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We investigate the effect of domain perturbation on the behavior of mild solutions for a class of semilinear stochastic partial
differential equations subject to the Dirichlet boundary condition. Under some assumptions, we obtain an estimate for the mild
solutions under changes of the domain.

1. Introduction

Domain perturbation, or sometimes referred to as “perturba-
tion of the boundary,” for boundary value problems is a spe-
cial topic in perturbation problems. The motivation to study
domain perturbation comes from various sources, which
include shape optimization, solution structure of nonlinear
problems, and numerical analysis. The main characteristic of
domain perturbation is that the operators and the nonlinear
terms live in different spaces, which leads to the solutions of
partial differential equations living in different spaces. The
fundamental question of domain perturbation is to consider
how solutions behave upon varying domains. However, when
we only consider the case of smooth perturbation of the
domain, we could perform a change of variables to convert
the perturbation problem into a fixed domain problemwhich
is only perturbation of the coefficients. In this case, domain
perturbation becomes back to a standard perturbation prob-
lem; in turn we may apply standard techniques such as the
implicit function theorem, the Lyapunov-Schmidt method,
and the transversality theorem to study it. Nevertheless, diffi-
culties arrive when the change of variables and other standard
tools do not work (see [1]) such as singular perturbation. So,
it is more challenging and interesting to consider singular
perturbation problems.

There are lots of papers concerning this topic [2–10].
For elliptic equations, see [2, 3] and references therein.
In [3], the authors give a sufficient condition on domains
which guarantees the spectrum behaviors continuously. It is
very clear that the spectral behavior of linear operators is
extremely important when analyzing the continuity proper-
ties for domain perturbation problem.Thework of [2] obtains
the convergence of solution for elliptic equation subject
to Dirichlet boundary condition; necessary and sufficient
conditions are discussed for strong and uniform convergence
for the corresponding resolvent operators. In [6] the author
gets the persistence of periodic solutions and convergence of
solutions for both linear and semilinear parabolic initial value
problems subject to Dirichlet boundary condition, and [10]
does so for evolution equation. In [7, 8] authors study the
convergence of invariantmanifolds under the perturbation of
the domain. For stochastic system, we recommend [9], caring
about the coefficients perturbation for semilinear stochastic
partial differential equations; as we mention above it belongs
to smooth domain perturbation problem. We do not attempt
here to give a complete bibliography but make a rather
arbitrary choice of references.

Notice that all of works as we mentioned above are under
the condition of Mosco convergence which describes the
domain perturbation. For Dirichlet problems, it is worth
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pointing out that the condition of Mosco convergence con-
ditions is equivalent to the strong convergence of resolvent
operators (see [6, Theorem 5.2.4]), which is weaker than the
operator norm convergence of resolvent operators.

Under the condition of the operator norm convergence of
resolvent operators, the author of [11] gives a distance estimate
of the inertial manifolds for partial differential equations of
evolutionary type under perturbation of the domain. As there
are not many results on domain perturbation with noise in
the dynamics, inspired by [11], we take similar conditions as in
[11] to consider the convergence of solution for stochastic par-
tial differential equations under perturbation of the domain.
We show how the mild solution of the stochastic differential
equations behaves when domain Ω

𝜖
converges to domain Ω

under a certain sense.
This paper is organized as follows: In Section 2, we review

the results of the existence and uniqueness to the stochastic
partial differential equation which we consider. In Section 3,
we use the relationship between the resolvent operator and
the semigroup to deduce the convergence of the semigroup
on [𝑟, 𝑇]. To get the result of convergence of solutions, we
divide the interval [0, 𝑇] into two parts as [0, 𝑟] and [𝑟, 𝑇];
here 𝑟 > 0 and is sufficiently small. Then we take estimate,
respectively, for each part to get our results.

Throughout this paper, the letter 𝐶 below will denote
positive constants whose value may change in different
occasions. We will write the dependence of constant on
parameters explicitly if it is essential.

