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Summary

The interaction of a time-harmonic plane wave with a semi-infinite lattice of identical
circular cylinders is considered. No assumptions about the radius of the cylinders,
or their scattering properties, are made. Multipole expansions and Graf’s addition
theorem are used to reduce the boundary value problem to an infinite linear system
of equations. Applying the z transform and disregarding interaction effects due to
certain strongly damped modes then leads to a matrix Wiener–Hopf equation with
rational elements. This is solved by a straightforward method that does not require
matrix factorisation. Implementation of the method requires that the zeros of the
matrix determinant be located numerically, and once this is achieved, all far field
quantities can be calculated. Numerical results that show the proportion of energy
reflected back from the edge are presented for several different lattice geometries.

1. Introduction

In a recent article (1), the authors considered scattering of a plane acoustic wave by a
semi-infinite periodic medium. This work was carried out in the low frequency limit, that
is the wavelength was assumed to be large in comparison to the other length scales in the
problem. Here, we provide a more general analysis which is not subject to such limitations.
The key improvement is the use of multipole expansions to represent the scattered field.
The low frequency limit considered in our earlier work is a special case of this analysis,
and can be retrieved by discarding all but one of the terms (the monopole) from each
multipole expansion. Our new analysis allows for larger lattice elements and is valid in a
wider frequency range. In addition, there are no restrictions on the boundary conditions
applied on the surface of the lattice elements.

The motivation behind this research is our intention to explore the excitation of Bloch waves,
which propagate through periodic media without loss. Bloch waves have been found to exist
in a range of different physical contexts, including elastodynamics of composite materials
and thin plates, acoustics and electromagnetism (2, 3, 4, 5). Bloch wave propagation
continues to be an active research field; recent papers that have introduced new ideas include
(6, 7) and (8). Associated with each periodic medium that supports Bloch waves is a band
structure which dictates the parameter regimes where propagation is permitted. A given
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frequency may lie in a total stop band where no propagation is possible, a partial stop band
where propagation can occur in a limited set of directions, or a pass band where propagation
in any direction is possible. This complex, frequency and direction dependent behaviour
leads to important applications in the fabrication of waveguides, filters, optical fibres and
photonic crystals (9, 10, 11). The band structure can be used to make some deductions
about the scattered field that arises when an incident wave strikes the edge of a periodic
medium. If the parameters lie in a stop band then no transmission is possible, and all of the
incident wave energy must be reflected back from the edge. If transmission is possible, some
or all of the incident energy may be converted into Bloch waves, but it is not possible to make
a quantitative statement about the amplitudes of the transmitted and reflected fields based
on the band structure alone (11, pp. 223–224). This excitation problem has received much
less attention than the propagation problems discussed above. Therefore we will develop
the theory for the canonical problem of an acoustic plane wave incident on a semi-infinite
lattice (a semi-infinite stack of infinite rows) of identical circular cylinders. We assume
there is no variation along the axis of the cylinders, so that the problem is governed by the
two-dimensional Helmholtz equation. In addition, we assume that the cylinders are perfectly
sound-soft or sound-hard, so that there is no interior field. In fact this last assumption is
unnecessary, and a very minor modification to our equations facilitates consideration of
penetrable bodies. Whilst this modification has no effect on our analysis beyond changing
the definition of a sequence of constants (see §4), we choose to focus on impenetrable bodies
because the introduction of an interior field leads to the presence of additional parameters
in an already complex problem. Both the sound-hard and sound-soft cases have applications
in other physical contexts. In electromagnetism, s- and p-polarised waves incident on an
a semi-infinite lattice of perfectly conducting cylinders lead to problems equivalent to the
sound-soft and sound-hard cases, respectively (12). In linear water wave theory, a plane
wave incident on a semi-infinite lattice of bottom-mounted, surface penetrating cylinders is
equivalent to the sound-hard case (13, ch. 2).
The plan of the paper is as follows. In §2 we formulate the boundary value problem,

and in §§3–4 we derive representations of the field in terms of grating modes and multipole
expansions. Applying Graf’s addition theorem (14, thm. 2.12) to the multipole representation
leads to an infinite linear system of equations. When Bloch waves are excited, this system has
poor convergence properties, and cannot be solved directly by truncation, but it is amenable
to the discrete Wiener–Hopf technique (15, 16). Following the method of (1), in §5 we
apply the z transform (17) to obtain a Wiener–Hopf equation. A key difference between the
low frequency analysis in our earlier article and the current work then becomes apparent.
The Wiener–Hopf equation obtained in (1) is scalar, that is it consists of a single functional
equation containing two unknown functions, which have known (and overlapping) domains of
analyticity. Equations of this type can be solved using a standard procedure (18, §1.7). For
the current problem, we obtain an infinite-dimensional matrix Wiener–Hopf equation (an
infinite set of coupled scalar equations). This turns out to have some important symmetry
properties, and these are the subject of §6. In §7, we truncate the multipole expansions to
obtain a finite-dimensional matrix Wiener–Hopf equation. Then, by neglecting interaction
effects due to strongly evanescent grating modes, we further reduce this to an equation
whose elements are rational functions. This approximate system is solved by matching the
poles and residues on opposing sides, and in this way we avoid the necessity of performing a
matrix Wiener–Hopf factorisation, which is generally very difficult (19, 20). After solving
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the Wiener–Hopf equation, we proceed to analyse the transmitted and reflected far field
patterns in §8. Using these, we derive a conservation of energy condition in §9, which is
used as a check on our numerical results, and to ensure that no Bloch waves that transport
energy toward the interface are included in our solutions. Some details of the implementation
are given in §10, and numerical results are presented with discussion in §11. Finally, some
concluding remarks are made in §12.

2. Formulation

Let a1 and a2 be linearly independent vectors in the (x, y) plane. Suppose that infinitely
long (in z), cylindrical scatterers of radius � are centred at the points with position vectors

Rjp = ja1 + pa2, j ∈ Z, p = 0, 1, . . . (2.1)

forming a semi-infinite lattice (Fig. 1). Without loss of generality, we can assume that

a1 = a1x̂, and a2 = η1x̂+ η2ŷ, (2.2)

where η2 > 0. Here, x̂ and ŷ are unit vectors in the x and y directions, respectively, and we
have introduced the convention that |v| = v for any vector v, which will be used throughout.
In order that the cylinders do not overlap, we must have a ≥ 2�, where a is the magnitude
of the shortest nonzero lattice vector, that is

a = min
j2+p2 �=0

Rjp. (2.3)

We also introduce position vectors relative to the centre of each cylinder; thus

rjp = r−Rjp, (2.4)

as shown in Fig. 1. We will consider time-harmonic motion with frequency ω, in which case
the acoustic potential outside the cylinders is given by

U(r, t) = Re
�
u(r)e−iωt

�
. (2.5)

The complex-valued function u must satisfy the Helmholtz equation
�
∇

2 + k2
�
u(r) = 0, (2.6)

where k = ω/c, with c representing the speed of sound. For sound-soft cylinders, the surfaces
are subject to the Dirichlet boundary condition

u(r) = 0 on rjp = �, j ∈ Z, p = 0, 1, . . . (2.7)

whereas for sound-hard cylinders the Neumann condition

∂u(r)

∂rjp
= 0 on rjp = �, j ∈ Z, p = 0, 1, . . . (2.8)

applies. We will focus on these two cases, though it should be noted that boundary conditions
for penetrable cylinders can be applied using exactly the same method, and in fact only
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Fig. 1 Schematic diagram showing a section of the lattice, and illustrating the notation in use.

the definition of the coefficient Zn that appears in equation (4.12) needs to be changed to
account for this possibility. Let the plane wave corresponding to

ui(r) = eir·k (2.9)

be incident upon the lattice, where the wavenumber vector is given by

k = k cosψ0 x̂+ k sinψ0 ŷ, ψ0 ∈ (0,π). (2.10)

The total field is then given by
u = ui + us, (2.11)

where us is the scattered field, which we seek to determine. In order to match the periodicity
of the geometry and of the incident field we must have

u(r+ ja1) = eijka1 cosψ0u(r), j ∈ Z, (2.12)

and the same condition applies to the scattered field.

3. Grating mode representation

At points that do not lies on the axes of the rows, so that there is no nonnegative integer q
such that y = qη2, the scattered field can be represented as a sum of grating modes, each of
which is an exponential solution to the Helmholtz equation that satisfies the quasi-periodicity
condition (2.12). That is,

u(r) =
∞�

j=−∞
eikx cosψj

�
c+j e

iky sinψj + c−j e
−iky sinψj

�
, (3.1)

for some unknown amplitude coefficients c±j . Here, the scattering angles are defined via

k cosψj = k cosψ0 + 2jπ/a1, and k sinψj = iγ(k cosψj), (3.2)
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where the function γ is given by

γ(t) =

�√
t2 − k2 if |t| ≥ k,

−i
√
k2 − t2 if |t| < k.

