates back to physical coordinates. It is 

easiest, however, to solve a specific problem in modal coordinates. For simple harmonic 

motion with the stimulus frequency ", , and we consider the reduced 

uncoupled system: 
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where we have introduced the scaled quantities: # = kx, k = "/c, c2 =T/!,  and $ = 

2K/(!"2). Consider exciting a right-running (+) wave mode of unit amplitude from a 

source far to the left !!"# , with a %/2 phase lead over all other waves generated by a 

resonator (see below) at #=0. The coupling spring is set up such that to the left of the 

transition, the (-) mode cannot propagate. The general solution of the system (4) can be 

expressed as a linear combination of the two solutions of each of the equations totaling 

four in number. The first has the two solutions: y+ = exp[-i#] and exp[i#]; the first being 

an incoming right-running wave, and the second is a reflected wave. Incoming left-

running waves entering from the right !!" shall not be allowed.  

 

WKB Solution Away from Turning Point 

Approximate right and left-running WKB [5] solutions for the 2nd equation in (4) 

are given by (5): 

 

      y-  =     .     (5) 

 

The WKB approximation clearly fails at the turning point, where $ =1, and mode 

conversion can occur, possibly shifting energy to the (-) mode. Physically, a resonance 

occurs where $ =1, with ! = 2K / " , i.e. the mass/length of the strings and the coupling 

spring form a locally resonant system. The factor of 2 arises because of a node at the 

center of the spring for the (-) mode, resulting in two springs in series, each having half 

the length and thus twice the stiffness. The singularity at $ =1 is due to the failure of the 

WKB energy equation. Our first goal is to salvage the WKB approximation, i.e. the outer 

expansion, by asymptotic matching to a local transition layer expansion, i.e. the inner 

expansion, constructed to be valid as !! 0 . The idea is to push the two expansions into 

their respective domains of invalidity to see if there is a region where both expansions 

agree. Here we show the inner and outer expansions indeed match to lowest order, with 

this simplest form of matching. Langer [5] provided more accurate uniformly valid 

  

! 

exp[!i 1"#($)d$]%
1"#($)4



expansions for problems of this type. We proceed to calculate the reflection and 

transmission coefficients for the wave system. 

 

Transition Layer (Airy Function Solutions) 

 The transition layer equation is obtained by considering a Taylor series for the 

function $ (#) about the turning point where $ =1. To be specific, let us consider a 

piecewise continuous quadratic stiffness function with continuous first derivative that is 

anti-symmetric about # = 0, which is the center of the transition from high uniform 

stiffness to low uniform stiffness defined by the domain !! / 2 " " "! / 2 . Let 1-$(#)  

= G(#) =4&#/'(1+#/')  for !! / 2 " " " 0 , and 1-$(#)  = F(#) =4&#/'(1(#/')  for 

0 ! ! !" / 2 , where the total stiffness decrease is 2&.  Note that  for # < -'/2, 1-$(#)  = 

 G[-'/2] <0, which implies that the (-) mode is evanescent on the left side of the 

transition, while for  # > '/2,  1-$(#)  = F['/2] >0, which implies that the (-) mode can 

propagate on the right side of the transition.  Keeping just the linear term, we consider the 

first order transition equation: 
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where ) = 4&/'>0,  which has a general solution in terms of the Airy functions 

 

Y (! ) ="Ai[! #3 ! ]+$Bi[! #3 ! ]    (7) 

 

where  (*, +) are coefficients to be determined. We shall require the leading terms of the 

asymptotic forms of the Airy functions for large values of the argument: 
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as !!"# ,  while for !!"we have  
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Since Eq. (9) becomes unbounded as !!"# , we must reject the Bi function to the left 

of the turning point, while Eq. (11) shows we can keep it to the right of the turning point. 

Equations (8) and (9) suggest that to the left of the turning point we write the WKB 

solution in the form 
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Expanding (12) as !! 0  gives 
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Expressions (7), (8), and (13) asymptotically match for # < 0 provided 
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Similarly, Equations (10) and (11) suggest that to the right of the turning point we write 

the WKB solution in the form 
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Expanding (10) as !! 0  gives     
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Expressions (7), (10), (11), and (13) asymptotically match for # > 0 provided 
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Interface Conditions 

We can now proceed to calculate the complex amplitude coefficients (R+, R-, T+, 

T-, *, +) of all the waves resulting from the interaction with the local resonator. R+ and R- 

are reflection coefficients that denote the amplitudes of the reflected left-running (+) and 

(-) wave modes that result from the interaction of the right-running (+) wave of unit 

amplitude with the smooth decrease in coupling spring stiffness. Similarly, T+ and T-  

(not to be confused with the tension T in the strings) are the transmission coefficients that 

denote the amplitudes of the right-running (+) and (-) wave modes transmitted through 

the transition. To do this we select three locations #=('/2 , 0, '/2  and require that the 

amplitude A and slope S of the total wave system is continuous at these locations, 

corresponding to unbroken and unplucked strings. This results in a system of 6 linear 

equations for the 6 unknown amplitudes. We note that if A and S are separately 

continuous, then their product AS, the wave energy, is also continuous. Thus our scheme 

conserves total energy. Nevertheless, (+) and (-) modes can still exchange energy, as we 

will see.  



To establish the equations at each interface we sum the product of wave 

amplitude and phase for right-running and left-running waves for both (+) and (-) modes. 