2. Preliminaries

Let𝐻 be an infinite dimensional separable Hilbert space with
norm ‖ ⋅ ‖. Let the sectorial operator 𝐴 : 𝐷(𝐴) → 𝐻 be a
self-adjoint positive linear operator with a compact resolvent.
Then the spectrum of 𝐴 is real. We denote its spectrum by

𝜎 (𝐴) = {𝜆
𝑛
}
∞

𝑛=1
, 0 < 𝑐 ≤ 𝜆

1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ , (1)

and an associated orthonormal family of eigenfunctions by
{𝜙
𝑛
}
∞

𝑛=1
. Since 𝐴 is a self-adjoint sectorial operator, −𝐴 is the

infinitesimal generator of an analytic semigroup, which is
denoted by

𝑒
−𝐴𝑡

=
1

2𝜋𝑖
∫
𝛾

(𝜆𝐼 + 𝐴)
−1

𝑒
𝜆𝑡

𝑑𝜆, (2)

where 𝛾 is a contour in the resolvent set of −𝐴. Also, since 𝐴
is a self-adjoint sectorial operator, the representation of 𝑒−𝐴𝑡
above is equivalent to

𝑒
−𝐴𝑡

𝑢 =

∞

∑

𝑛=1

𝑒
−𝜆
𝑛
𝑡

(𝑢, 𝜙
𝑛
) 𝜙
𝑛
. (3)

By the definition 𝑒−𝐴𝑡, we can easily get the following estimate:
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴𝑡

󵄩󵄩󵄩󵄩󵄩𝐿(𝐻,𝐻)
≤ 𝑒
−𝜆
1
𝑡

≤ 1, (4)

for 𝑡 ≥ 0, which implies that 𝑒−𝐴𝑡 is an analytic contraction
semigroup.

We consider the stochastic equation as follows:

𝑑𝑢 (𝑡) + 𝐴𝑢 (𝑡) 𝑑𝑡 = 𝑓 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 + 𝑔 (𝑡, 𝑢 (𝑡)) 𝑑𝑤 (𝑡) ,

𝑡 ∈ (0, 𝑇] ,

𝑢 (0) = 𝑢
0
∈ 𝐻.

(5)

Here𝐴 is a sectorial operator;𝑤(𝑡) is a scalar Wiener process
on a probability space (Ω,F,P). In addition, suppose that,
for a.e. (𝑡, 𝜔) ∈ [0, 𝑇] × Ω š Ω

𝑇
, the drift coefficients

𝑓(𝑡, ⋅, 𝜔) : Ω
𝑇
× 𝐻 → 𝐻 and diffusion coefficients 𝑔(𝑡, ⋅, 𝜔) :

Ω
𝑇
× 𝐻 → 𝐻 areF

𝑡
-adapted and satisfy certain conditions.

We adopt the following assumptions throughout this
paper.

(A.1) There exists a constant 𝑘 > 0 such that, for any
𝑢(𝑡), V(𝑡) ∈ 𝐻, the Lipschitz continuity condition
holds:

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝜔, 𝑢 (𝑡)) − 𝑓 (𝑡, 𝜔, V (𝑡))
󵄩󵄩󵄩󵄩

2

𝐻

+
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜔, 𝑢 (𝑡)) − 𝑔 (𝑡, 𝜔, V (𝑡))

󵄩󵄩󵄩󵄩

2

𝐻

≤ 𝑘 ‖𝑢 (𝑡) − V (𝑡)‖2
𝐻
;

(6)

here (𝑡, 𝜔) ∈ Ω
𝑇
and 𝑢(𝑡), V(𝑡) ∈ 𝐻.

Notice that (A.1) implies there exists a constant 𝐶 such that
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝜔, 𝑢 (𝑡))

󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜔, 𝑢 (𝑡))

󵄩󵄩󵄩󵄩

2

𝐻

≤ 𝐶 (1 + ‖𝑢 (𝑡)‖
2

𝐻
) , (𝑡, 𝜔) ∈ Ω

𝑇
,

(7)

for any 𝑢(𝑡) ∈ 𝐻.
Now we introduce the definition of mild solution to (5).