(3.3)

Note that cosψj is always real, whereas sinψj is positive real for a finite set of integers j and
positive imaginary otherwise. Since the distinction between these two cases is important, we
define the sets

M = {j ∈ Z : | cosψj | ≤ 1} and N = {j ∈ Z : | cosψj | > 1}. (3.4)

For each j ∈ M, the grating modes with amplitude coefficients c+j and c−j propagate in
the direction of increasing and decreasing y, respectively, unless sinψj = 0, in which case
they are independent of y. Similarly, for j ∈ N , modes with amplitude coefficients c+j decay

exponentially as y is increased, and those with amplitude coefficients c−j decay exponentially
as y is decreased. For the problem under consideration here, we should expect the amplitude
coefficients to take different values between each pair of rows. An expansion of the form (3.1)
also holds in the half-space y < 0, but here the scattered field clearly cannot include any
modes that grow with decreasing y, or are incoming from infinity. Hence,

us(r) =
∞�

j=−∞
eikx cosψj

�
c+jqe

iky sinψj + c−jqe
−iky sinψj

�
, (q − 1) <

y

η2
< q, q ∈ N, (3.5)

and

us(r) =
∞�

j=−∞
c−j0e

ik(x cosψj−y sinψj), y < 0. (3.6)

Values for c−j0 and for c±jq in the far field limit q → ∞ will be determined in §8 and §9,
respectively.

4. Multipole representation

In view of the quasi-periodicity condition (2.12), the multipole expansion (14, ch. 4) for the
scattered field has the form

us(r) =
∞�

n=−∞

∞�

p=0

∞�

j=−∞
Ap

ne
ijka1 cosψ0Hn(rjp). (4.1)

Here, the outgoing wavefunction in the summand is defined as

Hn(r) = H(1)
n (kr)einθ, (4.2)

where H(1)
n is a Hankel function of the first kind and θ is the anticlockwise angle between

the positive x axis and the vector r. Note the symmetry property

Hn(−r) = (−1)nHn(r). (4.3)

The expansion (4.1) satisfies the Helmholtz equation (2.6), and the amplitude coefficients
Ap

n must be chosen so that the boundary condition on the cylinder surfaces is satisfied. The
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first step in determining the appropriate values for Ap
n is to locally expand the total field

about one of the cylinder centres. We need only account for the boundary conditions on
cylinders centred at r = qa2 for q = 0, 1, . . . Conditions elsewhere follow automatically, in
view of the quasi-periodicity property (2.12). For the incident wave, we use the generating
function for Bessel functions (21, eqn. 10.12.1) and the fact that ui(r) = ui(Rjp)ui(rjp) to
obtain the Jacobi expansion

ui(r) = eiqa2·k
∞�

n=−∞
ine−inψ0Jn(r0q), (4.4)

where the regular wavefunction Jn(·) is given by

Jn(r) = Jn(kr)e
inθ, (4.5)

with θ defined as in equation (4.2). For the scattered field, we use Graf’s addition theorem (14,
thm. 2.12), which in our notation shows that

Hn(rjp) =
∞�

m=−∞
Hn−m(−Rj,p−q)Jm(r0q), n ∈ Z, r0q < Rj,p−q. (4.6)

Terms in the multipole expansion (4.1) with j = 0 and p = q represent the field radiating
from the cylinder centred at r = qa2, and do not need to be re-expanded. Using (4.6) for
the remainder of the series, we obtain

us(r) =
∞�

n=−∞

�
Aq

nHn(r0q) +
∞�

p=0

∞��

j=−∞
Ap

ne
ijka1 cosψ0

∞�

m=−∞
Hn−m(−Rj,p−q)Jm(r0q)

�
,

(4.7)
where the prime symbol indicates that the terms in which Rj,p−q = 0 are to be omitted from
the summation. This expansion is valid provided that r0q < a, where a is given by (2.3).
Combining (4.7) with (4.4) yields the local expansion

u(r) =
∞�

n=−∞
Aq

nHn(r0q) + IqnJn(r0q), r0q < a, q = 0, 1, . . . (4.8)

Here, the second term on the right-hand side represents the field incident on the cylinder
centred at r0q = 0, consisting of the incident plane wave, and the radiation from all the
other cylinders. An expression for Iqn can be obtained by reading off the coefficient of the
regular wavefunction in (4.7) and combining this with the contribution from (4.4). In this
way, we find that

Iqn = inei(qa2·k−nψ0) +
∞�

m=−∞

∞�

p=0

∞��

j=−∞
Ap

meijka1 cosψ0Hm−n(−Rj,p−q). (4.9)

When p = q, the sum over j takes the form of a one-dimensional lattice sum, described
in appendix B, whereas when p �= q it is a quasi-periodic Green’s function of the type
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considered in appendix A. Therefore we write Iqn in the form

Iqn = inei(qa2·k−nψ0) +
∞�

m=−∞

∞�

p=0

Ap
mSq−p

m−n(k cosψ0), n ∈ Z, q = 0, 1, . . . (4.10)

where

Sq
n(k cosψ0) =

�
σ−n(k cosψ0) if q = 0,

Gn(qa2, k cosψ0) if q �= 0.
(4.11)

Applying the boundary condition on r0q = � and using the orthogonality of the cylindrical
harmonics in the wavefunctions Hn and Jn in (4.8), we find that

Aq
n + ZnI

q
n = 0, (4.12)

where the scattering coefficient Zn is given by

Zn = Jn(k�)
�
H(1)

n (k�) (4.13)

for Dirichlet conditions, whereas for Neumann conditions we have

Zn = J�n(k�)
�
H(1)�

n (k�). (4.14)

Eliminating Iqn from (4.12) using (4.10) leads to the system of equations

Aq
n+Zn

∞�

m=−∞

∞�

p=0

Ap
mSq−p

m−n(k cosψ0) = −Zni
nei(qa2·k−nψ0), n ∈ Z, q = 0, 1, . . . (4.15)

The magnitude of Zn decays rapidly as |n| → ∞, due to the asymptotic behaviour of the
Bessel and Hankel functions in this limit (21, §10.19). On the other hand, when Bloch
waves are excited, Ap

m �→ 0 as p → ∞. Therefore (4.15) cannot be solved by truncation, and
we must treat the sum over p analytically. Before doing so, we note that for both types of
boundary condition under consideration (and also for penetrable cylinders, see (22) — this
paper contains the equivalent calculation for spherical wavefunctions, but the algebra for
the two-dimensional case is the same) the coefficients Zn have the important property that

Zn/(1− Zn) = −iWn, (4.16)

where Wn is real. It turns out to be advantageous to work with a system containing Wn

rather than Zn, so we divide (4.15) by 1− Zn to obtain

Aq
n(1− iWn)− iWn

∞�

m=−∞

∞�

p=0

Ap
mSq−p

m−n(k cosψ0) = Wni
n+1ei(qa2·k−nψ0),

n ∈ Z, q = 0, 1, . . . (4.17)

This rescaling has no effect on the convergence properties of the system, because 1−Zn → 1
as |n| → ∞. If there are integers n such that Zn = 1, then no corresponding coefficient Wn

exists for this index, but we can deal with this by introducing additional scaling factors into
a finite number of rows. The effect of this scaling on subsequent analysis is minimal.
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5. Exact Wiener–Hopf equation

We now convert (4.15) into a matrix Wiener–Hopf equation, using a generalisation of the
method in (1), which was itself based on that in (15). We begin by setting

Aq
n = 0, q < 0, (5.1)

and

T q
n = Wni

n+1ei(qa2·k−nψ0), q ≥ 0, (5.2)

so that (4.15) can be written in the form

Aq
n(1− iWn)− iWn

∞�

m=−∞

∞�

p=−∞
Ap

mSq−p
m−n(k cosψ0) = T q

n , n, q ∈ Z. (5.3)

At this stage, T q
n is unknown for q < 0, but its physical meaning can be deduced by observing

that an expansion of the total field in regular wavefunctions exists about every point except
the cylinder centres. If we extend the definition of the vectors Rjp by allowing p to take
any integer value, we can obtain such an expansion about r = R0q with q < 0 by setting
Aq

n = 0 in (4.8), so that there is no field radiating from r0q = 0. Consequently, (4.8), (4.9)
and (4.10) are extended to negative q by (5.1). By comparing (5.3) to (4.10), we see that

Iqn = inei(qa2·k−nψ0) + iW−1
n T q

n , q < 0. (5.4)

