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Cloud computing paradigm renders the Internet service providers (ISPs) with a new approach to deliver their service with less cost.
ISPs can rent virtual machines from the Infrastructure-as-a-Service (IaaS) provided by the cloud rather than purchasing them. In
addition, commercial cloud providers (CPs) offer diverse VM instance rental services in various time granularities, which provide
another opportunity for ISPs to reduce cost. We investigate a Coarse-grain QoS-aware Dynamic Instance Provisioning (CDIP)
problem for interactive workload in the cloud from the perspective of ISPs. We formulate the CDIP problem as an optimization
problem where the objective is to minimize the VM instance rental cost and the constraint is the percentile delay bound. Since the
Internet traffic shows a strong self-similar property, it is hard to get an analytical form of the percentile delay constraint. To address
this issue, we purpose a lookup table structure together with a learning algorithm to estimate the performance of the instance
provisioning policy. This approach is further extended with two function approximations to enhance the scalability of the learning
algorithm. We also present an efficient dynamic instance provisioning algorithm, which takes full advantage of the rental service
diversity, to determine the instance rental policy. Extensive simulations are conducted to validate the effectiveness of the proposed
algorithms.

1. Introduction

Before the advent of cloud computing, Internet service
providers (ISPs) used to reserve mass amount of resources
in order to deal with the peak workload; otherwise the
service response time may increase to an intolerable degree
while facing the flash crowd and greatly degrade the user
experience. However, this approach is energy-ineffective
since peak resource utilization is often three times larger than
the average utilization for a typical ISP.Things get even worse
in systems that provide interactive service where the average
utilization is only around 10% of the total capacity provi-
sioned for the peak load [1].The cloud computing technology
provides a novel service paradigm called Infrastructure-as-a-
Service (IaaS) to reduce the hardware cost and maintenance
cost. In the IaaS, the ISPs only need to rent resource (e.g.,
virtual servers and network bandwidths) from the cloud
providers (CPs) instead of purchasing a vast number of
physical servers themselves. The IaaS service enables a more
flexible and effective approach for resource provisioning. For

example, users in the Amazon EC2 system can rent resource
for a small period of time to cope with the flash traffic.

This paper studies a Coarse-grain Dynamic Virtual
Machine (VM) Instance Provisioning (CDIP) problem for
interactive workload subjected to a percentile delay con-
straint in the cloud from the perspective of ISPs. More
specifically, this problem is related to the dynamic VM
rental policy for the ISPs to minimize the resource rental
cost while satisfying QoS constraints. A fine-grain (in the
orders of seconds or minutes) resource provisioning policy
may be more effective in increasing resource utilization and
reducing cost, but it is more complex and hard to implement.
For example, the startup phase of a VM instance in EC2
which “typically takes less than 10 minutes [2] (observed
on November 2nd, 2013)” is not sufficient to support the
fine-grain control policy. Further, the fine-grain policy can
induce fluctuation and undermine the system stability. CPs
like Amazon EC2 nowadays do provide a coarse-grain IaaS
service instead of the fine-grain one. For example, the EC2
system offers IaaS service at 2 time scales. At a higher level,
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Table 1: The pricing structure for Amazon EC2.

Notation 𝐶
𝐿

𝐶
𝑆

Cost ($/hr) 0.448 0.680

there is a VM rental service for 1 or 3 years (denoted as
Reserved Instance Service, RIS); at a lower level, VM instances
can also be acquired on an hourly bases (denoted asMarginal
Instance Service, MIS) to absorb the instant flash traffic.
Generally speaking, the cost for using MIS instances is
much higher than using RIS instances (refer to Table 1 for a
detailed pricing structure inAmazon’s EC2 platform).How to
properly use these two services is one of the most important
problems faced by ISPs to minimize cost.

Beside the VM instance rental cost, ISPs also care about
the Quality-of-Service (QoS) issue for their end users. For
interactive workload, traditional QoS is expressed by the
mean queueing delay which is easy to analyze using classic
queueing theory. However, the self-similar nature revealed
in the Internet traffic [3] failed queueing-based analysis. In
addition, the fact that interactive workload can tolerate some
QoS violations drives researchers to propose an alternative
form of QoS specification

Pr (𝑑 ≥ 𝐷th) ≤ 𝑥, (1)

where𝑑 is the system response delay,𝐷th and𝑥 are the desired
threshold value determined by Service Level Agreement
(SLA). Unfortunately, there is no analytical form of (1) for the
self-similar traffic.

In this paper, we formulate the CDIP problem as an
optimization problem where the QoS constraints cannot
be precisely determined. We develop efficient algorithms to
solve the CDIP problem and conduct numerical analysis to
evaluate the proposed algorithms. Our contributions are that

(i) we design a resource prediction algorithm to estimate
the performance of resource provisioning policy in
the self-similar traffic,

(ii) we extend the resource prediction algorithm with
function approximations to enhance the scalability of
the algorithm,

(iii) we present a VM instance provisioning algorithm for
ISPs to determine the optimal number of RIS and
MIS VM instance, which minimizes the VM instance
rental cost.

