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This paper presents the design of modified radial basic function neural controller (MRBFNC) for the pitch control of an aircraft
to obtain the desired pitch angel as required by the pilot while maneuvering an aircraft. In this design, the parameters of radial
basis function neural controller (RBFNC) are optimized by implementing a feedback mechanism which is controlled by a tuning
factor “𝛼” (T factor). For a given input, the response of the RBFN controller is tuned by using T factor for better performance of
the aircraft pitch control system. The proposed system is demonstrated under different condition (absence and presence of sensor
noise). The simulation results show that MRBFNC performs better, in terms of settling time and rise time for both conditions,
than the conventional RBFNC. It is also seen that, as the value of the T factor increases, the aircraft pitch control system performs
better and settles quickly to its reference trajectory. A comparison between MRBFNC and conventional RBFNC is also established
to discuss the superiority of the former techniques.

1. Introduction

The conventional design methods of a control system often
require mathematical models describing the dynamic behav-
ior of the plant to be controlled. When such mathematical
models are difficult to obtain due to uncertainty or com-
plexity, the conventional techniques based on mathematical
models are not well suited. Artificial neural network (ANN)
in last decade has become popular for plant identification
and control [1, 2]. An advantage of the ANN is its ability
to handle the nonlinear mapping of the input-output space.
It is well known that back propagation based ANN suffers
from localminima and over fitting problemswhich is difficult
to be implemented in real time due to a large number of
neurons in the hidden layer in comparison to the RBFNC
[3, 4]. Since early 1990s, radial basis function network with
Gaussian function has been widely used as the basic structure
of neural network in nonlinear control [5–7]. Locally tuned
and overlapping receptive fields have been found in cerebral
cortex visual cortex and in other parts of the brain. The
concept of localized information processing in the form

of receptive fields suggests that such local learning offers
alternative computational opportunities to learning with
global basis functions [8]. Gomi and Kawato proposed a
feedback error learning control strategy, where a Gaussian
RBFN is used for online learning of the inverse dynamics
of the system [6]. A Radial basic function neural controller
(RBFNC) with learning mechanism is used to control the
pitch angle of an aircraft [9]. RBFNC is used for UPFC
to improve the transient stability performance of a power
system [10]. The comparison between multilayer perception
network (MLPN) and radial basis function network (RBFN)
is done for online identification of the nonlinear dynamics
of a synchronous generator [11]. Neural networks are used to
build a model of the plant and to construct its “inverse” to
approximate a desired model dynamics [12].

In this paper, a newmodifiedneural controller is designed
to control the pitch angle of an aircraft in various conditions
and also in the presence of sensor noise. Due to the presence
of T factor, the weights are updated and the response of the
pitch control system is accelerated and settles quickly to its
reference value.
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Figure 1: RBFNC for aircraft pitch control.

2. Radial Basic Function Neural Network

Radial Basis function networks are two layers feed forward
networks. In radial basis function neural network (RBFNN),
the hidden nodes are implementing a set of radial basis
functions (e.g., Gaussian functions).

In RBFNN, the network training is divided into two
stages:

(i) weights from the input to hidden layer are deter-
mined;

(ii) weights from the hidden to output layer are also deter-
mined.

The training/learning in case of RBFNN is very fast
and networks are very good at interpolation. A radial basic
function neural network is shown in Figure 1.

The proposed RBFNNmodel with single neuron output𝑦
presented in Figure 1 consists of three layers [13]. Each input
value is assigned to a node and passed directly to the hidden
layer without weights. The hidden layer nodes are called
radial basic function (RBF) units which are determined by a
parameter vector called centerand a scalar called width. The
Gaussian density function is used as an activation function
for the hidden neurons. The RBFNN shown in Figure 1 has
inputs 𝑥

𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑛, and output 𝑦 = 𝐹rbf(𝑥). 𝑥 =
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𝑖
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receptive fields present in the RBFNN, the output 𝑦 can be
written as
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𝑇 parameterize the locations and 𝜎

decides the spreading of the receptive fields in the input space.
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Figure 2: Longitudinal dynamics description of an aircraft, where
𝛿
𝐸
=deflection of the elevator, 𝜃=pitch angle, and𝛼=angle of attack.
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Figure 3: Proposed RBFNC controller for pitch control.

The weighted average output of the RBFNN can be writ-
ten as

𝑦 = 𝐹rbf (𝑥, 𝜑) =

∑
𝑛𝑅
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𝑖
𝑅
𝑖 (
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∑
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𝑖 (

𝑥)

. (3)

3. Mathematical Formulation of an Aircraft
Pitch Control System

The pitch angle of the aircraft is generally described by a
coordinate system that is fixed to the aircraft.The pitch angle
and other forces acting in an aircraft are shown in Figure 2.