The first term on the right-hand side of this equation originates from the expansion of the
incident plane wave (4.4), meaning that the scattered field has the expansion

us(r) = i
∞�

n=−∞
W−1

n T q
nJn(r0q), q < 0, (5.5)

which is valid in the vicinity of the point r = R0q. An important consequence of this is
that T q

n cannot grow as q → −∞. We can also relate T q
n to the coefficients in grating mode

expansion by deriving Jacobi expansions of the form (4.4) for each term in (3.6). The result
is that

us(r) =
∞�

j=−∞
c
−

j0e
iqk(η1 cosψj−η2 sinψj)

∞�

n=−∞
ineinψjJn(r0q), (5.6)

and on comparing this to (5.5), we find that

T q
n = Wni

n−1
∞�

j=−∞
c
−

j0e
iqk(η1 cosψj−η2 sinψj)einψj , q < 0. (5.7)

Returning to the task of converting the system (4.15) to a Wiener–Hopf equation, we
apply the z transform by introducing the integral representations

Aq
n =

1

2πi

�

Ω
A

+

n (z)z
−q−1 dz, (5.8)



January 24, 2014 9

and

T q
n =

1

2πi

�

Ω
Tn(z)z

−q−1 dz, (5.9)

where Ω is an anticlockwise oriented simple closed contour encircling the origin, whose
precise specification will be determined shortly. The superscript ‘+’ denotes a function that
is analytic inside Ω; its presence in (5.8) ensures that (5.1) is satisfied. In a similar way, we
ensure that (5.2) is satisfied by writing

Tn(z) = T
+

n (z) + T
−

n (z), (5.10)

where the superscript ‘−’ denotes a function that is analytic outside Ω. If we now choose

T
+

n (z) = −in+1e−inψ0Wn
ρ0

z − ρ0
, (5.11)

where

ρ0 = e−ia2·k = e−ik(η1 cosψ0+η2 sinψ0), (5.12)

then (5.2) is satisfied, provided that ρ0 lies outside Ω, and

T
−

n (z) → 0 as z → ∞. (5.13)

Our next task is to insert the integral representations (5.8) and (5.9) into (5.3), and evaluate
the sum over p. Some care is needed here, to ensure correct positioning of the contour Ω
relative to the singularities in the z plane. We begin by using (4.11) and (A.12) to obtain

Sq
n(k cosψ0) =






2(−i)n

ka1

∞�

j=−∞

einψj

ρqj sinψj
if q > 0,

2(−i)n

ka1

∞�

j=−∞

τ qj e
−inψj

sinψj
if q < 0,

(5.14)

where ρj and τj are defined in terms of the scattering angles via

ρj = e−ik(η1 cosψj+η2 sinψj) and τj = eik(η1 cosψj−η2 sinψj). (5.15)

Note that the definition of ρj is consistent with (5.12) in the case where j = 0, and that
|ρj | = |τj | grows exponentially as |j| → ∞, in view of (3.2) and (3.3). Now, for the terms
in (5.3) with p < q, we use (5.14) to obtain

q−1�

p=−∞
Sq−p
m−n(k cosψ0)A

p
m =

in−m−1

πka1

∞�

p=1

∞�

j=−∞

ei(m−n)ψj

sinψj

�

Ω
A

+

m(z)(z/ρj)
pz−q−1 dz. (5.16)

Since A
+

m(z) is analytic inside Ω, we may temporarily contract the contour so that it includes
only points at which |z| < 1, without changing the value of the integral. Since |ρj | ≥ 1 for
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all j, the sum over p then converges exponentially and on commuting this with the integral,
we obtain

q−1�

p=−∞
Sq−p
m−n(k cosψ0)A

p
m =

in−m−1

πka1

∞�

j=−∞

ei(m−n)ψj

sinψj

�

Ω
A

+

m(z)z−q dz

ρj − z
. (5.17)

The poles that have been revealed at the points z = ρj lie outside the contour Ω. Now the
amplitude coefficients Aq

n cannot grow as q → ∞, so the integral in (5.8) must not include
contributions from singularities inside the unit circle, meaning that A+

n (z) is analytic for
|z| < 1. However, this is not sufficient to deal with the terms in (5.3) with p > q. Therefore
we temporarily assume the existence of � > 0 such that A+

n (z) is analytic for |z| < 1 + �.
This means that Aq

n → 0 as q → ∞. Later we will see that a minor adjustment to the
integration contour Ω allows our solution to hold in cases where Bloch waves are excited,
and no such � exists. Using (5.14) and temporarily expanding the contour Ω so that it does
not include any points where |z| ≤ 1, we find that

∞�

p=q+1

Sq−p
m−n(k cosψ0)A

p
m =

in−m−1

πka1

∞�

j=−∞

ei(n−m)ψj

sinψj

�

Ω
A

+

m(z)z−q−1 dz

zτj − 1
. (5.18)

The poles at the points z = τ−1
j lie inside the contour Ω. Using (5.17) and (5.18) in (5.3),

and using (5.8) and (5.9) for the remaining terms, we now find that a solution is obtained if

∞�

m=−∞
Knm(z)A

+

m(z) = T
+

n (z) + T
−

n (z), n ∈ Z, (5.19)

where the element of the kernel matrix in row n and column m is given by

Knm(z) = δnm−iWn

�
σn−m+δnm−

2in−m

ka1

∞�

j=−∞

1

sinψj

�
zei(m−n)ψj

z − ρj
−
ei(n−m)ψj

zτj − 1

��
. (5.20)

Here, we have omitted the argument k cosψ0 from σn−m for brevity. The contour Ω is shown
in Fig. 2. It consists of the unit circle, with indentations chosen so that the points z = τ−1

j
are encircled, but the points z = ρj are not. The system (5.19) is an infinite-dimensional
matrix Wiener–Hopf equation, though as noted in the previous section the ranges for n
and m can be truncated. Each element of the matrix kernel has infinitely many simple
poles. Since |ρj | = |τj | → ∞ as j → ∞, there are also nonisolated essential singularities
at the origin and the point at infinity. A final point concerns the Wood anomalies studied
in (23). These are situations in which there exist one or two integers j such that sinψj = 0.
Inserting the spectral form of σn−m from equation (B.4) or (B.5) into (5.20), and using
Euler’s formula shows that Knm(z) remains bounded in the limit sinψj → 0. Consequently,
Wood anomalies have no significant effect on our subsequent analysis, though some care is
needed in order to obtain the correct values for Knm(z) in such cases.

6. Symmetries

In this section, we prove the crucial symmetry property

W−1
n Knm(z) = W−1

m K∗
mn(1/z

∗), (6.1)
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Fig. 2 Schematic diagram showing the contour Ω, the poles ρ0, ρ1, τ
−1
0 and τ−1

1 and the zeros of
the kernel z0, z1, w

−1
0 and w−1

1 . When j ∈ N , ρ∗j = τj and similarly, zj = w∗
j if |zj | �= 1. Functions

with a superscript + (−) are analytic in the (un)shaded region.

where the superscript ‘∗’ denotes the complex conjugate. To achieve this, we will show that

Dnm = W−1
n Knm(z)−W−1

m K∗
mn(1/z

∗) (6.2)

is identically zero. Now the first term on the right-hand of (5.20) clearly disappears from (6.2).
For the second term, we observe that when n = m the Kronecker delta eliminates the first
term in the spectral form of σ0 (B.4). In this case, the second term from (B.4) also disappears
from (6.2), as does the contribution i/(π|j|) in the summand, due to the addition of σ∗

0 to
σ0. Similarly, when m �= n, we use (B.2) to equate the orders of the two Schlömilch series
in (6.2), and then the term Bn from (B.5) disappears. Only the infinite sum over j remains,
and in fact

Dnm = −
2in−m+1

ka1

∞�

j=−∞
Dj

nm, (6.3)

where

Dj
nm =

1

sinψj

�
ei(n−m) sgn(j)ψj −

zei(m−n)ψj

z − ρj
+

ei(n−m)ψj

zτj − 1

�

+
1

sinψ∗
j

�
ei(m−n) sgn(j)ψ∗

j −
zei(n−m)ψ∗

j

z − τ∗j
+

ei(m−n)ψ∗
j

zρ∗j − 1

�
, (6.4)

and sgn(0) = 1. When sinψj is imaginary, ρ∗j = τj and (3.2) shows that either ψj = iv or
ψj = π − iv, with v > 0. On the other hand, if ψj is real, both ρj and τj lie on the unit
circle, so that ρ∗j = 1/ρj and τ∗j = 1/τj . In either case, it immediately follows that Dj

nm = 0,
which establishes (6.1).
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Another symmetry property,

(−1)nW−1
n Knm(z) = (−1)mW−1

m Kmn(1/z), (6.5)

holds only in the case of a rectangular lattice, where η1 = 0 so that ρj = τj , and a third,

(−1)nW−1
n Knm(z) = (−1)mW−1

m Kmn

�
1

zeika1 cosψ0

�
, (6.6)

holds only if η1 = a1/2, so that τj = eika1 cosψ0ρj . These are easily verified by taking the
difference between the left- and right-hand sides and using (5.20). Both (6.6) and (6.5) have
previously been obtained in (24). On the other hand, the general symmetry property (6.1)
was observed numerically in (24) but not proven.