This paper proceeds as follows. Section 2 discusses the
related works; Section 3 shows the opportunity for reducing
rental cost using hybrid RIS/MIS; Section 4 presents a general
optimization framework for the CDIP problem as well as
the solution algorithms; Section 5 extends the algorithms
with function approximations to address the scalability issue;
Section 6 evaluates the proposed algorithms in various set-
tings, followed with conclusions in Section 7.

2. Related Works

To make resource provisioning in the cloud computing
environment, the first issue that must be addressed is to

predict the future resource demand accurately. There are
many researches dedicated to this area. Chen et al. [4] used
a multiplicative Seasonal Autoregressive Moving Average (S-
ARMA) approach to predict themean and standard deviation
of interarrival times and used a simple decomposed model
as well as Winter’s smoothing method to predict the mean
and standard deviation of file size. Gmach et al. [5] developed
a pattern prediction method for cyclic workload through
a workload periodogram function and an autocorrelation
function. Caron and Desprez [6] used pattern matching to
forecast the resource demand in the cloud. Niu et al. [7]
proposed a channel interleaving scheme which can predict
demand for new videos that lack historical demand data.

There are a number of works to lower the operational
cost for the cloud providers (CPs). Ahmad and Vijaykumar
[8] proposed a PowerTrade method to lower the total energy
consumption of active servers, standby servers, and cooling
facilities.They also developed a SurgeGuardmethod tomain-
tain an extra number of servers at two time granularities to
absorb flash crowd. Meisner et al. [1] developed a PowerNap
mechanism which includes a sleep-active state scheduling
component and a network interface card (NIC) supported by
Wake-on-LAN functionality. The system is put into the sleep
mode when there are no workloads. The NIC can wake the
system upwithin 1ms as long as there are packet arrivals from
the networks. Leverich and Kozyrakis [9] integrated Hadoop
systemwith an energy controller which recasts the data layout
and task distribution to enable significant portions of a cluster
to be shut down. Our work, on the other hand, studies how
to reduce the cost from the perspective of Internet service
providers (ISPs).

There are some recent researches close to our works. In
[10], the author formulated the resource leasing problem as
an Integer Programming Problem (IPP) and developed CoH,
a family of heuristic policy to solve the problem. However,
[10] treated batch jobs only and had little SLA considerations.
Reference [11] also studied the instance provisioning problem
and purposed a dynamic instance purchasing scheme based
on the Central LimitTheorem to minimize the cost. The SLA
constraint they considered is the overload probability which
is not suitable for delay-sensitive interactive workload. The
works [12, 13] make resource provisioning decision based on
theAutoregressive IntegratedMovingAverage (ARIMA) pre-
diction method; they still did not consider delay constraint.
In contrast, [14] explicitly incorporated the delay into the
objective function of the optimization problem. However,
the delay was derived based on Markovian queueing theory
which is not the case in today’s Internet dominated by self-
similar traffic.

3. Problem Statement

The structure of a data center in a cloud computing system is
shown in Figure 1. Inside the data center, there are a number
of physical servers. A physical server hosts one or more
Virtual Machine (VM) according to its resource capacity.
Note that we only present the VM instead of the physical
server in the figure. An ISP rents VMs from the cloud
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Figure 1: A data center in the cloud computing system.
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Figure 2: An example of VM instance demand in different hours of
a day.

provider serve to its end users. To reduce the request response
time, the data center often employs a shared queue structure.

The arrival rate of end user varies over time, which
induces a time-changing VM instance demand. Figure 2
presents an example which divides a day into 8 phases
(3 hr/phase) and the 𝑦-axis shows the VM instance demand
to ensure the QoS requirement in each phase. The marginal
rental cost in Amazon EC2 is given in Table 1. From Figure 2,
we can see that there is a big gap between the maximum
and the minimum instance demand. If the ISP only uses RIS
instance, he must acquire 23 instances in order to satisfy the
peak workload appeared in the 6th phase, which wastes a lot
of resource and rises the daily instance rental cost to 247.96$
(the rental cost for using only RIS instance can be computed
as 23 × 0.448 × 24 = 247.96$ (the product of the number of
instance, the marginal cost, and total 24 hours)). In contrast,
if the ISP only adoptsMIS instance, he will obtain the highest
resource utilization, and there is an opportunity to reduce the
daily rental cost to 230.52$ (from Figure 2, the total number
of MIS instances is 10 + 15 + 9 + 19 + 5 + 23 + 12 + 20 = 113.
Since a phase contains 3 hours, the rental cost for using only
MIS instance can be computed as 113× 3× 0.680 = 230.52$).

If the ISP uses a hybrid approach which includes both RIS
and MIS, on the other hand, the daily instance rental cost
can be remarkably reduced. To see that, consider a resource
provisioning policy which rents 10 RIS VM instances and
acquires extra MIS instances if RIS instances are insufficient.
The number of MIS instance can be formally written as [𝐾

𝑖
−

10]
+ where 𝐾

𝑖
denotes the number of VM instance demand

in phase 𝑖. The daily rental cost for this hybrid approach is
187.08$, (the rental cost for RIS instance is 10 × 0.448 × 24 =

107.52$. The total number of MIS instances is 5 + 0 + 9 +

13 + 2 + 10 = 39; therefore the rental cost for MIS instance is
39×0.680×3 = 79.56$.Thus, the total cost is 107.52+79.56 =

187.08$.), which saves 24.3% and 18.8% compared with using
purely RIS and MIS instance, respectively.