Taking the classic method for proving the existence and
uniqueness of solution as [12, 13], we can deduce the existence
and uniqueness of solution for (5), which is represented as
follows.

Definition 1 (mild solution). An 𝐻-valued predictable pro-
cess 𝑢(𝑡) is called a mild solution of (5) if for any 𝑡 ∈ [0, 𝑇]

𝑢 (𝑡) = 𝑒
−𝐴𝑡

𝑢
0
+ ∫

𝑡

0

𝑒
−𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
−𝐴(𝑡−𝑠)

𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠) .

(8)

Let 𝑋
𝑇
denote the set of all continuousF

𝑡
-adapted pro-

cesses valued in𝐻 for 0 ≤ 𝑡 ≤ 𝑇 such that𝐸 sup
0≤𝑡≤𝑇

‖𝑢(𝑡)‖
2

<

∞. Then𝑋
𝑇
is a Banach space under the norm

‖𝑢‖
𝑇
= 𝐸 sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

. (9)

Define an operator Γ in𝑋
𝑇
as follows:

Γ𝑢 (𝑡) = 𝑒
−𝐴𝑡

𝑢
0
+ ∫

t

0

𝑒
−𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
−𝐴(𝑡−𝑠)

𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠)

(10)
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for 𝑢 ∈ 𝑋
𝑇
. It is easy to prove that the operator Γ is well

defined and Lipschitz continuous in𝑋
𝑇
.Then by the contrac-

tion mapping principle, it is easy to prove the existence and
uniqueness of mild solution for (5) as the following.

Theorem 2 (existence and uniqueness). Suppose the condi-
tion (A.1) holds true, and let 𝑢

0
be F
0
-measurable random

field such that 𝐸‖𝑢
0
‖
2

< ∞. Then the initial-boundary value
problem for (5) has a unique mild solution 𝑢(𝑡) which is a con-
tinuous adapted process in𝐻 such that 𝑢 ∈ 𝐿2(Ω; 𝐶([0, 𝑇];𝐻))
and

𝐸 sup
0≤𝑡≤𝑇

‖𝑢 (𝑡)‖
2

≤ 𝐶 (1 + 𝐸
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

) (11)

for some constant 𝐶 > 0.

3. Solution under Perturbation of the Domain

In this section, we consider the following perturbation
problem of (5):

𝑑𝑢
𝜖

(𝑡) + 𝐴
𝜖
𝑢
𝜖

(𝑡) 𝑑𝑡 = 𝑓
𝜖

(𝑡, 𝑢
𝜖

(𝑡)) 𝑑𝑡

+ 𝑔
𝜖

(𝑡, 𝑢
𝜖

(𝑡)) 𝑑𝑤 (𝑡) ,

𝑡 ∈ [0, 𝑇] ,

𝑢
𝜖

(0) = 𝑢
𝜖

0
,

(12)

for 𝜖 > 0, where 𝐴
𝜖
: 𝐷(𝐴

𝜖
) ⊂ 𝐻

𝜖

→ 𝐻
𝜖 is a self-

adjoint positive linear operator on a Hilbert space 𝐻𝜖 with
norm ‖ ⋅ ‖

𝜖
, and let 𝑢𝜖

0
be F
0
-measurable random field such

that 𝐸‖𝑢𝜖
0
‖
2

< ∞. We also assume that the nonlinear terms
𝑓
𝜖

(𝑡, 𝜔, 𝑢(𝑡)) : Ω
𝑇
×𝐻
𝜖

→ 𝐻
𝜖 and 𝑔𝜖(𝑡, 𝜔, 𝑢(𝑡)) : Ω

𝑇
×𝐻
𝜖

→

𝐻
𝜖 satisfy (A.1), which guarantees the existence and unique

of mild solution to (12). ByTheorem 2, for each 𝜖 > 0, there is
an𝐻-valued continuousF

𝑡
-adapted process 𝑢𝜖(𝑡) such that

𝑢
𝜖

(𝑡) = 𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
+ ∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑓 (𝑠, 𝑢
𝜖