7. Approximate Wiener–Hopf equation

In order to proceed further, we introduce two approximations into the matrix Wiener–Hopf
equation (5.19). First, the system is truncated at |m| = |n| = N . This corresponds to using
a finite number of wavefunctions in the expansions of the field about the cylinders. As
noted in §2, accurate results can be obtained for relatively small values of N , due to rapid
convergence. We also truncate the sum over j in (5.20). The physical meaning of this can
be understood as follows. First of all, note that the sum in question originates from the use
of the spectral representations of the function Sq−p

m−n in obtaining (5.19) from (5.3). The
terms in which q = p describe the interactions between the scatterers within each row; hence
the appearance of the Schlömilch series σn−m, the exact form of which is retained in our
approximation. On the other hand, terms in which q �= p describe interactions between
distinct rows, and, in view of (A.12), these interactions are due to an infinite sum of grating
modes propagating between the rows. All but a finite number of these modes are evanescent,
and the rate of decay increases rapidly with the modulus of the summation index j. It
is this sum which we are now truncating, thereby discarding interaction effects caused by
strongly damped modes, and so in fact the approximation amounts to a standard method for
treating scattering by multiple linear arrays (13, §6.4). The (2N+1)× (2N+1) approximate
Wiener–Hopf equation is therefore

K(z)A
+

(z) = T(z), (7.1)

where the entries in row n of the vectors A+(z) and T(z) are A+
n (z) and Tn(z), respectively,

and the entry in row n and column m of the matrix K(z) is

K̃nm(z) = δnm − iWn

�
σn−m + δnm −

2in−m

ka1

j1�

j=j0

1

sinψj

�
zei(m−n)ψj

z − ρj
−

ei(n−m)ψj

zτj − 1

��
. (7.2)

The truncation parameters j0 and j1 must be such that no propagating modes are discarded,
and so the summation must include all elements of the set M, but it may also be necessary
to include one or more evanescent modes, depending on the rate of decay and the degree of
accuracy required. This second approximation eliminates the essential singularities from the
origin and the point at infinity, so that K̃nm(z) is a rational function with 2(j1 − j0 + 1)
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simple poles. The residues at these poles are exactly those of Knm(z). The approximate
kernel matrix has the same symmetry properties as the exact matrix (see §6), because in
each case the symmetry applies to individual terms in the sum over j. In the case of (6.1), it
should be noted that the terms in (6.4) originating from σn−m cancel each other for j ∈ N ,
meaning that the Schlömilch series need not (and indeed should not) be truncated in the
same way.
Now the usual method for solving equations such as (7.1) requires a factorisation of the

form
K(z) = K

+(z)K−(z), (7.3)

where detK+(z) �= 0 for all z on and inside the contour Ω. Such factorisations are often
very difficult to find (19). Here, we can avoid this problem by exploiting the fact that the
Wiener–Hopf equation contains only rational functions. This allows us to construct the
functions T−

n (z) by matching the poles and residues on each side of (7.1). The procedure we
use is related to the method introduced in (25), though in that case the equation is simpler
in that the right-hand side is known and the difficulty lies in determining the residues in
the unknown vector on the left-hand side. To begin the construction, we simply observe
that A+

m(z) and T−
n (z) cannot have common singularities, so the only possible singularities

of T−
n (z) are the poles of the kernel that lie outside the contour Ω. Consequently, T−

n (z)
has at most simple poles at the points z = τ−1

j , and no other singularities. Recalling that
T−
n (z) → 0 as z → ∞, we immediately obtain the expansion

T
−

n (z) = Wn

j1�

j=j0

Xj
n

zτj − 1
, (7.4)

where the coefficients Xj
n are as yet unknown, and the factor Wn has been included for

convenience, and consistency with (5.11). A remarkable simplification now occurs if we
multiply (7.2) by zτq − 1 with j0 ≤ q ≤ j1 and take the limit z → τ−1

q . We find that

lim
z→τ−1

q

�
(zτq − 1)K̃nm(z)

�
= −

2i1−me−imψq

ka1 sinψq
Wni

neinψq , (7.5)

and since T+
n (z) is analytic at the points z = τ−1

q , using this in (7.1) shows that

Xq
n = −

2in+1einψq

ka1 sinψq

N�

m=−N

A
+

m(τ−1
q )(−i)me−imψq , (7.6)

which reveals the dependence of Xq
n on n. In fact

Xq
n = ineinψqXq

0 , (7.7)

so that (7.4) becomes

T
−

n (z) = inWn

j1�

j=j0

Xj
0e

inψj

zτj − 1
, (7.8)

and it only remains to determine the coefficients Xj
0 .
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Next, we define the determinant function

d(z) = detK(z), (7.9)

which is a rational function that is analytic except possibly for poles located at z = ρj and
z = τ−1

j , for j = j0, . . . , j1. Consider the point z = τ−1
q . From (7.5), we have

Res
z=τ−1

q

�
K̃nm(z)

�
=

Wn

W0
ineinψq Res

z=τ−1
q

�
K̃0m(z)

�
, (7.10)

which shows that the residues in row n of the kernel matrix elements differ from those in
row 0 by a common, constant factor. The residues at z = ρq are related in a similar way,
with einψq replaced by e−inψq . Motivated by this, we define the regularised kernel matrix
L(z), whose elements are given by

Lnm(z) =






K̃0m(z) if n = 0,

K̃nm(z)−
Wn

W0
ine∓inψqK̃0m(z) otherwise,

(7.11)

for |m| ≤ N and |n| ≤ N . Evidently the determinant of L(z) is the same as that of K(z),
but by making the appropriate choice of the index q and the sign in the exponent, any one
of the poles can be removed identically from all but one of the rows. This shows that d(z)
can have (at most) simple poles at the points z = ρj and z = τ−1

j . Furthermore, it follows
from the symmetry property (6.1) that

d(z) = d∗(1/z∗). (7.12)

Any rational function with this property must be a ratio of polynomials of equal degree.
Although we have not found any mathematical arguments that preclude the possibility of a
zero coinciding exactly with a pole, or the possibility that d(z) is the zero function, we have
not encountered any parameter sets for which either of these occurs. In any case, we are
always free to increase the magnitude of the truncation parameters, thereby perturbing the
locations of the zeros. Therefore we will proceed on the basis that d(z) is an irreducible ratio
of polynomials with degree 2(j1 − j0 + 1). The zeros of d(z) are subject to the symmetry
relation (7.12), and initially we will assume that d(z) has no zeros on the unit circle. In this
case, there are (j1 − j0 + 1) zeros zp outside the unit circle, and for each of these there is a
corresponding zero located at z = w−1

p = 1/z∗p , which lies inside the unit circle. Zeros of
d(z) that lie outside the unit circle correspond to poles of A+

n (z). On the other hand, A+
n (z)

is analytic at the points z = w−1
p and here the Fredholm alternative (26, §§5.7–5.9) imposes

a condition on the right-hand side of (7.1). Specifically, there exists a nonzero vector Ep

such that

K
∗(w−1

p )Ep = 0, (7.13)

and it must be the case that

E
∗
pT(w−1

p ) = 0. (7.14)

When the superscript ‘∗’ is applied to a matrix or vector, it denotes a conjugate transpose.
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Substituting T+
n (z) from (5.11) and the truncated form of T−

n (z) from (7.8), we can write
this in explicit form. If the row vector E∗

p has entries E∗
pn, for n = −N, . . . , N , then

j1�

j=j0

Xj
0

w−1
p τj − 1

N�

n=−N

WnE
∗
pni

neinψj =
iρ0

w−1
p − ρ0

N�

n=−N

WnE
∗
pni

ne−inψ0 , p = j0, . . . , j1.

(7.15)
We have not discovered any sets of parameters for which two or more of the points wp

coincide, and, this being the case, (7.15) is sufficient to determine Xj
0 . If one or more of

the points wp lies on the unit circle, then the corresponding points zp must also lie on the
unit circle, or else the symmetry property (7.12) cannot be satisfied. Contributions to Aq

n

from poles on the unit circle do not decay as q → ∞; these correspond to Bloch waves in
the far field. When a pair of zeros occurs on the unit circle, we use (9.13) to determine the
direction in which the corresponding Bloch wave transports energy across lines where y is
constant (see §10 for details). One zero in each pair corresponds to a Bloch wave which
carries energy into the lattice, and we denote this zero by zp. The other zero in the pair
corresponds to a wave that is incoming from the far field, and cannot be excited by a wave
incident from below the lattice. We denote this zero by w−1

p ; it cannot be a pole of A+
m(z).