The above analysis suggests 2 assumptions. First, the QoS
performance in terms of percentile delay can be precisely
predicted; second, the number of RIS and MIS instances can
be determined to minimize the VM instance rental cost. The
following sections explain these two assumptions in detail.

4. A General Optimization Framework for the
CDIP Problem

The notations used in this paper are shown in Notations
section. The CDIP problem can be formulated as

min
𝑘𝑖 ,𝑖∈{0,...,𝑁}

𝑘
0
× 𝑁 × 𝐶

𝐿
+ 𝐶
𝑆
×

𝑁

∑

𝑖=1

𝑘
𝑖

(2)

subject to

Pr (𝑑
𝑖
≥ 𝐷) ≤ 𝑥, ∀𝑖 ∈ {1, . . . , 𝑁} , (3)

where 𝑘
0
is the number of RIS instance and 𝑘

𝑖
, 𝑖 > 0, is the

number of MIS instance in phase 𝑖.
Note that, in the CDIP problem, the distribution of 𝑑

𝑖

is determined by the characteristics of exogenous interactive
workload arrivals and the number of active VM instance 𝑘

𝑖
.

As stated in Section 1, this problem is hard to solve, since
we can hardly derive an explicit form of constraint (3). In
this section, we will show how to approximately characterize
constraint (3) and obtain the optimal solution.

4.1. A Learning Algorithm to Characterize the Percentile
QoS Constraint in Self-Similar Traffic. Algorithm 1 learns
the performance of various instance provisioning policies
in the form of percentile delay via the stochastic gradient
method. The algorithm first creates a data structure called
VP table (Violation Probability Table), in which each item
VP table[𝑖][𝑘] estimates the delay violation probability given
the number of instance being 𝑘 in phase 𝑖. The algorithm
runs for several iterations to obtain unbiased delay violation
probability samples p[𝑖][𝑘] for each phase 𝑖. These samples,
which can be generated via real system running or simu-
lation, are further smoothed into VP table[𝑖][𝑘]. Therefore,
VP table[𝑖][𝑘] is an unbiased estimation of delay violation
probability with 𝑘VM instances in phase 𝑖. Variables 𝜂, 𝑖, and
𝑘 are iteration counter, decision point counter, and instance
number counter, respectively. Algorithm 1 has the following
property.
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Proposition 1. Algorithm 1 converges to the unbiased estima-
tion of percentile QoS performance of using 𝑘 VM instances in
phase 𝑖.

Proof. The right-hand side of line 11 in Algorithm 1 can be
rewritten as

𝐸 [𝑖] [𝑘] =
(𝜂 − 1) × VP table [𝑖] [𝑘] + p [𝑖] [𝑘]

𝜂
. (4)

Since p[𝑖][𝑘] is an unbiased sample of percentile QoS perfor-
mance metric, 𝐸[𝑖][𝑘] is the mean value of all samples up to
iteration 𝜂. As long as the end user request arrival process and
service process are stationary stochastic processes in phase 𝑖
with 𝑘VM instances, 𝐸[𝑖][𝑘]must be an unbiased estimation
of percentile QoS performance as 𝜂 → ∞.

In practice, it is impossible to let 𝜂 → ∞. In fact,
Algorithm 1 converges very fast in our numerical analysis (it
converges within tens of iterations). Alternatively, we can also
use the following equation as the stop criterion:

󵄨󵄨󵄨󵄨󵄨
VP table [𝑖] [𝑘]𝜂 − VP table [𝑖] [𝑘]𝜂−1

󵄨󵄨󵄨󵄨󵄨
≤ 𝑇, ∀𝑖, 𝑘, (5)

where 𝑇 is a threshold value to get a desired precision.

4.2. The Instance Provisioning Algorithm. Based on the
VP table, we can obtain the minimum number of VM
instances needed to meet the QoS constraints in phase 𝑖, that
is,𝐾
𝑖
. To find the number of RIS instances 𝑘

0
is equal to solve

the following optimization problem

min
𝑘0

𝑁 × 𝐶
𝐿
× 𝑘
0
+

𝑁

∑

𝑖=1

[𝐾
𝑖
− 𝑘
0
]
+
× 𝐶
𝑆

(6)

subject to

Pr (𝑑
𝑖
(𝑘
𝑖
) ≥ 𝐷th) ≤ 𝑥, (7)

where delay is considered as a function of the number of VM
instances.

Problems (6)-(7) are an integer piece-wise function of
𝑘
0
where the optimal solution must appear in the boundary

points. Algorithm 2 provides the solution method for prob-
lem (6). It can be divided into three parts as follows.

(i) The first part (lines 1–8) uses exhaustive search
to obtain the minimum number of VM instance
required to satisfy QoS constraints. The result is
stored in vector𝐾

𝑖
, 𝑖 ∈ {1, . . . ,N}.