(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑔 (𝑠, 𝑢
𝜖

(𝑠)) 𝑑𝑤 (𝑠)

(13)

for any 𝑡 ∈ [0, 𝑇].
Note the solutions value in different function spaces 𝐻𝜖

for different 𝜖. To deal with domain perturbation, we assume
there exist bound linear operators P andQ such that

P : 𝐻 󳨀→ 𝐻
𝜖

,

Q : 𝐻
𝜖

󳨀→ 𝐻,

Q ∘ P = 𝐼,

‖P‖L(𝐻,𝐻𝜖) ≤ 𝐶,

‖Q‖L(𝐻𝜖 ,𝐻) ≤ 𝐶,

‖P𝑢 (𝑡)‖
𝐻
𝜖 󳨀→ ‖𝑢 (𝑡)‖

𝐻
, as 𝜖 󳨀→ 0.

(14)

To derive the solution of (12) converging to the solution
of (5), we also impose the following hypotheses:

(H.1) For 𝐴 and 𝐴
𝜖
, we assume

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝜖
P − P𝐴−1󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖) = 𝜏 (𝜖) 󳨀→ 0 as 𝜖 󳨀→ 0. (15)

(H.2) We assume that the nonlinear terms 𝑔𝜖, 𝑓𝜖 : Ω
𝑇
×

𝐻
𝜖

→ 𝐻
𝜖 for 0 ≤ 𝜖 ≤ 𝜖

0
satisfy the following:

(i) 𝑓𝜖 and 𝑔𝜖 approximate 𝑓 and 𝑔 in the following
sense:

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓
𝜖

(P𝑢 (𝑡)) − P𝑓 (𝑢 (𝑡))󵄩󵄩󵄩󵄩
2

𝐻
𝜖 = 𝜏1 (𝜖) 󳨀→ 0,

as 𝜖 󳨀→ 0,

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑔
𝜖

(P𝑢 (𝑡)) − P𝑔 (𝑢 (𝑡))󵄩󵄩󵄩󵄩
2

𝐻
𝜖 = 𝜏1 (𝜖) 󳨀→ 0,

as 𝜖 󳨀→ 0.

(16)

(ii) 𝑓, 𝑔 and 𝑓
𝜖

, 𝑔
𝜖 have the uniformly bounded

support and satisfy the following estimate:

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑔 (𝑢 (𝑡))
󵄩󵄩󵄩󵄩

2

≤ 𝐶 (𝑇, 𝑅) , (17)

same assumption also for𝑓, 𝑓𝜖, 𝑔𝜖. Here𝐶(𝑇, 𝑅)
denotes a constant related to 𝑇, 𝑅 and 𝑅 denotes
the radius of the support.

(H.3) For initial value of 𝑢
0
and 𝑢𝜖

0
, we assume 𝑢

0
∈ 𝐷(𝐴),

𝑢
𝜖

0
∈ 𝐷(𝐴

𝜖

), and𝐸‖𝑢𝜖
0
−P𝑢
0
‖
2

𝐻
𝜖 = 𝜏
0
(𝜖) → 0, as 𝜖 → 0.

By hypothesis (H.1) we have the following result, which
concerns the relationship of spectrum between𝐴 and𝐴

𝜖
(see

[11]).

Lemma 3 (upper semicontinuity of spectrum). If 𝐾
0
is a

compact set of the complex plane with 𝐾
0

⊂ 𝜌(−𝐴), the
resolvent set of 𝐴, and hypothesis (H.1) is satisfied, then there
exists 𝜖

0
(𝐾
0
) > such that 𝐾

0
⊂ 𝜌(−𝐴

𝜖
) for all 0 < 𝜖 ≤ 𝜖

0
(𝐾
0
).

Moreover, one has the estimates
󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼 − 𝐴

𝜖
)
−1󵄩󵄩󵄩󵄩󵄩L(𝐻𝜖 ,𝐻𝜖)

≤ 𝐶 (𝐾
0
) (18)

for all 𝜆 ∈ 𝐾
0
, 0 < 𝜖 ≤ 𝜖

0
(𝐾
0
).