Once the zeros are classified in this way, we indent Ω so that w−1
p is encircled, but zp is not

(Fig. 2). This done, (7.15) can be used to determine Xj
0 as before.

8. The far field

Having constructed the functions T−
n (z), and thereby determined A+

n (z), we now turn our
attention to the behaviour of the scattered field. The method we use for the analysis in this
section was developed in (1). We begin by expressing the multipole representation (4.1) in
terms of the quasi-periodic Green’s function (A.1) and using the integral representation for
Ap

n (5.8); thus

us(r) =
1

2πi

N�

n=−N

∞�

p=0

�

Ω
A

+

n (z)z
−p−1 dz Gn(r− pa2, k cosψ0). (8.1)

The next step is to expand Ω into a new contour Ω� which does not include any points where
|z| ≤ 1, thereby causing the sum over p to converge exponentially. Clearly, this process is
impeded by poles of A+

n (z) that lie on the unit circle. We will assume that there is one such
pole at the point z = z0. Contributions from additional poles can be included in exactly the
same way, and for the case where A+

n (z) is analytic on the unit circle, we simply set b = 0
in our subsequent analysis. The functions A+

n (z) cannot include contributions from poles
on the unit circle that are not simple, because these grow as p → ∞, leading to unphysical
results. Therefore we may write

A
+

(z) =
bB

z − z0
+ Â

+

(z), (8.2)

where Â+(z) is analytic at z = z0 and |B| = 1. The residue term corresponds to a Bloch wave
in the far-field. The vector B describes the form of this wave, and the scalar b determines its
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amplitude. If we substitute (8.2) into the approximate Wiener–Hopf equation (7.1), multiply
by z − z0 and take the limit z → z0, we find that

K(z0)B = 0, (8.3)

which determines B. Taking the residue term to the right-hand side of (7.1) yields

K(z)Â
+

(z) = T(z)−
bK(z)B

z − z0
(8.4)

and we can now apply the Fredholm alternative to obtain an expression for b. Thus, there
exists a nonzero vector F such that

K
∗(z0)F = 0, (8.5)

and after left-multiplying (8.4) by F
∗, taking the limit z → z0 and applying L’Hôpital’s rule,

we find that
F

∗
T(z0) = bF∗

K
�(z0)B, (8.6)

where the prime denotes differentiation of each individual matrix element with respect to
z. Since z0 lies on the unit circle, we may replace z0 with 1/z∗0 in (8.5), and the symmetry
property (6.1) shows that the elements of F are related to those of B via WnFn = Bn.

Deforming the contour of integration in (8.1) and collecting the residue at z = z0 yields

us(r) = ub
1(r) +

1

2πi

N�

n=−N

∞�

p=0

�

Ω�
A

+

n (z)z
−p−1 dz Gn(r− pa2, k cosψ0), (8.7)

where

ub
1(r) = −

b

z0

N�

n=−N

Bn

∞�

p=0

z−p
0 Gn(r− pa2, k cosψ0). (8.8)

We can evaluate the sum over p by choosing λ0 so that

z0 = e−ia2·β0 with β0 = k cosψ0x̂+ λ0ŷ. (8.9)

We then have a sum of the form (A.5), and so

ub
1(r) = −

b

z0

N�

n=−N

BnG
(0,∞)
n (r,β0). (8.10)

Next, we convert the Green’s function in (8.7) to spectral form using (A.12), and in this
way we obtain

us(r) = ub
1(r) +

N�

n=−N

(−i)n+1
∞�

p=0

�

Ω�
A

+

n (z)z
−p−1 dz

∞�

j=−∞

ein sgn(y−pη2)ψj

πka1 sinψj

× eik((x−pη1) cosψj+|y−pη2| sinψj). (8.11)
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To proceed beyond this point we must evaluate the sum over p, and this in turn requires the
elimination of the modulus and signum functions. Clearly, this is immediate if y < 0, but
the case where y > 0 is more difficult. Setting y = (P + t)η2, with 0 < t < 1, we find that

us(r) = ub
1(r) +

N�

n=−N

(−i)n+1

πka1

∞�

j=−∞

eikx cosψj

sinψj

�

Ω�

A
+

n (z)

z

×

�
eik(P+t)η2 sinψjeinψj

P�

p=0

�ρj
z

�p
+ e−ik(P+t)η2 sinψje−inψj

∞�

p=P+1

(zτj)
−p

�
dz, (8.12)

where ρj and τj are given by (5.15). Since |z| > 1 on Ω� and |τj | ≥ 1 for all j ∈ Z, we may
now evaluate both geometric series, and this yields

us(r) = ub
1(r) +

N�

n=−N

(−i)n+1

πka1

∞�

j=−∞

eikx cosψj

sinψj

�

Ω�
A

+

n (z)

�
eik(P+t)η2 sinψj

einψj

z − ρj

− z−P−1e−ikPη1 cosψj

�
eiktη2 sinψj

ρjeinψj

z − ρj
− e−iktη2 sinψj

e−inψj

τjz − 1

��
dz. (8.13)

Taking the limit P → ∞ now eliminates the last two terms on the right-hand side and
reduces the range for j to elements of the set M only; hence

us(r) ∼ ub
1(r) +

N�

n=−N

(−i)n+1

πka1

�

j∈M

einψj

sinψj
eik(x cosψj+y sinψj)

�

Ω�
A

+

n (z)
dz

z − ρj
. (8.14)

There are now two poles inside the contour of integration, at z = ρj and z = z0, so after
applying the residue theorem we have

us(r) ∼ ub
1(r) + ub

2(r) +
�

j∈M

2eik(x cosψj+y sinψj)

ka1 sinψj

N�

n=−N

(−i)neinψjA
+

n (ρj), (8.15)

where

ub
2(r) =

2b

ka1

N�

n=−N

(−i)nBn

�

j∈M

einψjeik(x cosψj+y sinψj)

sinψj(z0 − ρj)
, (8.16)

having used (8.2) again to evaluate the contribution at z = z0. The sum over n in (8.15)
can be evaluated by multiplying (7.1) by z− ρj and taking the limit z → ρj . Since T

−(z) is
analytic at z = ρj , this term disappears, and we can use (5.11) and (7.2) to obtain

us(r) ∼ ub
1(r) + ub

2(r)− eik(x cosψ0+y sinψ0), (8.17)

so that the last term cancels the incident field. Finally, we observe that (8.16) is in fact
the far field pattern generated by a combination of quasi-periodic Green’s functions of the
form (A.20). Indeed,

−
b

z0

N�

n=−N

BnG
(−∞,−1)
n (r,β0) ∼ ub

2(r) (8.18)
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as y → ∞, so that the total field has the asymptotic form

u(r) ∼ −
b

z0

N�

n=−N

BnG
(−∞,∞)
n (r,β0), (8.19)

which is a Bloch wave. Calculation of the reflected field is much more straightforward.
Setting y < 0 in (8.11) and evaluating the sum over p yields

us(r) = ub
1(r) +

N�

n=−N

(−i)n+1

πka1

∞�

j=−∞

e−inψj

sinψj
eik(x cosψj−y sinψj)

�

Ω�
A

+

n (z)
τj dz

τjz − 1
. (8.20)

If we now write ub
1 explicitly using (8.10) and (A.19), and take the residue at z = z0

using (8.2), we find that these two terms cancel each other exactly, so that we are left with
the grating mode expansion (3.6), with

c−j0 =
2

ka1 sinψj

N�

n=−N

(−i)ne−inψjA
+

n (τ
−1
j ). (8.21)

Finally, the sum over n can be evaluated by setting n = 0 in (7.6); the result is that

c−j0 = iXj
0 . (8.22)

9. Conservation of energy

The energy flux carried across a contour S by the total field during one time period is given
by the line integral

�ES� = −
P0ω

2
Im

�

S
u(r)

∂

∂n
u∗(r) ds, (9.1)

where P0 is the quiescent fluid pressure and the orientation of the derivative is normal to
S; see (1) for details. If �ES� > 0, the net energy flux is in the direction of the normal,
whereas energy is transported in the opposite direction if �ES� < 0. We choose S to be the
parallelogram with vertices located at

r = 1
2

�
−a2 ± a1

�
and r =

�
q − 1

2

�
a2 ±

1
2a1, (9.2)

and take the derivative in the direction of the outgoing normal from each side. Since S is
a closed contour, we then have �ES� = 0, which amounts to conservation of energy. This
result can also be obtained by applying Green’s second identity (14, §6.5) to the total field
and its complex conjugate. Next, we divide S into four straight line sections S1, . . . ,S4, as
shown in Fig. 3. The quasi-periodicity relation (2.12) shows that the only difference between
the integrals along S1 and S3 is due to the direction of the outgoing normal, so if we define

