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We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional
differential equations with two parameters, subject to coupled integral boundary conditions.

1. Introduction

Fractional differential equations describe many phenomena
in various fields of engineering and scientific disciplines
such as physics, biophysics, chemistry, biology, economics,
control theory, signal and image processing, aerodynamics,
viscoelasticity, and electromagnetics (see [1-5]). Integral
boundary conditions arise in thermal conduction problems,
semiconductor problems, and hydrodynamic problems (see,
e.g., [6-9]).

We consider the system of nonlinear fractional differen-
tial equations with parameters

Dy, u(t) + Af (bu(t),v(t) =0, te(0,1),

(S)
DP v(t) +ug (tu(t),v(H) =0, te(01),
with the coupled integral boundary conditions
u@©) =u (0 =---=u"? @) =0,
1
' (1) = J v(s)dH (s),
’ (BC)

v(0)=v (0)=---=+""2(0) =0,

, 1
v (1) = Jo u(s)dK (s),

wherew € (n—Ln], € (m—-1,ml,n,m € N,n,m > 3,
Dy, and Doﬁ . denote the Riemann-Liouville derivatives of
orders « and f3, respectively, and the integrals from (BC) are
Riemann-Stieltjes integrals. The boundary conditions (BC)
include multipoint and integral boundary conditions, as well
as the sum of these in a single framework.

Under some assumptions on the nonnegative functions
f and g, we present intervals for the parameters A and u
such that positive solutions of (S)-(BC) exist. By a positive
solution of problem (S)-(BC) we mean a pair of functions
(u,v) € C([0,1];R,) x C([0,1]; R,) satistying (S) and (BC)
with u(t) > 0 forallt € (0,1] or v(t) > 0 for all ¢ € (0,1].
The nonexistence of positive solutions for (S)-(BC) is also
investigated. The existence, multiplicity, and nonexistence of
positive solutions (u(t),v(t) > 0 for all t+ € [0,1] and
(u,v) # (0,0)) for system (S) with different coupled boundary
conditions, namely,

u©0)=u (0)=---=u"?(0) =0,

1
u(l) = J v(s)dH (s),

’ (BC,)
v(0)=v (0)=---=v"™2(0) =0,

1
v(1) = Jo u(s)dK (s),



were investigated in [10, 11] (where f and g are nonnegative
and nonsingular functions) and in [12] (where A = p =1
and f(t,u, v) and g(t, u, v) are replaced by f(t,v) and g(t, u),
respectively, with f and g nonnegative functions, singular or
not). In this paper, Green’s functions associated with problem
(S)-(BC), the inequalities satisfied by these functions, and the
cone defined in the proof of the main results are different
than the corresponding ones that the authors used in [10-
12] for problem (S)-(BC,). Existence results for the positive
solutions of problem (S)-(BC), where f and g are sign-
changing functions which may be singular att = Oort = 1
and satisfy some different assumptions than those used in this
paper, were obtained in [13]. We also mention the paper [14],
where the authors studied the existence and multiplicity of
positive solutions for system (S) with « = 3, A = p and the
boundary conditions u(i)(O) = v(i)(O) =0,i=0,...,n—2,
u(l) = av(), and v(1) = bu(y), with &, € (0,1), 0 <
abn < 1, and f and g are sign-changing nonsingular or
singular functions. The results obtained in [14] are relying
on a nonlinear alternative of Leray-Schauder type and the
Krasnosel’skii’s fixed point theorem. For other recent results
concerning the coupled fractional boundary value problems
we refer the reader to [15-17].

The paper is organized as follows. Section 2 contains some
auxiliary results which investigate a nonlocal boundary value
problem for fractional differential equations and presents the
properties of Green’s functions associated to our problem (S)-
(BC). In Section 3, we prove the main existence theorems
for the positive solutions with respect to a cone for (S)-
(BC) which are based on the Guo-Krasnosel’skii fixed point
theorem, and then the nonexistence of positive solutions is
studied in Section 4. Finally, in Section 5, two examples are
given to illustrate our main results.

2. Auxiliary Results

In this section, we present some auxiliary results that will be
used to prove our main results.
We consider the fractional differential system

Dy,u(t)+x(t)=0, te(0,1),

@
DEvity+y(®) =0, te(0,1),
with the coupled integral boundary conditions
u@©) =u (0)=---=u"? ) =0,
1
u' (1) = J v(s)dH (s),
0
)

v(0) =V (0)=---=+""2(0) =0,
1

v'(l):J u(s)dK (s),
0

where a € (n—1L,n], B € (im—1,m],n,m € N, n,m > 3, and
H,K : [0,1] — R are functions of bounded variation.
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Lemma 1 (see [13]). If H,K : [0,1] — R are functions of
bounded variation, A = (o — 1)(f — 1) — (jol 7 'dK (1))

(J, 'dH(1)) # 0and x,y € C(0,1) N L'(0,1), then the
pair of functions (u,v) € C([0, 1]) x C([0, 1]) given by

1 1
u(t) = L G, (t,5) x (s) ds + L G, (6s) y () ds,

telo0,1],
3)

1 1
V0= [ 69y ©ds+ [ Git9xds

0 0

telo0,1],

is solution of problem (1)-(2), where

jl " dH (T))