(ii) The second part (lines 9–17) solves problems (6)-
(7), and the result is 𝑘

0
, the optimal number of

RIS instances, and the corresponding value of object
function𝑚.

(iii) The third part (lines 18–20) computes the number of
MIS instances based on𝐾

𝑖
and 𝑘
0
.

The worst time complexity of Algorithm 2 is O(𝑁 ×

(MAX NUM −MIN NUM + 2)).

5. Extensions

Algorithms 1 and 2 can effectively predict the number of
instances needed for satisfying QoS constraints and reducing
total rental cost for the ISPs. However, the scalability of these
two algorithms is questionable: in order to obtain a precise
estimation of the violation probability in VP table, we must
visit all possible instance provisioning policies and get suffi-
cient violation probability samples. This section starts from
the point of simplifying VP table by function approximation
techniques to enhance the scalability of Algorithms 1 and 2.

The idea of function approximation is to use a function
𝑥 = 𝑓
𝑖
(𝐾
𝑖
) to approximate the mapping between the number

of instances and the violation probability in phase 𝑖. In this
paper, we use two forms of approximation:

(i) a linear approximation given by

𝑥 = 𝑎
𝑖
+ 𝑏
𝑖
𝐾
𝑖
, 𝑏
𝑖
< 0, 𝑥 > 0, (8)

(ii) a nonlinear approximation given by

𝑥 = 𝑎
𝑖
× 𝐾
𝑏𝑖

𝑖
, 𝑏
𝑖
< 0. (9)

Note that function 𝑓
𝑖
(𝐾
𝑖
) is related to a certain phase 𝑖;

therefore the parameters 𝑎 and 𝑏 have a subscript 𝑖. We have
further remarks for these function approximations as follows.

(1) Intuitively, the QoS violation probability decreases as
there aremoreVM instances; that is,𝑓

𝑖
is a decreasing

function with respect to 𝐾
𝑖
; therefore 𝑏

𝑖
must be

negative in the nonlinear case.

(2) The value of 𝑓
𝑖
will all be 0 when𝐾

𝑖
exceeds a certain

threshold, since no QoS violations occur if there
is sufficient number of VM instances. When using
linear approximation, we should filter out the case
𝑓
𝑖
(𝐾
𝑖
) = 0; otherwise the estimation precision will be

remarkably undermined for cases where 𝑓
𝑖
(𝐾
𝑖
) > 0.

We use the least square approach to obtain parameters
𝑎
𝑖
and 𝑏
𝑖
in the approximate function 𝑓

𝑖
. Formally, the least

square approach is given by

min
𝑎𝑖 ,𝑏𝑖

𝐹 (𝑎
𝑖
, 𝑏
𝑖
) =

1

2

𝑛

∑

𝑗=1

(𝑥
𝑗

𝑖
− 𝑓
𝑖
(𝐾
𝑗

𝑖
))
2

, (10)

where 𝑛 is the amount of samples and 𝑥
𝑗

𝑖
is the 𝑗th unbiased

sample for violation probability 𝑥.
For the linear approximation, the optimal solution should

satisfy

𝜕𝐹

𝜕𝑎
𝑖

= −

𝑛

∑

𝑗=1

(𝑥
𝑗

𝑖
− (𝑎
𝑖
+ 𝑏
𝑖
𝐾
𝑗

𝑖
)) = 0,

𝜕𝐹

𝜕𝑏
𝑖

= −

𝑛

∑

𝑗=1

(𝑥
𝑗

𝑖
− (𝑎
𝑖
+ 𝑏
𝑖
𝐾
𝑗

𝑖
))𝐾
𝑗

𝑖
= 0.

(11)
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Input: 𝐼𝑇𝐸,𝑁, and SLA specification 𝐷th; {𝐼𝑇𝐸 is the number of iterations and𝑁 is the
number of decision points in a day.}

Output: VP table;
(1) Create VP table and initialize each item in VP table to 0;
(2) Create p[𝑖][𝑘] and counter; {p[𝑖][𝑘] is a sample of QoS violation ratio of using 𝑘 VM

instances in phase 𝑖, and counter logs the number of delay violations in a phase.}
(3) for 𝜂 = 1 to 𝐼𝑇𝐸 do
(4) for 𝑖 = 1 to𝑁 do
(5) for 𝑘 =MIN NUM to MAX NUM do
(6) Log response time 𝑑

𝑖
for each incoming request;

(7) if 𝑑
𝑖
> 𝐷th then

(8) counter + +;
(9) end if
(10) Calculate an unbiased sample of delay violation probability p[𝑖][𝑘] = counter/𝑛𝜂

𝑖
,

where 𝑛𝜂
𝑖
is the total number of requests arrived in phase 𝑖, iteration 𝜂;

(11) VP table[𝑖][𝑘] ← (𝜂 − 1) /𝜂 × VP table[𝑖][𝑘] + (1/𝜂) p[𝑖][𝑘] ;
(12) end for {Loop 𝑘; }

(13) end for {Loop 𝑖; }

(14) end for {Loop 𝜂; }

Algorithm 1: The learning Algorithm to characterize the Percentile QoS Constraint.