The result implies the upper semicontinuity of the spec-
trum; that is, if 𝜆

𝜖
∈ 𝜎(𝐴

𝜖
) and 𝜆𝜖 → 𝜆 then 𝜆 ∈ 𝜎(𝐴). Also

we have the resolvent operator estimate as the following (see
[11]).

Lemma 4 (operator norm convergence of resolvent opera-
tors). Let the condition (H.1) be satisfied; if 𝜆 ∈ 𝜌(−𝐴) and
𝜖 is small enough so that 𝜆 ∈ 𝜌(−𝐴

𝜖
), one has

󵄩󵄩󵄩󵄩󵄩
(𝜆 + 𝐴

𝜖
)
−1 P − P (𝜆 + 𝐴)−1󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖) ≤ 𝐶 (𝜖, 𝜆) 𝜏 (𝜖)

󳨀→ 0, 𝑎𝑠 𝜖 󳨀→ 0.

(19)
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By the relationship of spectrum and resolvent set, we
have that hypothesis (H.1) is equivalent to the operator norm
convergence of resolvent operators. To compare condition
(H.1) with Mosco convergence condition, we quote the
Mosco convergence condition as the following.

Let 𝑉 be a reflexive and separable Banach space and
let 𝐾
𝑛
, 𝐾 be closed and convex subsets of 𝑉. We say that

𝐾
𝑛
converges to 𝐾 in the sense of Mosco if the following

conditions hold (see [14]):

(1) For every 𝑢 ∈ 𝐾, there exists a sequence 𝑢
𝑛
∈ 𝐾
𝑛
such

that 𝑢
𝑛
→ 𝑢 in 𝑉 strongly.

(2) If (𝑛
𝑘
) is a sequence of indices converging to∞, (𝑢

𝑘
) is

a sequence such that 𝑢
𝑘
∈ 𝐾
𝑛
𝑘

for every 𝑘 and 𝑢
𝑘
⇀ 𝑢

in 𝑉 weakly; then 𝑢 ∈ 𝐾.

As we mentioned in Introduction, hypothesis (H.1) is
stronger than the Mosco condition, which is equivalent to
the strong convergence of resolvent operators for Dirichlet
Problem. For details about this notation see Daners [6].

As we all know, the relationship between resolvent oper-
ator and semigroup is denoted by

𝑒
−𝐴𝑡

=
1

2𝜋𝑖
∫
𝛾

(𝜆𝐼 + 𝐴)
−1

𝑒
𝜆𝑡

𝑑𝜆, (20)

where 𝛾 is the boundary of Σ
−𝑎,𝜙

= {𝜆 ∈ C : | arg(𝜆 + 𝑎)| ≤
𝜋 − 𝜙} ⊂ 𝜌(−𝐴), 𝜙 ∈ (0, 𝜋/2). Simply we take 𝑎 = 0, 𝜙 = 𝜋/4.
Then we have

𝛾 = 𝛾
1
∪ 𝛾
2

= {𝛿𝑒
−𝑖(3𝜋/4)

: 0 ≤ 𝛿 < ∞} ∪ {𝑟𝑒
𝑖(3𝜋/4)

: 0 ≤ 𝛿 < ∞}

(21)

and 𝐶(𝜖, 𝜆) ≤ 6 for all 𝜆 ∈ Σ
0,𝜋/4

. From Lemma 4 we have the
following estimate.

Lemma 5 (convergence of semigroup). Let (H.1) be satisfied.
Then one has

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡P − P𝑒−𝐴𝑡󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖) ≤

𝐶

𝑟
𝜏 (𝜖) 󳨀→ 0,

𝑎𝑠 𝜖 󳨀→ 0,

(22)

for any 𝑡 ∈ [𝑟, 𝑇]; here 𝑟 > 0.