0

tlx—l
Gy (t,s) =g, (t,s) + A (

: <Jl 9 (T,S)dK(T)>, Vt,s € [0,1],
0

(B-1)! Jl

G, (t,s) = A

. g, (1,5)dH (1),
Vt,s € [0,1],
(4)

t‘B_l ! a—1
G3 (t>5):92 (t,S)+T<jO T dK(T))
'(Jlgz(f,s)dH(r)>, Vt,s € [0,1],
0

G4 (t> 5) = g1 (T’ 5) dK (T) >

(a—1)tF T (1
|

0

Vt,s € [0,1],

1
g, (t.s) = m

{t“_l(l—s)“_z—(t—s)"‘_l, 0O<s<t<l,

(1 - )72, 0<t<s<l,
. (5)

g, (t,s) = 0]

T G Ly (.
' t‘B_l (1 - S)‘B72 >

Lemma 2 (see [13]). The functions g,, g, given by (5) have the
following properties:

(a) g1»9, : [0,1] x [0,1] — R are continuous functions,
and g,(t,s) > 0, g,(t,s) > 0 forall (t,s) € (0,1] x (0, 1).

(b) gi(t,s) < hy(s), gy(t,s) < hy(s) for all (t,s)
[0,1] x [0,1], where h,(s) = s(1 — $)*?/T(«) and h,(s)
s(1 - s)P2/T(B) for all s € [0,1].

(©) g(t,s) =t hy(s), gy(t,s) = tP 0y (s) for all (¢, s)
[0,1] x [0,1].

m

m



Discrete Dynamics in Nature and Society

Lemma 3 (see [13]). If H,K : [0,1] — R are nondecreasing
functions, and A > 0, then G;, (i = 1,...,4) given by (4) are
continuous functions on [0, 1] x [0, 1] and satisfy G;(t,s) > 0
forall (t,s) € [0,1] x [0,1], (i = 1,...,4). Moreover, if x, y €
C(0,1) n L(0,1) satisfy x(t) > 0, y(t) = 0 forallt € (0,1),
then the solution (u, v) of problem (1)-(2) given by (3) satisfies
u(t) = 0,v(t) = 0 forallt € [0,1].

Lemma 4. Assume that H,K : [0,1] — R are nondecreasing
functions and A > 0. Then the functions G;, (i = 1,...,4)
satisfy for all (t,s) € [0,1] x [0, 1] the following relations:

(a) Gy(t,9) 1 < Ji(s), 1where Ji(s) = h(s) +
(1/8)(f, T dH@)(, g,(7, $)dK (7).

(a,) G,(t,s) = t“J,(s).

(b)) G,(t, s)1 < I,(s), where J],(s) = (B -
1)/A) jo go(1,8)dH (7).

(b)) G,(t,s) = t* L, (s).

(¢) G5(t, ) 1 < J5(9), 1where Ji(s) = h(s) +
(I/A)(I0 T"‘fldK(T))(J0 g,(1,5)dH(7)).

(&) Gs(t,s) = tF 15 (s).

(dy) G4(t,9) < Ji(s), where J,(s) = (a -

D/A) f, 9. 9K (@).

(d,) Gy(t,s) = tF71],(s).

Proof. The above inequalities follow from the properties of
the functions g;, (i = 1,...,4) from Lemma 2.

Lemma 5. Assume that H,K : [0,1] — R are nondecreasing
functions, A > 0, and x,y € C(0,1) N LY(0, 1), x(t) = 0,
and y(t) = 0 forallt € (0,1). Then the solution (u(t), v(t)),
t € [0, 1] of problem (1)-(2) given by (3) satisfies the inequalities
u(t) = t*u(t'), vt) = P u(t"), for all t,t' € [0,1].

Proof. By using Lemma 4, we obtain for all t,#' € [0, 1] the
following inequalities:

1 1

u(t) = JO G, (t,8) x (s)ds + Jo G, (t,5) y (s) ds
1

( ]1 (S)x(s)dS+J A (S)y(s)ds)

( G1 t', s x(s)ds+J'1G2(t”s)y(s)ds>
(),

1 1
v(t) = J G;(t,s)y(s)ds + Jo G, (t,s) x(s)ds

0

3
1 1
> P! <L J3(s) y (s)ds + J J4 (S)X(S)d5>
> Pl <Jl G, (t',s)y(s) ds + Jl G, (t',s)x(s) ds)
0 0
=Py (t)
(6)
O

In the proof of our main existence results we will use the
Guo-Krasnosel'skii fixed point theorem presented below (see

[18]).

Theorem 6. Let X be a Banach space and let C C X be a cone
in X. Assume Q, and Q, are bounded open subsets of X with
0€Q, cQ cQandletd : Cn(Q,\Q,) » Chea
completely continuous operator such that either

@) 1ull < ul, v € CnoQ,, and |ull = |ul, u €
CnNoQ,, or

(i) lfull > llul, u € CNoQy, and [Full < |ul, u €
CNnoQ,.

v

A

Then o has a fixed point in C N (0_2 \ Q).

3. Existence Results for the Positive Solutions

In this section, we will give sufficient conditions on A, 4, f,
and g such that positive solutions with respect to a cone for
our problem (S)-(BC) exist.

We present now the assumptions that we will use in the
sequel:

(H1) H,K : [0,1] — R are nondecreasing functions and

A = (a-)(B-D~(J, T dK@)x ([ PP 1dH(2)) >
0.

(H2) The functions f, g : [0, 1] x [0, 00) X [0, 00) —
are continuous.