Iv = −
P0ω

2
Im

�

Sv

u(r)
∂

∂n
u∗(r) ds, (9.3)

then we immediately see that
I1 + I3 = 0, (9.4)
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a1

a2

S1

S2

S3

S4

Fig. 3 The contour S, composed of the four lines S1, . . . ,S4, used as the path of integration in
Green’s identity.

meaning energy is conserved if and only if

I2 + I4 = 0. (9.5)

On S2 and S4, we use the grating mode representation (3.1), since evaluation of the two
remaining integrals is then very straightforward. Indeed, it follows from (3.2) that

� x0+a1/2

x0−a1/2
eikx(cosψj−cosψp) dx = a1δjp, (9.6)

where x0 may be chosen arbitrarily. Therefore, if u is given by (3.1), then

�

Sv

u(r)
∂

∂n
u∗(r) ds = ∓ika1

∞�

j=−∞
sinψ∗

j

�
c+j e

iky sinψj + c−j e
−iky sinψj

�

×
�
(c+j )

∗e−iky sinψ∗
j − (c−j )

∗eiky sinψ∗
j
�
, (9.7)

where v = 2 or v = 4, and the upper and lower signs correspond to an upwards or downwards
oriented normal, respectively. Considerable simplification now occurs on separating the
terms for which sinψj is real from the remainder of the series, and taking the imaginary
part. We find that

Im

�

Sv

u(r)
∂

∂n
u∗(r) ds = ∓ka1

�

j∈M�

sinψj

�
|c+j |

2
− |c−j |

2
�
± 2ka1

�

j∈N
| sinψj | Im[c+j (c

−
j )

∗],

(9.8)
where N is defined in (3.4), and M� is the set of integers j such that | cosψj | < 1, so that
terms with sinψj = 0 (which do not depend on y) are omitted. On S4, the outgoing normal
is directed downwards, and the only upwards propagating mode is the incident field, so that
c+j = δj0. The coefficients c−j0 are given by (8.22), and with these we obtain

I4 = −
ka1
2

P0ω
�
sinψ0 −

�

j∈M�

��Xj
0

��2 sinψj

�
. (9.9)
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There are two possibilities for the integral along S2. If no Bloch wave is excited, then
the total field decays exponentially as y → ∞, so we may take the limit q → ∞ in the
parametrisation (9.2) to show that I2 = 0. If a Bloch wave is excited, due to a pole at z = z0,
then the far field for y > 0 is given by (8.19). In view of the quasiperiodicity property (A.17),
this can be rewritten as

u(r) ∼ −
b

z0
eiR0q·β0

N�

n=−N

BnG
(−∞,∞)
n (r− qa2,β0). (9.10)

For r ∈ S2, we can use (A.19) and (A.20) to express this as a grating mode expansion of the
form (3.5), with

c
+

jq = −
2bQ+

j ρ
q
je

iR0q·β0

ka1 sinψj(ρj − z0)
and c

−

jq =
2bQ−

j τ
−q
j eiR0q·β0

ka1 sinψj(τ
−1
j − z0)

. (9.11)

Here, β0 is given by (8.9), and

Q±
j =

∞�

n=−∞
(−i)nBne

±inψj . (9.12)

Hence, (9.8) now yields

I2 =
2|b|2

ka1
P0ω

�
IM2 + IN2

�
, (9.13)

where

IM2 =
�

j∈M�

1

sinψj

�����
Q+

j

ρj − z0

����
2

−

����
Q−

j

τ−1
j − z0

����
2
�

(9.14)

and

IN2 =
�

j∈N

−2

| sinψj |
Im

�
ρjz0

(ρj − z0)2
Q+

j (Q
−
j )

∗
�
. (9.15)

Equation (9.13) is valid only for single Bloch waves, and the relationship between I2 for
individual and multiple waves is not linear. In cases where multiple Bloch waves are excited,
the total amplitude of the grating modes should be calculated by summing the values given
by (9.11) for each Bloch wave, and I2 can then be evaluated using (9.8). The value for q
in (9.11) may be chosen arbitrarily.

10. Implementation

The most significant obstacle to implementing the method described above is the
determination of the points at which d(z) = 0. The general symmetry relation (6.1)
means we need only locate those zeros that lie on or inside the unit circle, but the presence
of poles at z = ρj and z = τ−1

j in every element of the kernel matrix and the fact that the
determinant has only simple poles at these points means there is a danger of catastrophic
cancellation if d(z) is computed directly from (7.2). Any numerical code that operates
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on this basis is likely to be unstable. Indeed, even searching for zeros on the unit circle,
where the determinant is real, is problematic because computed values of d(z) close to the
poles sometimes turn out to have the wrong sign. When very few terms are retained in the
approximate kernel, it is possible to use a computer algebra package to expand and simplify
the determinant, but this rapidly becomes unfeasible as the magnitudes of the truncation
parameters are increased. Instead, we overcome this problem by computing the determinant
using the regularised matrix L(z) and, for a given z, we choose the index q and the sign
in (7.11) so as to reduce the order of the closest pole. Where advantageous, we multiply the
central row by the function

P (z) =
j1�

j=j0

(z − ρj)(zτj − 1)

ze−ikη2 sinψj |e−ikη2 sinψj |
(10.1)

to remove the poles. This has the three symmetries that d(z) inherits from the properties of
the kernel matrix discussed in §6; thus

P (z) =






P ∗(1/z∗) in all cases,

P (1/z) if η1 = 0,

P

�
1

zeika1 cosψ0

�
if 2η1 = a1.

(10.2)

The factor |e−ikη2 sinψj | is included in the denominator to normalise the magnitude of P (z).
Since P (z)d(z) is real and analytic on the unit circle, zeros here can be located using
standard methods. In the case of a rectangular lattice, where η1 = 0, it is often but not
always the case that zeros not on the unit circle are located on the real line. In this case we
can combine the two available symmetry relations to show that P ∗(z∗)d∗(z∗) = p(z)d(z), so
that zj1−j0+1P (z)d(z) is real and analytic for z ∈ R. Any roots that occur here can also be
located fairly easily, though the search algorithm must take account of the fact that pairs
of roots sometimes appear very close to the origin. A similar situation occurs for lattices
with η1 = a1/2, when the roots with |z| �= 1 are often but not always located on the line
z = ue−ikη1 cosψ0 , u ∈ R, and here uj1−j0+1P (z)d(z) is real and analytic. For other cases,
we observe that the residues of the determinant at its poles can be calculated using (7.11),
and these can be used to express d(z) as a sum of partial fractions. This can easily be
differentiated, so that the Newton–Raphson method becomes available. Using the origin
as the initial guess often yields one root, w−1

0 , say, and then a second can sometimes be
obtained by applying the Newton–Raphson iteration to d(z)/(z − w−1

0 ), again using the
origin as the initial guess. Any roots not determined by these elementary methods can be
calculated using the technique in (27). This is computationally expensive, and we do not
claim that it is the optimal approach, but it is very reliable.

Once the zeros of the determinant have been calculated, the remaining computations are
straightforward, and can be performed using standard libraries. First we classify any zeros
that appear on the unit circle using (9.13). At each zero, we calculate the eigenvector of
L(z) that corresponds to the zero eigenvalue. The elements of this eigenvector then play
the role of Bn in (9.12), and the zero plays the role of z0 in (9.14) and (9.15). We then
determine the sign of the integral I2 in (9.13). If I2 > 0, the zero corresponds to a Bloch
wave that transports energy into the lattice. We denote this zero by zp for an appropriate
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choice of the index p, and indent the contour Ω so that the point z = zp lies outside (see
Fig. 2). On the other hand, if I2 < 0, the zero corresponds to Bloch wave that cannot be
excited by a wave incident from below the lattice. Such zeros must lie inside the contour Ω
and are denoted by w−1

p . The residue coefficient b, which cannot be calculated at this stage,
plays no part in this. Once the zeros are classified, we can calculate all of the eigenvectors
Ep defined in (7.13), and the linear system (7.15) can be solved to obtain Xj

0 . The functions
T−
n (z) are then given explicitly by (7.8), and the problem is solved.
Next, we check that energy is conserved using (9.5). Whilst this is a necessary condition

for the correctness of the results, it is by no means sufficient, and where methods involving
modal expansions are used, it is sometimes possible to discard important terms and construct
manifestly incorrect solutions that nonetheless conserve energy (28). A much more stringent
test can be performed by calculating the coefficients Ap

n directly from (4.15) in cases where
no Bloch waves are excited (so that Ap

n → 0 as p → ∞). We can also calculate Ap
n by

collecting residues from outside the contour Ω in (5.8); equations (8.2)–(8.4) can be used at
each pole. To test the results in cases where Bloch waves are excited, we use the infinite
array subtraction technique introduced in (29). For a case with a single Bloch wave, (8.2)
and (5.8) yield

Ap
n = −bBnz

−p−1
0 + Âp

n, (10.3)

where Âp
n → 0 as p → ∞. We calculate b, Bn and z0 as described above, and then use (10.3)

in (4.15) to obtain

Âq
n + Zn

∞�

m=−∞

∞�

p=0

Âp
mSq−p

m−n(k cosψ0) = −Zni
nei(qa2·k−nψ0) +∆q

n, n ∈ Z, q = 0, 1, . . .