Proof. By (20) and Lemma 4, we can estimate
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡P − P𝑒−𝐴𝑡󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2𝜋𝑖
∫
𝛾

(𝜆𝐼 + 𝐴
𝜖
)
−1 P𝑒𝜆𝑡𝑑𝜆

−
1

2𝜋𝑖
∫
𝛾

P (𝜆𝐼 + 𝐴)−1 𝑒𝜆𝑡𝑑𝜆
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖)

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝛾
1
∪𝛾
2

𝜏 (𝜖) 𝑒
𝜆𝑡

𝑑𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(23)

For 𝜆 ∈ 𝛾
1
∪ 𝛾
2
, we compute |𝑒𝜆𝑡| = |𝑒

𝛿𝑡𝑒
−𝑖(3𝜋/4)

| = 𝑒
−(√2/2)𝛿𝑡

with 0 ≤ 𝛿 < +∞. Then we have

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡P − P𝑒−𝐴𝑡󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖) ≤ 𝐶𝜏 (𝜖) ∫

+∞

0

𝑒
−(√2/2)𝛿𝑡

𝑑𝑟

≤
𝐶

𝑡
𝜏 (𝜖) .

(24)

Hence by (H.2) we get

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡P − P𝑒−𝐴𝑡󵄩󵄩󵄩󵄩󵄩L(𝐻,𝐻𝜖) ≤

𝐶

𝑟
𝜏 (𝜖) 󳨀→ 0,

as 𝜖 󳨀→ 0,

(25)

for any 𝑡 ∈ [𝑟, 𝑇]; here 𝑟 > 0.

Lemma 6. Let 𝐴 be a sectorial operator; if 𝑋 ∈ 𝐷(𝐴), then
one has the following estimate:

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴𝑟

− 𝐼)𝑋
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑟 ‖𝐴𝑋‖ . (26)

Proof. For 𝑟 > 𝜏 > 0 we have

(𝑒
−𝐴𝑟

− 𝑒
−𝐴𝜏

)𝑋 = −𝐴∫

𝑟

𝜏

𝑒
−𝐴𝑠

𝑋𝑑𝑠

= −∫

𝑟

𝜏

𝐴𝑒
−𝐴𝑠

𝑋𝑑𝑠, ∀𝑋 ∈ 𝐷 (𝐴) .

(27)

Because 𝐴 is a sectorial operator, we have 𝐴𝑒−𝐴𝑟𝑋 = 𝑒
−𝐴𝑟

𝐴𝑋

and then

∫

𝑟

𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴𝑒
−𝐴𝑠

𝑋
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠 = ∫

𝑟

𝜏

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴𝑠

𝐴𝑋
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠 ≤ 𝐶∫

𝑟

𝜏

‖𝐴𝑋‖ 𝑑𝑠

≤ 𝐶𝑟 ‖𝐴𝑋‖ .

(28)

Let 𝜏 → 0
+; then we get our result.

Now we state and prove our main result as the following.

Theorem 7 (convergence of the solutions). Suppose (H.1) to
(H.3) and (A.1) hold true. Then one has

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 ≤ 𝑒
𝐶(𝑇)𝑘

2

[𝐶 (𝑇, 𝑅)

⋅ (𝑟
2

+ 𝑟 + 𝜏
0
(𝜖) + 𝜏

1
(𝜖) +

𝜏 (𝜖)
2

𝑟2
+
𝜏 (𝜖)

𝑟
)] .

(29)

In particular,

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 󳨀→ 0, (30)

when we first let 𝜖 → 0 and then 𝑟 → 0.
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Proof. From (8) and (13), we have

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 = 𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

+ ∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑓
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − P𝑒−𝐴(𝑡−𝑠)𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑔
𝜖

(𝑠, 𝑢
𝜖

(𝑠))

− P𝑒−𝐴(𝑡−𝑠)𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 3𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
+ 3𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑓
𝜖

(𝑠, 𝑢
𝜖

(𝑠))

− P𝑒−𝐴(𝑡−𝑠)𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 3𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑔
𝜖

(𝑠, 𝑢
𝜖

(𝑠))

− P𝑒−𝐴(𝑡−𝑠)𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

š 3𝐼
1
+ 3𝐼
2

+ 3𝐼
3
.