Input: VP table;
Output: 𝑘

𝑖
, 𝑖 ∈ {0, . . . , 𝑁}; {𝑘

0
is the number of RIS instance, and 𝑘

𝑖
, 𝑖 ̸= 0 is the number

of MIS instance in phase 𝑖.}
(1) for 𝑖 = 1 to𝑁 do
(2) for 𝑗 =MIN NUM to MAX NUM do
(3) if VP table[𝑖][𝑗] ≤ 𝑥 and VP table[𝑖][𝑗 + 1] ≥ 𝑥 then
(4) 𝐾

𝑖
= 𝑗 + 1;

(5) break;
(6) end if
(7) end for
(8) end for
(9) 𝑘
0
= 0;

(10)𝑚 = 𝑁 × 𝐶
𝐿
× 𝑘
0
+

𝑁

∑

𝑖=1

[𝐾
𝑖
− 𝑘
0
]
+
× 𝐶
𝑆
;

(11) for 𝑖 = 1 to𝑁 do
(12) 𝑗 = 𝐾

𝑖
;

(13) temp = 𝑁 × 𝐶
𝐿
× 𝑗 +

𝑁

∑

𝑖=1

[𝐾
𝑖
− 𝑗]
+
× 𝐶
𝑆
;

(14) if temp < 𝑚 then
(15) 𝑘

0
= 𝑗;

(16) end if
(17) end for
(18) for 𝑖 = 1 to𝑁 do
(19) 𝑘

𝑖
= 𝐾
𝑖
− 𝑘
0
;

(20) end for

Algorithm 2: The instance provisioning algorithm.

Rearranging these two equations, we have

𝑛𝑎
𝑖
+ 𝑏
𝑖

𝑛

∑

𝑗=1

𝐾
𝑗

𝑖
=

𝑛

∑

𝑗=1

𝑥
𝑗

𝑖
,

𝑎
𝑖

𝑛

∑

𝑗=1

𝐾
𝑗

𝑖
+ 𝑏
𝑖

𝑛

∑

𝑗=1

(𝐾
𝑗

𝑖
)
2

=

𝑛

∑

𝑗=1

𝐾
𝑗

𝑖
𝑥
𝑗

𝑖
.

(12)

The above analysis suggests

𝑏
𝑖
=

∑
𝑛

𝑗=1
𝐾
𝑗

𝑖
× ∑
𝑛

𝑗=1
𝑥
𝑗

𝑖
− 𝑛∑
𝑛

𝑗=1
𝐾
𝑗

𝑖
𝑥
𝑗

𝑖

(∑
𝑛

𝑖=1
𝐾
𝑗

𝑖
)
2

− 𝑛∑
𝑛

𝑗=1
(𝐾
𝑗

𝑖
)
2

,

𝑎
𝑖
=

∑
𝑛

𝑗=1
𝑥
𝑗

𝑖
− 𝑏
𝑖
∑
𝑛

𝑗=1
𝐾
𝑗

𝑖

𝑛
.

(13)
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(1) for 𝑖 = 1 to 𝐿 do
(2) Measure 𝜆

𝑖
; {𝜆
𝑖
is the number of request arrivals in time window 𝑖.}

(3) 𝑡
𝑖
= 1/𝜆

𝑖
; {Estimate the average inter-arrival time in time window 𝑖.}

(4) 𝐴 ← 𝐴 + 𝜆
𝑖
; {𝐴 logs the accumulative total number of request in this time slot.}

(5) end for
(6) 𝑡
𝑎
= 𝐿/𝐴; {Estimate the average inter-arrival times in the time slot.}

(7) 𝜎 = √

𝐿

∑

𝑖=1

𝜆
𝑖
(𝑡
𝑖
− 𝑡
𝑎
)
2; {Estimate the standard deviation of inter-arrival time.}

(8) 𝐶
𝐴
= 𝜎/𝑡

𝑎
;

Algorithm 3: Online estimation of 𝐶
𝐴
.

For the nonlinear approximation, let 𝜒 = ln𝑥, 𝜅
𝑖
= ln𝐾

𝑖
,

𝐴
𝑖
= ln 𝑎

𝑖
, and 𝐵

𝑖
= 𝑏
𝑖
, and take “ln” in both sides of (9),

which transforms the nonlinear approximation into a linear
approximation

𝜒 = 𝐴
𝑖
+ 𝐵
𝑖
𝜅
𝑖
. (14)

Following the idea of the linear approximation, we can
obtain the solution for the nonlinear approximation as

𝑏
𝑖
=

∑
𝑛

𝑗=1
ln𝐾
𝑗

𝑖
× ∑
𝑛

𝑗=1
ln𝑥
𝑗

𝑖
− 𝑛∑
𝑛

𝑗=1
ln𝐾
𝑗

𝑖
ln𝑥
𝑗

𝑖

(∑
𝑛

𝑖=1
ln𝐾
𝑗

𝑖
)
2

− 𝑛∑
𝑛

𝑗=1
(ln𝐾
𝑗

𝑖
)
2

,

𝑎
𝑖
= exp

{

{

{

∑
𝑛

𝑗=1
ln𝑥
𝑗

𝑖
− 𝑏
𝑖
∑
𝑛

𝑗=1
ln𝐾
𝑗

𝑖

𝑛

}

}

}

.