(10.4)
where

∆q
n = bz−q−1

0

�
Bn + Zn

∞�

m=−∞
Bm

∞�

p=0

ei(p−q)a2·β0Sq−p
m−n(k cosψ0)

�
, (10.5)

with β0 given by (8.9). Separating the terms with p ≤ q from the remainder of the series,
and using (4.11) and (A.5), this becomes

∆q
n = bz−q−1

0

�
Bn + Zn

∞�

m=−∞
Bm

�
G(−q,−1)

m−n (0,β0) + σn−m(k cosψ0)

+ eia2·β0G(0,∞)
m−n (−a2,β0)

��
. (10.6)

The multirow Green’s functions that appear here can be calculated using (A.13) and (A.15);
the first disappears in the case where q = 0. When (10.4) is solved by truncation, we find
that Âp

n → 0 as p → ∞, which means we can have confidence that the results are correct.
To apply the same method to cases where multiple Bloch waves are excited, we need only
include extra residue terms on the right-hand side of (10.3), evaluate (10.6) for each Bloch
wave and include the results on the right-hand side of (10.4).

All of the results in the following section were generated using an implementation of our
method written in Fortran 2003, using double precision arithmetic. The multipole truncation
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Fig. 4 Proportion of energy reflected back from a lattice with basis vectors a1 = [1, 0] and
a2 = [0, 1]. Dirichlet boundary conditions are enforced on the cylinder surfaces. (a) � = 0.1, (b)
� = 0.2 and (c) � = 0.3.

parameter N is set according to the value of k�; our implementation uses values between 1
and 15, chosen so that

|WN | < 10−12 max
n≤N

|Wn|. (10.7)

For the grating mode expansion, we discard terms for which

|eikη2 sinψj | < εα, (10.8)

where ε represents machine epsilon (approximately 10−16 for double precision). The positive
parameter α is chosen experimentally. Too small a value leads to modes that generate
significant interactions between the rows being discarded, but too large a value leads to
situations where the determinant possesses roots with very small magnitudes, which can
cause numerical problems. We have found α ≈ 0.37 to be a good compromise choice.

11. Numerical results

The problem of Bloch wave propagation through lattices of sound-hard and sound-soft
cylinders was investigated in (12). Here, we focus our attention on the proportions of
incident wave energy that are reflected back from and transmitted into the lattice. To this
end, we rewrite (9.5) in the form

ET + ER = 1, (11.1)

where

ET =
2I2

P0ωka1 sinψ0
and ER =

1

sinψ0

�

j∈M�

��Xj
0

��2 sinψj . (11.2)
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Fig. 5 Proportion of energy reflected back from a lattice with basis vectors a1 = [1, 0] and
a2 = [0, 1]. Neumann boundary conditions are enforced on the cylinder surfaces. (a) � = 0.1, (b)
� = 0.2 and (c) � = 0.45.

In a stop band, no energy can be transmitted into the lattice, so ET = 0 and ER = 1.
However, when Bloch waves are excited it is not possible to determine ER or ET from an
understanding of the wave-bearing properties of the lattice alone. Consequently the results
shown here reveal information about the behaviour of the field in pass bands that cannot be
obtained from a standard band diagram.

Figs. 4 and 5 show contour plots of ER for square lattices, with � increasing from left to
right. Here, and in Figs. 6 and 7, light and dark regions indicate strong reflection and strong
transmission, respectively. Note that the total field always disappears in the grazing limits
ψ0 → 0 and ψ0 → π so that ET = 0. This was shown to be the case for a single array in (23)
and the same result clearly holds for a semi-infinite lattice. However, the transition is often
very rapid, so that the effect is not visible in contour plots, though it has been verified by
inspecting the actual data. As we should expect, larger scatterers tend to reflect more of
the energy back from the lattice, and the stop bands generally widen as � is increased. It is
also evident that a lattice formed from sound-hard (Neumann) scatterers generally permits
a greater proportion of energy to be transmitted than the equivalent sound-soft (Dirichlet)
lattice. At low frequencies, the plots for sound-soft scatterers shown in Fig. 4 exhibit a total
stop band, the extent of which increases with �, as noted in (12). Above this, there is a
narrow band in which some transmission is possible, and for still higher values of k there
is a second stop band. This is partial for small scatterers, that is it prevents propagation
in certain directions, but there is no frequency at which no directions are permitted. As �
is increased, this region widens, becoming a total stop band. Above the second stop band,
the pattern of transmission and reflection is very complicated, with multiple partial stop
bands and some small regions where high transmission occurs. For � = 0.35 or greater
(not shown), the corresponding plots are almost entirely occupied by the first and second
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Fig. 6 Proportion of energy reflected back from lattices with a1 = [1, 0], a2 = [0, η2] and η2 > a1.
(a) Dirichlet boundary conditions, � = 0.1, η2 = 2. (b) As (a) but with η2 = 3. (c) Neumann
boundary conditions, � = 0.45, η2 = 3.

stop bands, so that very little transmission is possible within this frequency range. The
plots for sound-hard (Neumann) scatterers shown in Fig. 5 are quite different, with no low
frequency stop band and much more substantial regions of high transmission. Indeed, at
low frequencies there is a region in which ER < 0.01, so that more than 99% of the incident
wave energy is transmitted into the lattice. This region contracts as � is increased, but it
persists even in Fig. 5(c), where � = 0.45. A partial stop band can be seen for k ≈ 3, even
for very small scatterers, and for larger radii this becomes a total stop band, as in Fig. 5(c).
Above this stop band, the pattern is again very complicated, but with more regions of high
transmission than the sound-soft case.
Fig. 6 shows contour plots of ER for rectangular lattices, with η2 > a1. In general,

stretching the lattice causes the pattern to fragment, so that the regions of high and
low transmission are smaller and more numerous. In particular, narrow regions where
transmission is possible gradually penetrate into the first stop band for sound-soft scatterers,
and similarly, the region of high transmission observed at low frequencies for sound-hard
bodies is interspersed with partial stop bands.
In contrast to η2, varying η1 has fairly limited effects on the transmission patterns. For

lattices with η2 = η1/2, which retain symmetry across ψ0 = π/2, the plots are qualitatively
similar to those in Figs. 4, 5 and 6, and are not shown here. Instead, Fig. 7 shows three
situations in which the lattice is skewed. The effect of breaking symmetry across ψ0 = π/2 is
more pronounced for small scatterers, and some distortion is evident in Fig. 7(a) and (b). For
larger scatterers such as those in 7(c), the plots are much more symmetric and qualitatively
similar to the corresponding versions for the square lattice. One quantitative difference
between Figs. 4(c) and 7(c) is that the second pass band is detached in the latter case, so
that a third total stop band has appeared.
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Fig. 7 Proportion of energy reflected back from a skewed lattice with a1 = [1, 0] and a2 = [0.25, 1.0].
(a) Dirichlet boundary conditions, � = 0.1, (b) Neumann boundary conditions, � = 0.1, (c) Dirichlet
boundary conditions, � = 0.3.
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Fig. 8 Contours plot showing the real part of the field for a lattice with a1 = [1, 0], a2 = [0, 1] and
� = 0.2. (a) Dirichlet boundary conditions, k = 4.0, ψ0 = 0.4π. (b) Neumann boundary conditions,
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Finally, in Fig. 8, we present two plots of the field itself. The actual data shown are values
of Re[u(r)], so that the plots show a snapshot of U(r, t) at time t = 0. At most points, the
field is evaluated using the quasi-periodic Green’s functions in appendix A, but close to the
cylinder centred at r = ja1 + pa2, we use the fact that (23)

u(r) =
∞�

n=−∞
eijka1 cosψ0Ap

n

�
Hn(r)−

1

Zn
Jn(r)

�
. (11.3)

In Fig. 8(a), Dirichlet boundary conditions are imposed on the surface of the scatterers and
it is evident that the field is close to zero in their immediate vicinity. Similarly, in Fig. 8(b)
the contours intersect the scatterers at right angles, showing that the Neumann boundary
conditions enforced on the surfaces are indeed satisfied. In both cases, a Bloch wave is
excited, and the different nature of the field inside and outside the lattice is clearly visible.
In Fig. 8(a) we have ER ≈ 0.65 whereas ER ≈ 0.0071 in (b). The latter is an example
of the near total transmission phenomenon predicted by Fig. 5(b) and there is very little
interference due to reflection below the lattice.