(31)

Next we will estimate 𝐼
1
, 𝐼
2
, and 𝐼

3
, respectively. Fix 𝑟

sufficient small. For 𝐼
1
we have

𝐼
1
≤ 𝐸 sup
𝑟≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 𝐸 sup
0≤𝑡≤𝑟

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

(32)

with

𝐸 sup
𝑟≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 2𝐸 sup
𝑟≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− 𝑒
−𝐴
𝜖
𝑡P𝑢
0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 2𝐸 sup
𝑟≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡P𝑢
0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 2𝐸 sup
𝑟≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

0
− P𝑢
0

󵄩󵄩󵄩󵄩

2

𝐻
𝜖 + 𝐶

𝜏 (𝜖)

𝑟

= 𝐶(
𝜏 (𝜖)

𝑟
+ 𝜏
0
(𝜖)) ,

𝐸 sup
0≤𝑡≤𝑟

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 3𝐸 sup
0≤𝑡≤𝑟

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
𝑡

𝑢
𝜖

0
− 𝑢
𝜖

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 3𝐸 sup
0≤𝑡≤𝑟

󵄩󵄩󵄩󵄩󵄩
P𝑢
0
− P𝑒−𝐴𝑡𝑢

0

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 3𝐸 sup
0≤𝑡≤𝑟

󵄩󵄩󵄩󵄩𝑢
𝜖

0
− P𝑢
0

󵄩󵄩󵄩󵄩

2

𝐻
𝜖 ≤ 𝐶 (𝜏0 (𝜖) + 𝑟) .

(33)

Here the contraction property of 𝑒−𝐴𝑡, Lemma 6, and (H.3)
are used. Then we obtain

𝐼
1
≤ 𝐶(

𝜏 (𝜖)

𝑟
+ 𝜏
0
(𝜖) + 𝑟) . (34)

For 𝐼
2
we have

𝐼
2
≤ 2𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑓
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − P𝑓 (𝑠, 𝑢 (𝑠)))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 2𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 4𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑓
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − 𝑓
𝜖

(𝑠,P𝑢 (𝑠))) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 4𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑓
𝜖

(𝑠,P𝑢 (𝑠)) − P𝑓 (𝑠, 𝑢 (𝑠))) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 2𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 𝐶𝑇𝑘
2

2
∫

𝑇

0

𝐸 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑠) − P𝑢 (𝑠)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 𝑑𝑡 + 4𝑇

2

𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓
𝜖

(𝑠,P𝑢 (𝑠)) − P𝑓 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩
2

𝐻
𝜖 + 2𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

.

(35)

Here the contraction property of 𝑒−𝐴𝑡, Hölder inequality, and
conditions of (A.1) and (H.2) are used.

Denote 𝐼
21

= 𝐸 sup
0≤𝑡≤𝑇

‖ ∫
𝑡

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠))𝑓(𝑠,

𝑢(𝑠))𝑑𝑠‖
2

𝐻
𝜖 . Then we have

𝐼
21
= 𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡−𝑟

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠))

⋅ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + ∫

𝑡−𝑟

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠))

⋅ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 2𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡−𝑟

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠))

⋅ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 2𝐸



6 Discrete Dynamics in Nature and Society

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡−𝑟

0

(𝑒
𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠))

⋅ 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 𝐶 (𝑅, 𝑇) 𝑟
2

+ 𝐶 (𝑅, 𝑇)

⋅
𝜏 (𝜖)
2

𝑟2
.

(36)

Hence we obtain

𝐼
2
≤ 4𝑇
2

𝑘
2
𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑠) − P𝑢 (𝑠)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 + 4𝑇

2

𝜏
1
(𝜖)

+ 𝐶 (𝑅, 𝑇) 𝑟
2

+ 𝐶 (𝑅, 𝑇)
𝜏 (𝜖)
2

𝑟2
.