[0, 00)

For ¢ € (0, 1), we introduce the following extreme limits:

f(tu,v)

fo = lim sup max —————=

wivoot 0] U+ Y
= lim sup max =¥————= g(tuv)
wrv—ot €01 U+ v ’
P . fuw)
fo =liminf min f&uwy) ,
utv—0ttelcl] U+ v
(t,u,v)
g —hmlnfmlng S REAN
utv—0*telc,l] U+ vV
f@tuv)
S, = lim sup max ————=,
u+v—oo te[0,1] U+ V
gt,u,v)
go, = lim sup max ;,
u+v—oo t€[0,1] U+ V



ftu,v)

P .
foo = liminf min

wtv—ootelcl] U+ V
; . . g(tu,v)
g, = liminf min L
utv—oootelc,l] U+ v

7)

In the definitions of the extreme limits above, the variables u
and v are nonnegative.

By using Lemma 1, a solution of the following nonlinear
system of integral equations

1
u(t)=2A L G, (t,s) f(s,u(s),v(s))ds

1
U L G, (t,s) g (s,u(s),v(s))ds,

te0,1],
(8)

1
v (t) = yL Gy (6,5) g (5, (s), v (s)) ds

1
A Jo Gy (t,s) f (s,u(s),v(s))ds,

telo0,1],

is a solution for problem (S)-(BC).

We consider the Banach space X = C([0, 1]) with the
supremum norm || - | and the Banach space Y = X x X with
the norm ||(u, v)|ly = [lull + [vl. We define the cone P C Y by

={wv) eYs u@®) > t“ " ull, ve) 2 tF v, vt

9)
e [0,1]}.
For A, u > 0, we introduce the operators T}, T, : Y — X
and 7 : Y — Y defined by
1
1) O =1 | G (09 f (su(s). () ds
0
1
A RACHSIORIOTN
0<t<l,
(10)

1
T, (u,v)(t) = u L G5 (t,5) g (s,u(s),v(s)ds

1
A J Gy (t,s) f(s,u(s),v(s))ds,
0
0<t<l,
and I (u,v) = (Ty(u, v), T,(u, v)), (u,v) € Y. Itis clear that if
(u,v) is a fixed point of operator 7, then (u, v) is a positive

solution of problem (S)-(BC).

Lemma 7. If(H1)-(H2) hold, then T
continuous operator.

: P — Pisa completely
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Proof. Let (u,v) € Pbeanarbitrary element. Because T (u, v)
and T, (u, v) satisfy problem (1)-(2) for x(¢) = Af (¢, u(t), v(t)),

t € [0,1], and y(t) = ug(t,u(t),v(t)), t € [0,1], then by
Lemma 5, we obtain
Ty (u,v) () 2 7Ty ) (¢)
T,y (uv) (£) 2 97T, (u,v) (1)), (1)
vt,t € [0,1],
and so
T, (,v) (8) = || T, (w,v)|)»
T, (u,v) () = 771 ||T, (), (12)

Vvt € [0,1].

By (H2) and the above inequalities, we deduce that
I (u,v) € P. Hence, we get 7(P) c P. By using standard
arguments, we can easily show that T} and T), are completely
continuous, and then J is a completely continuous opera-
tor. O

For ¢ € (0,1), we denote A = J'Ol Jy(s)ds, B = ,[01 1(5)ds,
C = fol Ji(s)ds, D = Iol J,(s)ds, A = Ll J,(s)ds, B =

Ll L (s)ds, C= Ll J5(s)ds, and D= Ll J4(s)ds, where J;, i =
1,...,4,are deﬁned in Section 2 (Lemma 4).

For f3, gy foor 9o € (0,00) and numbers «;, o, € [0, 1],
az,a, € (0,1),a € [0,1], and b € (0,1), we define the
numbers

{ ae; (1-a)a, }
Ll = —> e >
YA VD

b(x3 (1- b) 044}

:

(1—a)(1—a2)})

=max{
Vb Y90oC 13)
B {b(l o) (1—5)(1—“4)}
4 = min ,
9B 9,C
{ (1—b)}
= min
-min |
9,C

where y = min{c*!, P71}

Theorem 8. Assume that (H1) and (H2) hold, ¢ € (0,1),

a, o, €[0,1], 3,0 € (0,1), and a € [0,1] and b € (0,1).
WIFfs, g £l gl €(0,00), Ly < Ly, and Ly < Ly, then,

foreach A € (Ly,L,) and u € (Ls,L,), there exists a positive

solution (u(t), v(t)), t € [0, 1] for (S)-(BC).
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QI fs =09 f.g., € (0,00) and Ly < L, then,
foreach A € (Ly,00) and y € (L3,L4) there exists a positive
solution (u(t), v(t)), t € [0, l]for (S)-(BQ).

(B)Ifgy =0, fo,foo,g00 € (0,00), and L, < L', then,
foreach A € (Ly, L) and y € (L3, 00), there exists a positive
solution (u(t), v(t)), t € [0, l]for )-(BC).

@Iffs =g, =0 f .4, € (0,00), then, for each
A € (L,,00) and p € (L5, 00), there exists a positive solution
(u(t), v(t)), t € [0, 1] for (S)-(BC).

() If fo’go’f € (0,00), g5, = 00} or {f5, g5 b, €
(0,00), fi, =00 or{fo,gOE(OOO)f = g', = oo}, then,
for each A € (0,L,) and u € (0,L,), there exists a positive
solution (u(t), v(t)), t € [0, 1] for (S)- (BC)

() If{f = 0,95 fL € (0,00), gy, = 00} or {f5 =0, f,
oogo,gOOE(O 00)}0r{f0—0g0€(0 ), foo goo_oo}
then, for each A € (0, c0) and u € (0, L',), there exists a positive
solution (u(t), v(t)), t € [0, 1] for (S)-(BC).