The aircraft pitch control model is described by the
following equation [14]:
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(4)

The above equation can be represented as

𝜃 (𝑠)

𝛿
𝐸 (
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3
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where the values of 𝜏
1
, 𝜏
2
, 𝜏
3
, and 𝑘 are 0.8995 + 0.0968𝑖,

0.8995 − 0.0968𝑖, 1.0824, and −1.1346, respectively, for a Delta
aircraft (flight condition 3) [13].

4. Design of T Factor Based RBFNC

The RBFNC for aircraft pitch control system shown in
Figure 2 tracks the desired pitch angle 𝜃(𝑘𝑇). The system has
a T factor that is used to tune the output of the RBFNC.
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Figure 4: Receptive field unit centers.
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Figure 5: Scaling and addition of many receptive fields 2𝑅
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As shown in Figure 3, the 𝛼, 𝑒(𝑘𝑇), 𝑒
𝑐
(𝑘𝑇), and 𝜃(𝑘𝑇) are

used to adjust the weights of the neural controller, that is,
𝑏
𝑖
,where

𝑒 (𝑘𝑇) = 𝜃ref (𝑘𝑇) − 𝜃 (𝑘𝑇) ,

𝑒
𝑐 (

𝑘𝑇) =

𝑒 (𝑘𝑇) − 𝑒 (𝑘𝑇 − 𝑇)

𝑇

.

(6)

And 𝑇 is the sampling time. The output of the RBF NC
𝛿(𝑘) is computed by taking 𝑒(𝑘) and 𝑒

𝑐
(𝑘) as the argument to

the radial basic function

𝛿 (𝑘) = 𝐹rbf (𝑒 (𝑘) , 𝑒𝑐 (
𝑘) , 𝛼, 𝛿 (𝑘 − 1)) , (7)

where 𝛼 = T factor [15] and 𝛿(𝑘 − 1) = previous output of
neural controller.

It is decided in the designing of pitch controller that
elevator should not to exceed more than 𝜋/2 radian in either
upward or downward direction or the change of error should
not be more than 0.01 radian/sec. It concludes that range of
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Figure 7: Comparison response of pitch angle (deg) between 𝛼 = 0

and 𝛼 = 0.9.

error 𝑒(𝑘𝑇) and change of error 𝑒
𝑐
(𝑘𝑇) are 𝑒(𝑘) ∈ [−𝜋/2, 𝜋/2]

and 𝑒
𝑐
(𝑘) ∈ [−0.01, 0.01]. A uniformly grid is created by tak-

ing the error and the change of error with the corners of the
grid placed at (−𝜋/2, −0.01), (−𝜋/2, 0.01), (𝜋/2, 0.01), and
(𝜋/2, −0.01). Each point on the grid contains a receptive field
which is a Gaussian function. The error and change of the
error’s spreading (𝜎) are taken differently as

𝜎
𝑐
= 0.7

0.02

√𝑛
𝐺

, 𝜎
𝑒
= 0.7

𝜋

√𝑛
𝑅

, (8)

where 𝑛
𝐺
is the number of partitions on the grid (𝑛

𝐺
= 11 here)

and 𝑛
𝑅
is the number of receptive field units in RBFNCwhich

is equal to 𝑛
𝑅

= 𝑛𝐺
2 (𝑛
𝑅

= 121). Each center which represents
a RBF is represented by circle as shown in Figure 4.

The left most bottom circle (−𝜋/2, −0.01) is counted as
1 and the counting increases by 1 making the left most top
circle (−𝜋/2, 0.01) numbered as 11. Next counting starts from
the bottom circle of the next column with number 12 and
the top most circle in that column is represented as 22. So,
the right most bottom circle (𝜋/2, 0.01) is counted as 111 and
top most circle is counted as 121 (𝜋/2, −0.01). The input and
outputmapping of the radial basis function neural network is
shaped by choice of scaling parameters 𝑏

𝑖
(Figure 5). Assume

the scaling and summation of the receptive field units with
centers at the four dark-shaded circles shown in Figure 1
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Figure 8: Comparison of response of error between 𝛼 = 0 and 𝛼 =

0.9.
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(the indices here are assumed to be 61, 62, 72, and 73) to
be 2𝑅

61
(𝑒, 𝑐) + 3𝑅

62
(𝑒, 𝑐) + 𝑅

72
(𝑒, 𝑐) + 2𝑅

73
(𝑒, 𝑐). The scaling

and summing are computed and shown in Figure 4.
A single receptive field 𝑅

73
(𝑒, 𝑐) without scalingis shown

in Figure 6.
For the receptive field, the parameter 𝜎 of the Gaussian

function decides the spreading of the Gaussian function.The
error and change of the error’s spreading (𝜎) are different and
are taken as

𝜎
𝑐
= 0.7

0.02

√𝑛𝐺

, 𝜎
𝑒
= 0.7

𝜋

√𝑛𝑅

, (9)

where 𝑛𝐺 is number of partitions on each edge of grid (here,
𝑛𝐺 = 11) and 𝑛𝑅 is the number of receptive field units in RBF
neural controller which is equal to 𝑛𝑅 = 𝑛𝐺

2 (here, 𝑛𝑅 = 121).