(37)

For 𝐼
3
, use the maximal inequality (see [15]), contraction

property of 𝑒−𝐴𝑡, (A.1), and (H.2); then we have

𝐼
3
= 𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

𝑔
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − P𝑒−𝐴(𝑡−𝑠)𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 𝐶𝐸

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑔
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − 𝑔
𝜖

(𝑠,P𝑢 (𝑠))) 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 𝐶𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑔
𝜖

(𝑠,P𝑢 (𝑠)) − P𝑔 (𝑠, 𝑢 (𝑠))) 𝑑𝑤 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

+ 𝐶𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖

≤ 𝐶𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑔
𝜖

(𝑠, 𝑢
𝜖

(𝑠)) − 𝑔
𝜖

(𝑠,P𝑢 (𝑠)))󵄩󵄩󵄩󵄩󵄩
2

𝐻
𝜖
𝑑𝑠

+ 𝐶𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴
𝜖
(𝑡−𝑠)

(𝑔
𝜖

(𝑠,P𝑢 (𝑠)) − P𝑔 (𝑠, 𝑢 (𝑠)))󵄩󵄩󵄩󵄩󵄩
2

𝐻
𝜖
𝑑𝑠

+ 𝐶𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑔 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
𝑑𝑠

≤ 𝐶𝑘
2

2
∫

𝑇

0

𝐸 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑢
𝜖

− P𝑢 (𝑠)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 𝑑𝑡 + 𝐶𝑇𝜏1 (𝜖) + 𝐶𝐼31,

(38)

where

𝐼
31
= 𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴
𝜖
(𝑡−𝑠)P − P𝑒−𝐴(𝑡−𝑠)) 𝑔 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
𝑑𝑠. (39)

Let 𝑙 = 𝑡 − 𝑠. Notice that 𝑡 ≥ 𝑠 and 0 ≤ 𝑡 ≤ 𝑇. Then we have

𝐼
31
= 𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴
𝜖
𝑙P − P𝑒−𝐴𝑙) 𝑔 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
𝑑𝑙

= 𝐸∫

𝑟

0

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴
𝜖
𝑙P − P𝑒−𝐴𝑙) 𝑔 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
𝑑𝑙

+ 𝐸∫

𝑡

𝑟

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴
𝜖
𝑙P − P𝑒−𝐴𝑙) 𝑔 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜖
𝑑𝑙

≤ 𝐶 (𝑇, 𝑅) 𝑟 + 𝐶 (𝑇, 𝑅)
𝜏 (𝜖)
2

𝑟2
.

(40)

By the above estimates of 𝐼
1
, 𝐼
2
, and 𝐼

3
, we finally get

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 ≤ 𝐶 (𝑇)

⋅ 𝑘
2

2
∫

𝑇

0

𝐸 sup
0≤𝑠≤𝑡

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑠) − P𝑢 (𝑠)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 𝑑𝑡 + 𝐶 (𝑇, 𝑅)

⋅ (𝑟
2

+ 𝑟 + 𝜏
0
(𝜖) + 𝜏

1
(𝜖) +

𝜏 (𝜖)
2

𝑟2
+
𝜏 (𝜖)

𝑟
) .

(41)

Use the Gronwall inequality we have the following estimate:

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 ≤ 𝑒
𝐶(𝑇)𝑘

2

[𝐶 (𝑇, 𝑅)

⋅ (𝑟
2

+ 𝑟 + 𝜏
0
(𝜖) + 𝜏

1
(𝜖) +

𝜏 (𝜖)
2

𝑟2
+
𝜏 (𝜖)

𝑟
)] .

(42)

In particular,

𝐸 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢
𝜖

(𝑡) − P𝑢 (𝑡)󵄩󵄩󵄩󵄩
2

𝐻
𝜖 󳨀→ 0, (43)

as 𝜖 → 0 and then 𝑟 → 0.

Remark 8. In this paper, we only consider the case in which
Wiener process is scalar type; this result can not apply to the
case of cylindrical Wiener processes. Note that if we concern
the case of cylindrical Wiener processes, which relate to time
and space, under perturbation of domain, cylindricalWiener
process is also perturbedwhichmakes the situationmore and
more complicated.
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