(7) If {fo> foo € (0,00), g5 = 0,9, = oo} or {fg, g, €
(0,009 = 0.y = cob o {f§ € (0,00),45 = 0. f, =
go, = 00}, then, for each A € (0, L'2) and p € (0,00), there
exists a positive solution (u(t) v(t)), t e [0,1] for (S)-(BC).

(8) 113 = 6 = 0, fi € (0,00), g, = oo} r [f; = g;

0, i, = 00,4, €(0,00)}o0r{fs =g5=0,f, goo—oo}
then, for each A € (0, 00) and u € (0, oo) there exists a positive
solution (u(t), v(t)), t € [0, 1] for (S)-(BC).

Proof. We consider the above cone P ¢ Y and the operators
T,, T,, and I . Because the proofs of the above cases are
similar, in what follows we will prove one of them, namely,
Case (2). So, we suppose f(f = 0and g,, f(’)o, gfx) € (0,00). Let
Ae(L,,00)andp € (L3, L ) We choose &; € (0, 1—-ug,B/b)
anda, € (0,1- ngC/(l b)) Let & > 0 be a positive number
such thate < f. e < g, and

ao,
y(fo-e)A
a(l-oey)
y(gh -€)B
(1-a)a
y(fio—¢)D
(l—a)(l—oiz) S
y (95 —€)C

<A,

<A,

(14)

By using (H2) and the definitions of f and g, we deduce
that there exists R; > 0 such that f(f,u,v) < e(u + v) and
glt,u,v) < (gy+e)(u+v)forallt e [0,1],u,v € R, with 0 <
u+v < R,. Wedefine theset Oy = {(u,v) € Y, [[(u, V)|ly < Ry}
Now let (u, v) € PNoQ,, thatis, (u,v) € Pwith [|(u,v)|ly = R
or equivalently [lul| + [v| = R,. Then u(t) + v(t) < R, for all
t € [0, 1], and by Lemma 4, we obtain

1
T, (u,v)(t) = A L G, (t,s) f (s,u(s),v(s))ds
1
+u L G, (t,s) g (s,u(s),v(s))ds
1
I RACIITICRIOLE
0
1
tu| B guE v ds
1
< /XJ T, (s)e(u(s)+v(s))ds
’ (15)
1
+u L I, (5) (gg +€) (u(s) +v(s)ds

1
< e jo T, (5) (lull + ) dis

1
ru(gy+e) L T, (5) (lul + ) ds

= [AeA + pu(gy +¢€) B] 1w, v)lly
< [bac3 + b(l - 563)] |Gz, V)IIy
=blw )y, tel01].

Therefore, ||T; (u, V)|l < bl|(w, V)lly-
In a similar manner, we conclude

1
T, (u,v)(t) = u L G; (t,5) g (s,u(s),v(s))ds
1
A L Gy (t,s) f (s,u(s),v(s)ds
1
<u L J5(s) g (s,u(s),v(s))ds
1
A Jo Jo (s) f(s,u(s),v(s))ds
1
<u L J5(5) (gg +€) (u(s) +v(s)ds
1
A Jo Jo () e(u(s) +v(s))ds
1
< (g5 +9) | 15l + 1 s

1
+ e L Jo (8) (llull + 1IvID) ds



= [u(gy +€) C + AeD] [|(u,v)lly
<[(1-b)(1-a&,)+ 1 -b)a,] Iy

=1-b)wvly, tel0,1].

(16)

Hence, | T,(u, V)| < (1= b)[|(s, v)lly.
Then, for (1, v) € P N 0Q,, we deduce

1 @)y = [T} @ w)]| + [T, ()|
<blwvlly + A=) lwvlly  (17)
= @)y -

By the definitions of f’_ and g. , there exists R, > 0 such
that f(t,u,v) > (f\ —e)(u+v)and g(t,u,v) = (g, —&)(u+v)
forallu,v > Owithu+v > R,andt € [c, 1]. We consider R, =
max{2R,, R,/y} and we define Q, = {(u,v) € Y, [[(u,v)]y <
R,}. Then for (u, v) € P with ||(4, v)|ly = R,, we obtain

w () +v(e) 2l + 677 ]

> 7 full + 7 =y (lul + vl (18)

=y v)lly = yR, = R,, Vte€[c1].

Then, by Lemma 4, we conclude

Ty (u,v) (1)
1
A L 1, () f (s, 1(s), v (s)) ds
1
T RACHISERTOIEE
0
1
AI Ji (s) f(s,u(s),v(s)ds
1
+ MJ. I, (s) g (s,u(s),v(s))ds

(19)

1 .
ZAI T 9) (fly =€) (u(s) +v(s) ds

1 .
v 12O (d-) W+ v ds
, 1
>y (f —e) j T, () 1t )l ds

) 1
vuy (g, -e) j T, (5) [ )l ds

= [ (£l -

> [aa; +a(l-

s) A+ uy (gzx) - s) E] 1Gee, v)ly
ay)] 1w Wy = all@wv)ly -

So, [Ty (u, V)| = Ty (u, v)(1) = all(u, V)lly.
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In a similar manner, we deduce

T, (u,v) (1)

1
>y JO 1,(5) g (5,14(5) v (s)) s
1
A j 1, () f (s,14(5) v (s)) ds
1
su[ KO guE. ) ds
1
M O u v o) ds
1 .
> [ 136 (gho —) (9 + (s ds 0