(15)

We integrate the function approximations into Algo-
rithms 1 and 2 where VP table is replaced by an array
func app[𝑁]. Each item in func app[𝑁] contains 2 elements,
that is, 𝑎 and 𝑏. With function approximations, some revi-
sions are needed for Algorithms 1 and 2, which are shown in
Table 5.

6. Evaluations

6.1. Simulation Setup. Internet traffic shows a strong self-
similar property [3, 15]. We use the Multiscale Markov-
Modulated Poisson Processes (MMPP) model to generate
a self-similar like traffic. This approach has been proved
effective in previous researches [16–18] and was successfully
applied in the literatures like [19–22]. We use the approach
the same as in [22], that is, a three-dimension Markov on-
off modulated Poisson process, to generate the interactive
workload arrivals. Consider the following.

(i) The first dimension is the workload burst in the order
of 1 second.We assume that the peakworkload arrives
at the middle of the day, that is, the 43200th second;
therefore the arrival rate as a function of time can be
given by

𝜆 (𝑡) =

{{{

{{{

{

5𝑡

216 + 1000
, if 0 ≤ 𝑡 ≤ 43200

−5𝑡

216 + 3000
, if 43200 < 𝑡 ≤ 86400.

(16)

(ii) The second dimension of workload burst is 2000
requests per 5 second.

(iii) The last dimension of workload burst is 5000 requests
per 10 second.

6.2. Estimation of the Response Time. In a production cloud
system, it is impossible to log the response time for each
incoming request to calculate the delay violation probability.
A more practical way is to measure the mean response delay
𝑑 in a small time slot and view 𝑑 as the response delay for
all requests arrived in this time slot. This approximation of
response delay will be more accurate as the length of the time
slot decreases. For example, in [23], the length of the time slot
is set to 10 minutes. In our work, we set it to 10 seconds since
we need to measure delay violation probability in a higher
precision.

To estimate the mean response time in a time slot, we
employ the Allen-Cunneen approximation formula [24, 25]
for the 𝐺/𝐺/𝑚 queueing system:

𝑅 =
1

𝜇
+

𝑃
𝑚

𝜇 (1 − 𝜌)
×
𝐶
2

𝐴
+ 𝐶
2

𝑆

2𝑚
, (17)

where 𝑅 is the average response time, 𝜇 is the average service
rate, 𝜆 is the average arrival rate, 𝜌 = 𝜆/𝜇𝑚 is the average
utilization of a server, 𝑚 is the number of servers. 𝑃

𝑚
takes

value from the following formula:

𝑃
𝑚
=
{

{

{

𝜌
(𝑚+1)/2

, if 𝜌 ≤ 0.7

𝜌
𝑚
+ 𝜌

2
, if 𝜌 > 0.7,

(18)

𝐶
𝐴
and 𝐶

𝑆
are the coefficients of variation of request interar-

rival times and service times, respectively.
In this paper, we assume a Poisson service process with

𝜇 = 100 requests per second; therefore 𝐶
𝑆

= 1. In order
to online estimate 𝐶

𝐴
, we further divide a time slot into 𝐿

time windows (see Figure 3). The algorithm to estimate 𝐶
𝐴
is

shown in Algorithm 3.

6.3. Result Analysis

6.3.1. Cost of Various Instance Provisioning Policies. In this
experiment, the length of a phase is set to 1 hr. From
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Figure 3:The time structure for simulation. A day is divided into several phases. The delay violation probability is evaluated in each phase. A
phase is divided into several slots.The response delay for each request arrived within a slot is approximated by the mean response delay in this
slot. To estimate the mean response delay using the Allen-Cunneen formula, a slot is further divided into several time windows to measure
the coefficient of variation of inter-arrival time.

Algorithms 1 and 2, we can obtain that the optimal number of
RIS instances is 29. Figure 4 shows the cost of three instance
provisioning policies. Consider the following.

(i) In the RIS mode, the ISP should rent 37 instances in
all hours of a day since the system must satisfy the
peak workload demand. This policy yields 408.576$
per day.

(ii) In the MIS mode, the ISP makes instances provision-
ing decision in each hour according to the predicted
demand; therefore the resource utilization is the
highest. Unfortunately, the total daily cost (514.08$)
is even higher than the one in the RIS mode.

(iii) In the hybrid mode, the optimal number of RIS
instances is 29. Although, in some cases, this is a little
waste of resource, the daily cost of this policy is the
lowest (360.768$).

6.3.2. Effects of the Rental Granularity. The length of the
phase (or interdecision time) in the Amazon EC2 is 1 hour.
Here, we vary the length to 2 and 3 hours to study its
impact on the daily cost. Figure 5 plots the optimal number
of reserved instances in each hour. It goes “smoother” as the
length of the interdecision time becomes longer. For example,
the numbers of reserved instances for the three rental gran-
ularities in time interval [10, 15] are {35, 36, 38, 38, 36, 35},
{35, 37, 37, 37, 37, 35}, and {37, 37, 37, 37, 37, 37}. The mean
numbers in time interval [4, 6] and [7, 9] in the 3 hr granular-
ity are 30 and 34, and the counterparts in the 1 hr granularity
are 29.67 and 33. This implies that the instance provisioning
policy could be more flexible as the interdecision time goes
small.