5. Simulation Results

The reference signal is a step signal and the flight travels
with constant speed of 253m/sec of a Delta aircraft (flight
condition-3). A reference pitch angle of 1 degree is given as
input to the aircraft and to the reference model simultane-
ously. The output which is the actual pitch angle follows the
reference trajectory of reference model output.The following
figures illustrate the pitch angle responses of the aircraft
under flight condition-3.
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Figure 10: The output of RBFNC to plant for 𝛼 = 0.9.
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Figure 11: Comparison response of pitch angle (deg) for aircraft
pitch control system between 𝛼 = 0 and 𝛼 = 0.9.

5.1. In the Absence of Sensor Noise. (1) Comparison of Closed
Loop Response between 𝛼 = 0 (without T factor) and 𝛼 = 0.9

(with T factor). See Figure 7.
(2) Comparison of Pitch Angle Errors between 𝛼 = 0

(without T factor) and 𝛼 = 0.9 (with T factor). See Figure 8.
(3) Output of Neural Controller for 𝛼 = 0 (without T

factor). See Figure 9.
(4) Output of Neural Controller for 𝛼 = 0.9 (with T

factor). See Figure 10.

5.2. In Presence of Sensor Noise. (1) Comparison of closed
loop responses between 𝛼 = 0 (without T factor) and 𝛼 = 0.9

(with T factor). See Figure 11.
(2) Comparison of pitch angle errors between 𝛼 = 0

(without T factor) and 𝛼 = 0.9 (with T factor). See Figure 12.
(3) Output of Neural Controller for 𝛼 = 0 (without T

factor). See Figure 13.
(4) Output of Neural Controller for 𝛼 = 0.9 (with T

factor). See Figure 14.

5.3. Comparison of Pitch Control System Responses for Differ-
ent Values of T Factor (𝛼 = 0, 𝛼 = 0.2, 𝛼 = 0.6 and 𝛼 = 0.9).
See Figure 15.
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Figure 12: Comparison of response of error between 𝛼 = 0 and
𝛼 = 0.9.
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Table 1: Comparison of time domain specifications of pitch control
system for different values of 𝛼.

Sl. number T factor
(𝛼)

Settling time
(second)

Rise time
(second)

Overshoot
(percentage)

1 0 15.84 6.556 0
2 0.2 13.02 6.191 0
3 0.6 10.46 5.401 0
4 0.9 9.065 4.875 0

6. Conclusion

The nonzero value of the MRBFNC output exhibits its
adaptive nature whenever the actual pitch angle differs from
its reference value and at the time of transition of the reference
signal. When the speed of the aircraft is changed, the control
signal to the pitch control system also changes to cope up
with the speed change. From Table 1, it is clear that, for the
value of “𝛼 = 0.9,” the settling time and rise time of pitch
control system are much better than the RBFNC based pitch
control system. It is shown from Figures 10 and 14 that T
factor tunes the output of the RBFNC in both normal and
sensor noise conditions. Figure 7 shows comparative analysis
of closed loop response between conventional andMRBFNC.
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Figure 14: The output of RBFNC to plant for 𝛼 = 0.9.
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Figure 15: Comparison of closed loop responses of aircraft for
different values of T factors.

The T factor based system has a better response and set-
tles earlier to its references than the conventional RBFNC.
Figure 15 shows the responses of the pitch control system
that varies according to the value of the T factor (𝛼). It
is concluded that, to increase the value of 𝛼, the response
𝜃(𝑘) becomes settled earlier to the reference value. It is
also shown in this simulation that the sensor noise does
not affect the output of the RBFNC because the controller
output continuously changes to nullify the effect of this
noise. Considering 𝛼 beyond 1 results in distorted value and
does not follow the trajectory. This work can be further
extended using a complex-valued real-time recurrent learn-
ing (CRTRL) algorithm for pitch control system. It can also
be realized as fully connected recurrent neural networks [16]
and can be compared with the T factor based RBFNC. The
current problem discussed here can also be analyzed using
quaternion domain [17].
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