12. Concluding remarks

We have determined the field that arises when a time-harmonic plane wave impinges upon a
semi-infinite lattice of circular cylinders, using a full linear theory which allows for a wide
range of frequencies and scatterer sizes. A representation of the far field in terms of grating
modes has been obtained, and formulae for the coefficients in this expansion have been
calculated, both for the exterior region and for the far-field limit inside the lattice. For
a given set of parameters (angle of incidence, wavenumber and lattice geometry), these
formulae can be computed by a combination of complex root finding and straightforward
linear algebra. The proportion of incident energy reflected back from, and transmitted
through, the edge can also be calculated in this way.

We have then investigated the transmission and reflection properties of lattices composed
of sound-hard and sound-soft cylinders. These results contain substantial information that
cannot be deduced from the band structure of the corresponding infinite periodic lattice. In
particular, for sound-hard cylinders, there exist parameter regimes within which almost all
of the incident energy is converted into Bloch waves and transmitted into the lattice. We
have confirmed the correctness of our results using conservation of energy (a necessary but
not sufficient condition), and a more stringent test based on infinite array subtraction.
There are many possible avenues for further research using the method developed in

this paper. Lattice elements with noncircular cross sections can be accounted for using
T -matrices (14, ch. 7). Another possibility is to consider penetrable cylinders, and in the
acoustic case, this extension is straightforward (see §1). Perhaps the most important and
challenging possibility is the extension to penetrable bodies in the electromagnetic case. Here,
coupling between the electric and magnetic fields necessitates the use of more complicated
multipole expansions (see e.g. (30)); this offers the potential to extend the scope of our
method to allow for dielectric cylinders, and will be the subject of a future paper.
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APPENDIX A

Green’s functions for one- and two-dimensional arrays

In this appendix, we obtain spectral forms for the one-and two dimensional quasi-periodic Green’s
functions

Gn(r,βx) =
∞�

j=−∞
eija1βx

Hn(r−Rj), (A.1)

and

G(q0,q1)
n (r,β) =

q1�

q=q0

∞�

j=−∞
eiRjq ·βHn(r−Rjq), (A.2)

where the vectors Rj and Rjq are given by

Rj = ja1 = ja1x̂, (A.3)

and

Rjq = ja1 + qa2 = (ja1 + qη1)x̂+ qη2ŷ, (A.4)

respectively. Note that (A.2) is related to (A.1) via

G(q0,q1)
n (r,β) =

q1�

q=q0

eiqa2·βGn(r− qa2,βx), (A.5)

where we have written β = βxx̂+βyŷ. For the case where n = 0, (A.1) and (A.2) are quasi-periodic
Green’s functions in the ‘classic’ sense (phase shifted arrays of sources), and the results we require
are given in (1). To allow n to take any integer value, we use the method from (14, ch. 2), and
introduce the operator

D ≡ −
1
k

�
∂
∂x

+ i
∂
∂y

�
. (A.6)
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By converting D into polar coordinates, (14, thm. 2.7) shows that repeated application yields

D
n
H0(r) = Hn(r), n > 0. (A.7)

and

[−D
∗]−n

H0(r) = Hn(r), n < 0. (A.8)

Therefore we may proceed by applying D and −D
∗ to the results in (1). For (A.1), we use (1,

eqn. (A7)) and we find that

Gn(r,βx) = 2(−i)n+1
∞�

j=−∞

eixβxj−γ(βxj)|y|

a1γ(βxj)

�
k

βxj + γ(βxj)

�n sgn(y)

, (A.9)

where the function γ is given by (3.3),

βxj = βx + 2jπ/a1, (A.10)

and we have made use of the identity

z − γ(z)
k

=
k

z + γ(z)
. (A.11)

If βx = k cosψ0, then we introduce the scattering angles using (3.2), and (A.9) becomes

Gn(r, k cosψ0) =
2(−i)n

ka1

∞�

j=−∞

ein sgn(y)ψj

sinψj
eik(x cosψj+|y| sinψj). (A.12)

For (A.2), we consider cases where y − qη2 is of fixed sign for q = q0, . . . , q1 (i.e. the observer is
located above or below the entire array). We can use a linear combination of these to evaluate
a quasi-periodic Green’s function for an observer located between two rows, but note that these
spectral representations are not valid if the observer is located on the axis of a row, unless n = 0.
Applying D and −D

∗ to (1, eqn. (B5)), we obtain

G(q0,q1)
n (r,β) = 2(−i)n+1

∞�

j=−∞

eiβxjx∓γ(βxj)y

a1γ(βxj)

�
k

βxj ± γ(βxj)

�n eq0w
±
j − e(1+q1)w

±
j

1− ew
±
j

, (A.13)

where βxj is given by (A.10), and we have written

w±
j = ±η2γ(βxj) + i(η2βy − 2jπη1/a1). (A.14)

The upper and lower signs are to be taken when y > q1η2 and y < q0η2, respectively. For semi-infinite
arrays, (1, eqns. (B7) and (B8)) yield

G(0,∞)
n (r,β) = 2(−i)n+1

∞�

j=−∞

eiβxjx+γ(βxj)y

a1γ(βxj)(1− ew
−
j )

�
k

βxj − γ(βxj)

�n

, y < 0 (A.15)

and

G(−∞,−1)
n (r,β) = 2(−i)n+1

∞�

j=−∞

eiβxjx−γ(βxj)y

a1γ(βxj)(e
w

+
j − 1)

�
k

βxj + γ(βxj)

�n

, y > −η2. (A.16)

For 0 > y > −η2, the Green’s function for the infinite lattice is obtained by adding the last two
results. Equation (A.2) shows that this has the two-dimensional quasi-periodicity property

G(−∞,∞)
n (r+Rjq,β) = eiRjq ·βG(−∞,∞)

n (r,β), (A.17)
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which facilitates evaluation between any consecutive pair of rows. Finally, if β = β0 (8.9), then

exp
�
w

+

j

�
=

pj
z0

and exp
�
w

−
j

�
=

1
τjz0

, (A.18)

meaning that

G(0,∞)
n (r,β0) = −2z0(−i)n

∞�

j=−∞

e−inψj eik(x cosψj−y sinψj)

ka1 sinψj(τ
−1
j − z0)

, y < 0, (A.19)

and

G(−∞,−1)
n (r,β0) = 2z0(−i)n

∞�

j=−∞

einψj eik(x cosψj+y sinψj)

ka1 sinψj(ρj − z0)
, y > −η2, (A.20)

where ρj and τj are given by (5.15).

APPENDIX B

Lattice sums

The one-dimensional lattice sum σn, often called a Schlömilch series, is defined as

σn(βx) =
∞�

j=−∞
j �=0

eija1βx
Hn(ja1). (B.1)

Note that
σn(−βx) = σ−n(βx) = (−1)nσn(βx). (B.2)

Schlömilch series are related to the quasi-periodic Green’s functions defined in (A.1) via the limit

σ(1)
n (βx) = lim

r→0

�
Gn(r,−βx)−Hn(r)

�
. (B.3)

A number of formulae suitable for computing lattice sums are given in (32). In particular, if
βx = k cosψ0, then

σ0(βx) = −1−
2i
π

�
C + ln

ka1

4π

�
+

2
ka1 sinψ0

+
∞�

j=−∞
j �=0

� 2
ka1 sinψj

+
i

π|j|

�
(B.4)

and

σn(βx) = in
�
iBn(βx) +

2
ka1

∞�

j=−∞

ein sgn(j)ψj

sinψj

�
, n > 0, (B.5)

where the scattering angles are defined in (3.2), C ≈ 0.5772 is Euler’s constant and we take
sgn(0) = 1. The function Bn is defined as

Bn(βx) =
2
nπ

cos
nπ
2

+
1
π

[(n−1)/2]�

m=0

(−1)m
(n−m− 1)!
m!(n− 2m)!

�
4π
ka1

�n−2m

Bn−2m

�
a1βx

2π

�
, (B.6)

where Bn(·) represents a Bernoulli polynomial, and [x] denotes the largest integer not greater than
x. Schlömilch series with negative orders may be computed using the above formulae with (B.2).