1 .
AJ To(9) (fiy =€) (u(s) +v(s)) ds

. 1
> uy (g, - €) j J5 (5) Iut, ly s

. 1
Ay (f -€) j 4 (5) I V)l ds

= [y (900 —€) C+ Ay (£5, - €) D] lw, mlly
>[1-a)(1-a)+(1-a)a]lwv)y

=1 -a)lwly-
So, [T, (u, V)| = T, (u, v)(1) = (1 = a)[l(w, v)lly.
Hence, for (1, v) € P N 0Q),, we obtain

1T )y = |T) )] + [T, ()
zallwv)ly + A -a)llwv)ly (21

= [, vy -

By using (17), (21), Lemma 7, and Theorem 6(i), we
conclude that 7 has a fixed point (1, v) € PN (Q, \ Q) such
that R, < [lull + [[v]l < Ry, u(t) = t* Hul, and v(t) > Y|
forallt € [0,1]. If ||u|| > O then u(¢) > 0 forallt € (0, 1], and
if |v|| > 0 then v(¢) > 0 for all t € (0, 1]. O

In what follows, for £, gb, £2., g5, € (0,00) and numbers
a, o € [0,1], a5,4 € (0,1),a € [0,1],and b € (0,1), we
define the numbers

_ 1-
L = max{ aO:L, %} >
vhA  vfeD

I ba; (1-b)ay
S SN ol
m{ ) 000 —a)]
b Y95 yg,C
T min b( 1—043 1-b)(1-ay)
! T gC ’
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Z' = min b 1-b

2 foA f.D])’

fizmin{sL,ls—_b}.
9B 95.C

(22)

Theorem 9. Assume that (H1) and (H2) hold, ¢ € (0,1),
a,Qa, € [0,‘1],.a3,0c4 €(0,1),a € [0,1], and b € (0,1).

D If f3, o> forr oy € (0,00) and L, < L, and Ly < L,
then, for each A € (L;,L,) and y € (L;, L), there exists a
positive solution (u(t), v(t)), t € [0, 1] for (S)-(BC).

(2) Iffé,g(i),féo € (0,00), g, = 0, and L < Z;, then,
for each A € (L,, i;) and y € (L;,00), there exists a positive
solution (u(t), v(t)), t € [0,1] for (S)-(BC).

G)If fi, 90,9, € (0,00), f5 = 0,and L, < f;, then,
foreach A € (L,,00) and U € (f3,f;), there exists a positive
solution (u(t), v(t)), t € [0,1] for (5)-(BC).

4 If fy,g9, € (0,00), fo, = go, = O, then for each
A € (L;,00) and p € (L;, 00), there exists a positive solution
(u(®), v(E), £ € [0, 1] for (S)-(BC). |

() If {fy = 09, 95> fow oo € (0,00)} 0 {f, [ Goo €
(0,00), gy = 0o} or {f5 = gy = 00, f&, oo € (0,00)}, then,
for each A € (0,L,) and u € (0,L,), there exists a positive
solution (u(t), v(t)), t € [0,1] for (5)-(BC). ‘

(6) If {fy = 00,90 fo, € (0,00), g5, = O} or {fy, f5, €
0.00hg) = cougly = O} or (fy = gh = cofl e
(0,00), g5, = 0}, then, for each A € (0, I:;) and p € (0,00),
there exists a positive solution (u(t), v(t)), t € [0, 1] for (S)-
(BQO). ' ‘ '

(7) If {fy = 00,90 g5 € (0,00), f3, = O} or {fg, g5, €
(0,00), gy = 00, f&, = 0} or {fy = gy = 00, fo, = 0,95, €

~!
(0,00)}, then, for each A € (0,00) and p € (0,L,), there exists
a positive solytion (u(t), v(t)), t € [0, 1] for (S)-(BC). _
(&) If {fo = 00,9, € (0,00), f&, = go = O or {fy €

(0,00), gy = 00, f3, = gy = 0} 0r {f5 = gy = 00, f3, = g5, =
0}, then, for each A € (0,00) and u € (0,00), there exists a
positive solution (u(t), v(t)), t € [0, 1] for (S)-(BC).

Proof. We consider again the above cone P ¢ Y and the
operators T}, T,, and 7. Because the proofs of the above cases
are similar, in what follows we will prove one of them, namely,
the first case of (6). So, we suppose fé = 00, gf),féo € (0, 00),
and g, = 0. Let A € (0, i;) and y € (0,00). We choose
as € (Afi,A/b,1)and &, € (Af;,D/(1 - b),1), and lete > 0
be a positive number such that e < g, e < AyA and

ba, .
(fo +e)A
b(1-a,) -
eB

>

7
(1-b)a,
(o+ep ="
(1-b)(1-ay,) S
eC
(23)

By using (H2) and the definitions of f; and g), we deduce
that there exists R; > 0 such that f(t,u,v) > (1/€)(u +v) and
gt,u,v) > (gf) —&w+v)forallu,v>0with0<u+v <Ry
and t € [¢,1]. We denote Q; = {(u,v) € Y, [[(u, V)lly < Rs}.
Let (u,v) € P with [[(u,v)lly = Rs, thatis, lull + [|v]l = R,.
Because u(t) + v(t) < |lull + [vl = R; for all £ € [0, 1], then, by
using Lemma 4, we obtain