We choose the wave phases to be zero at the turning point #= 0, which assumes that new 

waves generated there lag the right-running (+) source wave by %/2, consistent with a 

phase lag at resonance. First we note that for # < ( '/2 ,  we have exp[-i(#(%/2)]  and 

R+exp[i#] as the right and left-running solutions respectively, of the first of Eq.s (4), 

while R! exp[ !" ]  is the acceptable (evanescent) solution of the second of Eq. s (4). 

Similarly, we have for # > '/2 ,  T+exp[-i(#(%/2)]  and T ! exp[!i !" ]as acceptable 

(right-running) solutions of Eq.s (4). Furthermore, inside the transitions region, 

 ( '/2< # < '/2, exp[-i(#(%/2)] and R+exp[i#] are still allowable solutions of the first of 

Eq.s (4), whereas the solutions of second of Eq.s (4) are approximated by the WKB 

solutions. Just inside # = '/2, we use Eq.s (16), (18), and (19) to obtain the wave 

amplitudes  

   

!6

i" #4
($ cos["% #

8
+
"
4
]+& sin["% #

8
+
"
4
]) . 

 

Similarly, just to the right of # =( '/2, we use Eq.s (12), (14), and (15) to obtain 
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Near the origin # =0, we use the Airy function solution Eq. (7), instead of the WKB 

approximation, but we reject the Bi function to the left of # =0, because of exponential 

growth. It seems necessary to have a discontinuous solution of the (-) mode near the 

origin in order to get a non-trivial solution of the mode conversion system. This is 

physically permissible however, since we still maintain continuity of the sum of the (+) 

and (-) modes at the origin. 

Keeping all this in mind, the interface conditions at # = ( '/2  are 
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Equation (20) stipulates continuity of amplitude A, while (21) stipulates continuity of the 

wave slope S, to the first approximation. The first term on the left represents the 

incoming (+) mode wave having an amplitude assumed to be unity, corresponding to the 

physical displacements y1 = y2 = !. This is the only external forcing in the problem. All 

others waves are a result of the interaction of this wave with the internal resonator at 

# =0.  The second term is the reflected (+) mode wave, and the third term is the reflected 

(-) mode wave, which is evanescent since the phase is imaginary and results in an 

exponential decay. Note that there is no incoming (-) evanescent mode wave since it 

would have already decayed had it been excited. The terms on the right represent to 

WKB approximation to these waves across the interface. The interface continuity 

conditions at #=0 are: 
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Note that the Ai function is continuous across the interface and thus cancels. If Bi were 

continuous and also canceled, we would get the unwanted (unless & = 0) trivial solution 

T+ =1 and R+ =0. Interestingly, the solution is evidently not unique at #=0 according to 

the demonstration that follows.  Consider the first Eq. 1, and make the substitutions: 

! /!t" i! , ! /!x"#ik , K(0)! !" 2 / 2 . The last substitution is the resonance 

condition. The following dispersion relation then results: 

1! 2 k
2T

!" 2 +
y2
y1
= 0 . 

This relationship shows there is a continuum of wavenumbers that can exist that depend 

on the mode ratio y2/y1. Furthermore, this relation shows that the (-) mode is excitable at 



#=0.  If we suppose y2 / y1!"(1+! ) , where 0 <! <<1  is a small perturbation that 

could either be thermal, or as a result of an evanescent incoming right-running wave, then 

it follows that the wavespeed of the perturbation c = ! / k = !2T / ("# ) . The large 

imaginary wavespeed is indicative the excitability of the (-) mode due to the local 

resonance condition. Thus we are entitled to seek a non-trivial solution containing the (-) 

mode as long as the required continuity properties are satisfied. 

 

Finally, the interface conditions at #='/2 are: 
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(24,25) 

 The amount of energy converted in the process can be calculated in terms of the 

reflection and transmission coefficients. The total incoming wave energy is unity, all of it 

being in the (+) mode. The amount of energy in the (-) mode leaving the transition 

boundaries is 

 

 

 

  !{!i(T ! )2 exp[!i" ! ]+ (R! )2 exp[!" ! ]}  .                            (26) 

 

The first term represents energy from a wave that leaves outward from the right interface 

while the second is evanescent and leaves through the left interface. 

 

Results and Discussion 

The amplitudes of the complex reflection and transmission coefficients are plotted 

in Figure 1 as a function of the two parameters & and ' .   The difference between high 

and low values of the coupling spring stiffness is 2&,  and '/(2%)  is the ratio of the length 

of the transition to the wavelength of the incoming (+) wave. Thus, when ' = 2%, one 

incoming wavelength just fits into the confines of the transition region. All amplitudes 



have a non-monotonic and complex dependence with respect to both parameters. The 

accuracy of the correction to the WKB approximation near a mode conversion point 

remains an interesting question that needs to be addressed in future work. In particular 

limitations on the smallness of the stiffness decrease need to be established. Also, the 

question of how to deal with an isolated turning point, which is not enclosed by well-

defined interfaces, remains unanswered by the present analysis.  

The oscillatory behavior of the reflection coefficients with respect to ' shows that 

even this simple system exhibits a stimulated emissions spectrum that is characteristic of 

the ear. In the present system the frequency spacing of the spectrum originates from the 

oscillatory nature of the Airy functions, given by Eq. s (10) and (11). Physically, it is due 

to the coupling stiffness gradient, and a local resonance between the coupling spring and 

the mass of the strings.  In the mammalian ear there are numerous contributions to a 

decreasing coupling stiffness gradient in the organ of Corti. The increasing length of 

outer hair cells and their stereocilia from base to apex are an example.  In contrast, the 

coherent reflection theory that Zweig and Shera [6] developed for the ear argues that the 

incoming wave is scattered by local irregularities of any kind, and then coherently filtered 

by the incoming wave. 
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