Figure 6 presents the total cost for three rental granulari-
ties. It is obvious that the total cost is an increasing function
of the length of the interdecision time. However, we can
also see that this function is not linear; that is, the marginal
cost is shrinking as the length of the interdecision time
goes smaller. In production systems, a small interdecision
time may induce additional system overhead; therefore there
should be a tradeoff between the rental cost and system
overhead.

Figure 7 describes the impacts of rental granularity to
the delay violation probability. Using instance provisioning
policies generated by Algorithms 1 and 2, the target SLA
specification is satisfied in all three rental granularities. A

RIS MIS Hybrid

550

500

450

400

350

300

Figure 4: Cost of three instance provisioning policies.
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Figure 5:The optimal number of reserved VM instances for various
rental granularities.

Table 2: Means and standard deviations for various rental granular-
ities.

Rental granularity 1 hour 2hours 3hours
Mean 0.041215 0.041218 0.040743

standard deviation 0.002773 0.003848 0.006968

more detailed comparison is provided in Table 2. The means
of delay violation probability in 1 hr granularity and 2 hr
granularity are very close to each other, and the one in 3 hr
granularity is relatively small, implying that more resources
are reserved. On the other hand, the standard deviation
of the delay violation probability decreases as the length
of interdecision time goes smaller. Since a small standard
deviation implies a more stable response delay, we propose to
use 1 hr granularity rental policy in delay- and jitter-sensitive
applications such as VoIP and video streaming.

6.3.3. Effects of Function Approximations. Here, we evaluate
the effectiveness of two function approximation approaches
with 1 hr rental granularity. We can obtain parameters 𝑎 and
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Figure 6: Cost for various rental granularities.
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Figure 7: Impacts of rental granularity on the delay violation
probability.

𝑏 using (13) and (15) for all phases, which are shown in
Table 3. Specifically, the results in the first hour are plotted in
Figure 8, where we can see that the nonlinear approximation
is more accurate than the linear approximation. Figure 9
shows the estimation of VM instance demands. The linear
approximation tends to overestimate the demand by 2–4,
and the nonlinear approximation underestimates the demand
by 0-1. Figure 10 shows the delay violation probability. By
using VP table structure, the delay violation probability is
around 4%. The linear approximation approach reduces the
delay violation probability to about 1% since it reserves more
instances. By contrast, the delay violation probabilities in 13
phases (out of total 24 phases) exceed the target 5% objective.
The delay violation probabilities even exceed 9% in the 10th
and 16th phases.

The basic instance provisioning algorithm makes the
best resource-SLA tradeoff but suffers from the scalability
problem. The two function approximation approaches only
need to estimate two parameters in each phase. They visit
fewer instance provisioning policies and evade the lookup
table structure (VP table); thus the scalability of Algorithms 1
and 2 is enhanced. The effectiveness, however, lies in how
well the function approximates the behavior of VP table.
A poor approximation may severely deviate from VP table
and generate a wrong instance provisioning policy which
either damages the performance or increases the rental cost.
Figures 11 and 12 present the number of RIS instances and
total daily rental cost. We can see that the number of RIS
instances in the VP table approach is the same as in the one
in the nonlinear approximation approach (29 VMs). The
linear approximation approach, although achieves a lower
delay violation probability, overestimates the VM instance
demand too much (33VMs).
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Figure 8: Function approximations for VP table.
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Figure 9: Impacts of function approximation on the instance
demand estimation.

In order to further evaluate the two function approxima-
tion approaches, define the instance deviation 𝐷

𝑚
and the

violation probability deviation𝐷
𝑠
as

𝐷
𝑚
=

24

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐾
𝑓

𝑖
− 𝐾
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
,

𝐷
𝑠
=

24

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑠
𝑓

𝑖
− 𝑠
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
,

(19)

where 𝐾
𝑓

𝑖
and 𝑠

𝑓

𝑖
denote the number of rented instances

(including both RIS and MIS instances) and the violation
probability using function approximations and 𝐾

𝑖
and 𝑠

𝑖

denote the same parameters but using the VP table struc-
ture. Clearly, smaller 𝐷

𝑚
and 𝐷

𝑠
indicate a more accurate

approximation. The results are shown in Table 4. The linear
approximation achieves a lower violation probability at the
expense of a much higher number of instances. In addition,
nonlinear approximation has a lower violation probability
deviation. Therefore, we purpose to use nonlinear approxi-
mation in Algorithms 1 and 2.

7. Conclusions

Dynamic instance provisioning is a key issue for Internet
service providers in the cloud computing environment. In
this paper, we investigate the coarse-grain (in the order of
hours) QoS-aware dynamic instance provisioning problem
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Table 3: Parameters for two function approximation approaches.