1
T, (u,v) (1) 2 A j 1,(5) £ (5,4(), v (s)) ds
1
I RACHIICRIOIE
1
22 [ 16 f v () ds

(24)
1 1

zAj T2 (8) = (u(s) + v (s)) ds
0 &

[\

1
Rl + 7 ) s

€ Jc
Ay —
> ;VAn(u, My = 1)y -

Therefore, ||, (u, v)|| = T} (1, v)(1) = [[(u, V)lly-
Thus, for an arbitrary element (u, v) € PN0Q;, we deduce

1T vy = ||T1 (u, v)|| + ||T2 (u, v)|| > ||T1 (u, v)||
(25)

2 [, )lly -

Now, we define the functions f*,g* : [0,1]
R, — R, f'(t%) = maXyuecf(L16V), g°(62)
maXy.,, < gt u,v), t € [0,1], x € R,. Then f(t,u,v)
fH(t,x), g(t,u,v) < g*(t,x) forallt € [0,1],u = 0,v > 0,and
u+v < x. The functions f*(t,-), g* (t,-) are nondecreasing for
every t € [0, 1], and they satisfy the conditions

I X

IN

. fflitx)
lim sup ma: < foos
x—>oopt€[0>)1(] X foo
(26)
*(tx
limsupmaxg (%) =0.
x—o00 t€[0,1] X

Therefore, for € > 0, there exists §4 > 0 such that, for all
x >R, andt € [0, 1], we have

*(tx *(tx
Mslimsupmaxf ( )+ssf;0+s,
X x—o00 te€[0,1] X
" (t, x) " (t, x) @
t,x . t, x
g < hmsupmaxg +e=g¢
X x—o00 t€[0,1] X

andso f*(t,x) < (f5, +€)xand g"(t,x) < ex.



We consider R, = max{2R,, R,} and we denote Q, =
{(w,v) € Y, |l(w,v)ly < R,}. Let (u,v) € PN 0Q,. By the
definitions of /™ and g*, we obtain

fu@),v®) < (EIwv)ly),

gtu@®,v®) <g” (L1wly), (28)
vVt € [0,1].

Then, for all t € [0, 1], we conclude

1
T © <[ 1,6 f v ()ds
1
+u L I, () g (s,u(s),v(s)ds
1
[ 1O F Il ds
1
[ RO Il ds
’ (29)

1
<A(f +e) L Ty (5) at, )y dis

1
+ st. J2 () (s, v)lly ds

0
= [A(fo + ) A+ peB] ll(w, v)lly
< [b&; +b(1-a)] (w,v)ly
=b|(u, My -

Therefore, || T, (u, v)|| < bll(u, v)]ly-
In a similar manner, we deduce

1
T, (u,v) (t) < L J5(s) g (s,u(s),v(s))ds
1
) j Jo () £ (s,u(s),v(s)) ds
1
<u L J;(5)g" (s, 1 v)lly) ds
1
i L To(8) £* (5l »lly) ds
1
< e j 5 () (s, V)ly ds
1
PAGF +e) j T4 (5) It Wy ds

= [ueC + A (f5 + &) D] I, v)lly
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<[A=b)(1-a) + (1 -b)&] Iy

=1=-b)lIwvly-
(30)

So, IT,(u, VIl < (1 = D), V)lly-
Then, for (1, v) € P N 0Q,, it follows that

17 @ )ly = [T} @) + [T, (w.v)]|
<blw vy + A=) Iwvlly (1)

= @)y -

By using (25), (31), Lemma 7, and Theorem 6(ii), we
conclude that 7 has a fixed point (u,v) € PN (54 \ Q) such
that Ry < [[(u, v)|ly < R,. O

4. Nonexistence Results for
the Positive Solutions

We present in this section intervals for A and y for which there
exists no positive solution of problem (S)-(BC) that can be
viewed as fixed point of operator 7.

Theorem 10. Assume that (H1) and (H2) hold, and c € (0,1).
If for fons Go» Goy < 00, then there exist positive constants A, y,
such that, for every A € (0,A,) and p € (0, y,), the boundary
value problem (S)-(BC) has no positive solution.

Proof. In a similar manner as in the proof of Theorem 3.1
from [11], we can show that A; = min{1/(4M, A), 1/(4M,D)}

and iy = min{1/(4M,B), 1/(4M,C)}, where A = | J,(s)ds,

B= Iol J,(s)ds,C = JOI J;(s)ds,and D = Jol J4(s)ds, satisfy the
conditions of our theorem. O

Theorem 11. Assume that (H1) and (H2) hold, and c € (0, 1).
If fo» foo > O and f(t,u,v) > 0 forallt € [c,1],u > 0,v >0,
and u + v > 0, then there exists a positive constant A, such

that, for every A > A, and u > 0, the boundary value problem
(S)-(BC) has no positive solution.

Proof. From the assumptions of the theorem, we deduce
that there exists m; > 0 such that f(t,u,v) > m(u +

v) for all t € |[c,1] and u,v > 0. We define XO
min{l/(ymlz), 1/(ym15)}, where A = J;l J,(s)ds and D
_[Cl J,(s)ds. We will show that, for every A > A, and u > 0,
problem (S)-(BC) has no positive solution.

Let A > XO and p > 0. We suppose that (S)-(BC) has a
positive solution (u(t), v(t)), t € [0,1].

If A > D, then 7{0 =1/ (yrnIZ), and therefore, we obtain

u(1) = (T (u,v)) (1)

1
=A L Gy (L,s) f(s,u(s),v(s))ds

1
+;,th G, (L,s)g(s,u(s),v(s))ds
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> A Jl G, (1,s) f(s,u(s),v(s)ds
0

> A Jl G, (1,s) f(s,u(s),v(s)ds

1

> Amy J G, (1L,8) (u(s)+v(s)ds

[

1
> Amy J J(s) (u(s) +v(s)ds

1
> A,y j T2 () (lull + V1) ds

= /\mlyz G )y -
(32)

Then we conclude

lull = u (1) = AmyyA | (w, v)lly > AgmyyA [, v)lly -

= M)y »

and so, [|(w, V)lly = llull + vl = llull > [I(u,v)lly, which is a
contradiction. _
If A < D, then Ay = 1/(ym, D), and therefore, we deduce

v(1) = (T, (u,v)) (1)

1
= ‘ujo G;(1,s)g(s,u(s),v(s))ds
1
+AJ Gy (1,5) f (s,u(s),v(s))ds
0
1
ZAJ G, (1,5) f (s,u(s),v(s)ds
0
1
zAJ G, (L,s) f (s,u(s),v(s))ds (34)
1
> Amy J Gy (1,8) (u(s)+v(s)ds
1
z)tmlj T4 (5) (u (s) + v (s)) ds

1
> Amly[ T4 (5) (lual + 1) s

= AmyD ||, V)lly .
Then we conclude

vl = v (1) = AmyyD [, v)lly > AgmyyD i, v)ly

35)
= 1@ )y
and so, [[(w, V)lly = llull + vl = lIvll > [I(w, v)lly, which is a
contradiction.
Therefore, the boundary value problem (S)-(BC) has no
positive solution. O

Theorem 12. Assume that (H1) and (H2) hold, and c € (0, 1).
If g5, 9o, > 0 and g(t,u,v) > 0 forallt € [c,1],u > 0,v >0,
and u + v > 0, then there exists a positive constant [, such
that, for every u > [, and A > 0, the boundary value problem
(S)-(BC) has no positive solution.

Proof. From the assumptions of the theorem, we deduce that
there exists m, > 0 such that g(t,u,v) > m,(u +v) forall t €
[c,1]andu, v > 0. We define fi, = min{1/(ym,B), 1/(ym,C)},
where B = Ll J,(s)ds and C = Ll J5(s)ds. Using a similar
approach as that used in the proof of Theorem 11, we can show
that, for every u > i, and A > 0, problem (S)-(BC) has no
positive solution. O

Theorem 13. Assume that (H1) and (H2) hold, and ¢ € (0, 1).

Ifrffl.gh.g., >0and ft,u,v) > 0,g(t,u,v) > 0 for all
telel],u>0,v>0,andu+v >0, then there exist positive

constants A, and [, such that, for every A > Ao and p > Py the
boundary value problem (S)-(BC) has no positive solution.

Proof. From the assumptions of the theorem, we deduce that
there exist m,,m, > 0 such that f(t,u,v) > m;(u + v) and
gt,u,v) = my(u+v),forallt € [c,1] and u,v > 0.

We define A, = 1/(2ym, A) and i, = 1/(2ym,C), where
A= Ll Ji(s)ds andC = Ll J5(s)ds. Then, for every A > XO and
¢ > fy, problem (S)-(BC) has no positive solution. Indeed, let
A> A and py > Hhy- We suppose that (S)-(BC) has a positive
solution (u(t), v(t)), t € [0,1]. In a similar manner as that
used in the proofs of Theorems 11 and 12, we obtain

lall = w (1) 2 Amyy Al v)lly

N (36)
Vil = v (1) = umyyC ll(w, v)lly »
and so
(e lly = lull + 1]
> Amy YA [[(u, v)lly + pmyyC Il (u, v)lly
(37)

> Ay YA N, vly + By yC Nl (w, v)lly
1 1
= Sl )y + 5w )y = 1w )y

which is a contradiction. Therefore, the boundary value
problem (S)-(BC) has no positive solution.

We can also define )AL; = 1/(2ym,D) and i) = 1/(2ym,B),
where B = Ll J,(s)ds and D = Ll J4(s)ds. Then, for every
A> )At(’] and y > ﬁf), problem (S)-(BC) has no positive solution.

Indeed, let A > )AL(I) and p > /71(’) We suppose that (S)-(BC) has
a positive solution (u(t), v(t)), t € [0,1]. In a similar manner
as that used in the proofs of Theorems 11 and 12, we obtain

Wl > v (1) = dmyyD I, Wy »
) (38)
o = w0 (1) = prmyyB s, Wy »
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and so
|G, Iy = lluell + IVl
> um,yB ||(u, v)lly + AmyyD ||, v)|ly

~! = =/ = (39)
> domyyB (| (w, v)lly + AgmyyD [|(w, )y

1 1
=5 1@ lly + 5 1@ vy = 16 vy

which is a contradiction. Therefore, the boundary value

problem (S)-(BC) has no positive solution. O
5. Examples
Leta = 5/2(m = 3),8 = 7/3(m = 3), Ht) = t,

K(t) = {0, t € [0,1/3); 1, t € [1/3,2/3); 2, t € [2/3,1]},
for allt € [0,1]. Then jol u(s)dK(s) = u(1/3) + u(2/3) and
_[01 v(s)dH(s) = 3 Jol sSv(s)ds.

We consider the system of fractional differential equa-
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v(0) =+ (0) =0,
Y0=u(3)ou(3).

Then we obtain A = (¢ — DB - 1) -
(Jo s 'dK()( [, " dH(s)) = (26V3~6V2~3)/13/3 > 0.