Decision epoch Linear approximation Nonlinear approximation
𝑎 𝑏 𝑎 𝑏

1 0.910558 −0.03026 1.96𝐸 + 13 −10.3672
2 1.17268 −0.03832 3.42𝐸 + 13 −10.4338
3 1.31243 −0.04182 6.23𝐸 + 13 −10.5444
4 1.50093 −0.04697 4.04𝐸 + 13 −10.3147
5 1.46158 −0.04394 1.62𝐸 + 13 −9.97221
6 1.59491 −0.04727 3.68𝐸 + 12 −9.43435
7 1.49158 −0.04142 5.56𝐸 + 11 −8.76771
8 1.57272 −0.043 2.35𝐸 + 11 −8.44603
9 1.63012 −0.04319 1.16𝐸 + 11 −8.13732
10 1.6601 −0.04237 5.02𝐸 + 10 −7.84783
11 1.75972 −0.04396 1.81𝐸 + 10 −7.47832
12 1.81333 −0.04415 6.70𝐸 + 09 −7.12764
13 1.81285 −0.04386 8.02𝐸 + 09 −7.17651
14 1.75933 −0.0437 1.76𝐸 + 10 −7.4644
15 1.7186 −0.04436 4.01𝐸 + 10 −7.77709
16 1.63952 −0.04352 6.46𝐸 + 10 −7.9815
17 1.58403 −0.04322 1.83𝐸 + 11 −8.36223
18 1.55035 −0.04373 1.20𝐸 + 12 −9.01639
19 1.54785 −0.0454 3.54𝐸 + 12 −9.41871
20 1.38708 −0.04119 5.03𝐸 + 12 −9.60535
21 1.50875 −0.04732 8.56𝐸 + 13 −10.5575
22 1.31375 −0.04188 2.37𝐸 + 13 −10.2367
23 1.16168 −0.03787 3.70𝐸 + 13 −10.4633
24 0.866371 −0.02836 1.52𝐸 + 13 −10.2863

1 3 5 7 9 11 13 15 17 19 21 23

0.1
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0.04

0.02

Table-lookup
Linear approximation

Non-linear approximation

0

Figure 10: Impacts of function approximation on the delay violation
probability.

for interactive workload. The optimization problem in our
consideration (see (2)-(3)) is not a traditional optimization
problem since the QoS constraint (3) has no analytical form
for the self-similar Internet traffic; therefore it cannot be
solved using classic methods. We use various approaches, for
example, a lookup table and two function approximations
to characterize constraint (3). The lookup table approach
suffers from the scalability issue, because, in order to obtain
a precise estimation of the violation probability in the table,
we must visit all possible instance provisioning policies
and get sufficient violation probability samples. In contrast,
function approximations can predict the performance using
a small set of samples. Function approximations (especially

34
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31

30

29

28

27

Table-lookup Linear
approximationapproximation

Non-linear

Figure 11: The optimal number of RIS instances.

Table 4: The instance deviation and the violation probability
deviation for two function approximation approaches.

Metric Approximations
Linear Nonlinear

𝐷
𝑚

70 14
𝐷
𝑠

0.730222 0.407333

nonlinear approximation) address the scalability problem at
the expense of a little sacrifice of prediction precision. We
conduct extensive simulations to evaluate the effectiveness of
the proposed dynamic instance provisioning policy.



10 Mathematical Problems in Engineering

Table 5: Revisions for Algorithms 1 and 2 with function approximations.

Revisions for Algorithm 1 Revisions for Algorithm 2

(i) In line 5, there is no need to test each instance
provisioning policy in [MIN NUM, MAX NUM]. Instead,
we can use either approach listed as follows.

(1) Define a positive integer variable stepsize which is
greater than 1, and increase 𝑘 by stepsize rather than 1.

(2) Pick a small set of 𝑘 randomly from [MIN NUM,
MAX NUM].

(ii) Compute 𝑎
𝑖
and 𝑏
𝑖
using (13) and (15) after line 19.

(iii) The output of the algorithm is func app[𝑁].

(i) The input of the algorithm is func app[𝑁].
(ii) The exhausted search approach (lines 2–7) is replaced by
the inverse functions of (8) and (9) as follows.

(1) For linear approximation case,

𝐾
𝑖
= [

𝑥 − func app[𝑖] ⋅ a
func app[𝑖] ⋅ b

].

(2) For nonlinear approximation case,

𝐾
𝑖
= [

func app[𝑖]⋅𝑏

√
𝑥

func app[𝑖] ⋅ 𝑎
],

where [𝑥] is the smallest integer no less than 𝑥.
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Figure 12: The daily rental cost.

Notations

𝑁: The number of phases in a day to make instance
provisioning decisions, that is, the number of decision
points

𝐾
𝑖
: The number of instances needed in phase 𝑖 to meet the
QoS requirement

𝐶
𝐿
: The marginal rental cost for a RIS instance

𝐶
𝑆
: The marginal rental cost for a MIS instance

𝑑
𝑖
: The delay in phase 𝑖

𝐷th: The threshold delay set by the SLA
𝑥: The threshold violation probability set by

the SLA.
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