The functions H and K are nondecreasing, and so assumption
(H1) is satisfied. Besides, we deduce

(BCo)

I (t,S) = I‘(5/2)

PRA-2—t-9%?, 0<s<t<l,
' t3/2 (1 _ 5)1/2 ,

g, (t,s) = T(7/3)

tions PP (— 9, 0<s<t<l, (40)
DY?u(t) + Af (bu(t),v(£) =0, te(0,1), 3 (1 - 513, 0<t<s<l,
(So)
DPv(t) +ug (tu(t),v (1) =0, te(0,1), ’ s(1-s)?
h1(5)=W,
with the boundary conditions
s(l—s)l/3
u(©) =u' (0) =0, h ()= =r a7
1
u' (1) =SJ v (s)ds, We also obtain
0
(% ca-sy 4 [(1+2V2) (1 - 92 = (1 -39 - (2 - 36)"] 0<s<i
3w (26V3-6V2-3)Vm B
i a12 4 a2 nan3/2 l %
6= 157079 +(26\/§_6\/§_3)\/ﬁ[(1+2\/§)(1 9" - (2-35)"7], $S5<3
4 1/2 4 1/2 2
—s(1- 1+2v2)(1-9)"2, Z<s<l,
~3vﬁs( ) +(26\/§—6\/§—3)\/ﬁ( +22)(1-9) 3°°F
B 523 3 s 3 0 w3 0 o 32 s
]2(5)_(26v§—6\6—3)r(7/3)[13(1 9= 2 1= - 25— 9 - 22 ) ]
(41)
_5(1—5)1/3 13(1+2\/§> 3 3 3 133 3 103 32 7/3
h©="TTs +(26\/§—6\/§—3)F(7/3)[E(1_S) -2 =9P = 21 - 9P - 22 -9
(1+2V2)(1-9)"2 = (1-35)"% = (2 - 35)2, 0sS<§,
= 26 a2 n 232 1 2
J, (s) Vi evi3) v (1+2V2)(1-9)"2 = (2397, 7S5<3
(1+2\/§)(1—s)1/2, §£s£1
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1/2, we deduce y = 1/(22). After some
computations, we conclude A = _[01 J1(s)ds = 0.31258448,

A= [} 1,(5)ds = 0.18323168, B = [, J,(s)ds = 0.20906868,
B= [ J(s)ds = 0.13212807, C = [ Jy(s)ds ~ 0.38549139,

For ¢ =

1/2
C= [, J5(s)ds = 025157025, D = [ ],(s)ds ~ 0.24263144,
and D = [}, J,(s)ds = 012808534,

Example 1. We consider the functions

Fltuv) = VE[p, u+v)+1] (u+v)(q, +sinv)’

u+v+1

(42)

Vt[p, W +v)+ 1] (u+v) (g, + cosu)
gt,u,v) = ,
u+v+1

fort € [0,1], u,v > 0, where p;, p, > 0and q;,4, > 1.

We have fj = g1, 9, = ¢, + 1, fi, = (1/V2)pi(g, - 1),
and g, = (1/v2)p,(q, — 1). Wetakea = b = a) = o, =
oy = a, = 1/2; then we obtain L, = 1/(p,(q; — 1)D), L, =
1/(4q,A), Ly = 1/(2"°p,(q, —1)B), and L, = 1/(4(q, + 1)C).
The conditions L, < L, and L5 < L, become p,(q, —1)/q, >
4A/Dand p,(q,~1)/(g,+1) > 2"°C/B.1f p,(q,~1)/q, = 10
and p,(q, — 1)/(g, + 1) > 11, then the above conditions are
satisfied. Therefore, by Theorem 8(1), for each A € (L, L,)
and u € (Lj, L,), there exists a positive solution (u(t), v(t)),
t € [0, 1] for problem (S,)-(BC,). For example, ifq, = 2,¢, =
3, p; = 20, and p, = 22, then we obtain L, = 0.39036474,
L, =0.39989189, L, = 0.15324297, and L, = 0.16213072.

Besides, because f; = q, g5 = ¢ + 1, fo, =
pi1(q; + 1), and g, = p,(g, + 1), we can apply Theorem 10.
So, we conclude that there exist Ay, 4, > 0 such that,
for every A € (0,A;) and y € (0,4y), the bound-
ary value problem (S;)-(BC,) has no positive solution. By
Theorem 10, the positive constants A, and y, are given by
Ay = min{l1/(4M,A),1/(4M D)} = 1/(4M,A) and y, =
min{1/(4M,B), 1/(4M,C)} = 1/(4M,C). For example, if
py =20, p, =22,q, = 2,and g, = 3, then we obtain M, = 60,
M, = 88,1y =~ 13.33-107, and py = 7.37 - 107>,

Example 2. We consider the functions
ftuv)=(t+ 1)a (u2 + vz) ,

gtu,v) = £ ("™ -1), (43)

te[0,1], u,v=0,

where @,b > 0. ‘ '

Wehave f; =0, g, = 1, and f = g, = 0. Forb = 1/2,
we obtain L'4 =1/(2C) = 1.2970458. Then, by Theorem 8, (6)
we conclude that, for each A € (0,00) and y € (0, L'4), there
exists a positive solution (u(t), v(t)), t € [0, 1] for problem
(80)-(BCy).

Because g = 27" and gL, = 00, we can apply Theorem 12.
Then there exists fi, such that, for every u > i, and A > 0,
problem (S,)-(BC,) has no positive solution. For example, if

1

b = 1, then we deduce m, = 1/2 and fi, = 1/(ym26) =
22.486.
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