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In this paper, we propose a distributed cell association scheme called cell-guided association method (CGAM) to improve the
efficiency of awireless network. InCGAM,MSs attempt to associatewith their best cells.However, unlike the conventionalmethods,
cells do not passively accept the association requests of MSs. Instead, a cell determines whether to accept an association request
or not by considering the performance of MSs already associated with it and that of the requesting MS. If a cell cannot provide a
certain level of service to them, it rejects the association request and guides the requesting MS to select another cell that gives the
next maximum performance metric to the MS. Since our method takes the cell resource usage into consideration, it can increase
the resource efficiency of a wireless network while enhancing the overall data rate provided to MSs by balancing the number of
MSs in a cell. Through performance comparisons by simulation studies, we verify that CGAM outperforms maximum SINR-based
method and QoS-based method in terms of the total data rate provided by a system and outage probabilities of MSs.

1. Introduction

As the number of handheld devices proliferates fast, mobile
data traffic has increased tremendously over a few decades.
The traffic demand is expected to grow over the future
because of the advent of Internet of things [1, 2]. To cope
with the traffic demands, wireless networks becomemore and
more complex and the importance of distributed resource
management methods that increase both the resource effi-
ciency of a network and quality of service (QoS) experiences
by users attracts much attention. Among those, since a cell
association policy that matches a cell and a mobile station
(MS) affects the distribution of MSs, it influences system
efficiency and QoS of users.

Traditionally, MSs attempt to associate with a cell that
give them the strongest signal-to-interference and noise ratio
(SINR). The rationale behind this is that data rate provided
to a MS enhances as the signal quality between a MS and a
cell increases [3]. However, the data rate provided to a MS is
determined not only by the SINR but also by the amount of
radio resources allocated to it. AMS canmeasure SINRs from
its adjacent cells. However, aMSdoes not know the amount of

resources that it can obtain froma cell before it associateswith
the cell. Since cell resources are shared by the MSs associated
with a cell, the fraction of resources allocated to each MS
decreases as the number of MSs in a cell increases.Therefore,
if a MS selects a cell to associate with based on the SINR,
it may not receive the highest data rate. In addition, SINR
between a cell and a MS is determined by the transmit power
of a cell, the level of interference, and the random fading.
Because of the randomness, it becomes highly probable that
the number of MSs in a cell is not evenly distributed among
cells even if cells are carefully deployed considering the traffic
demands of areas covered by them. If the load unbalance
among cells occurs, MSs in a lightly populated cell enjoy high
data rate while MSs in a densely populated cell suffer from
low data rate because of the resource contention amongMSs.

To overcome this problem, cell load-aware or QoS-
oriented cell associationmethods have been proposed. In [4],
joint optimization of user association policies and antenna
tilts settings is proposed by predicting cell load accurately.
The authors in [5] propose two distributed association meth-
ods that enable MSs to make association decisions based on
the information gathered by probing neighboring cells. In [6],
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a use association policy is proposed to minimize the energy
consumption in LTE access networks which are composed
of small cells deployed densely. However, cell load-aware
associationmethods require that cells broadcast the cell loads
periodically or on-demand. In addition, MSs select a cell to
associate with to maximize its benefit selfishly while cells
passively accept the association request fromMSs.Therefore,
system resources are not used in an optimal way because of
the selfishness.

To address this issue, we devise a distributed cell-guided
association method (CGAM). In CGAM, cells do not pas-
sively accept the association requests from MSs. On the con-
trary, cells determine whether or not to accept the association
request based on their resource availability.Thus, even if MSs
operate selfishly to maximize its payoff, system can guide
MSs to achieve its own objective such as increasing resource
utilization and cell load balance. In addition, since CGAM
does not require cells to broadcasts cell load, conventional cell
operations need not be changed.

The rest of the paper is organized as follows. In Section 2,
we review related works on association management. In
Section 3, we describe the CGAM in detail after introducing
systemmodel. In Section 4,we present anddiscuss simulation
results to verify CGAM by comparing the performances of
CGAM and SINR-based association method and cell load-
aware association method.

2. Related Works

Since the cell association problem is to find a set of MSs
and cells pairs that optimize a given objective function of
a wireless network, optimization methods are widely used
to design an association rule. Various objective functions
are devised for the cell association problem. In [7], authors
propose an algorithm that maximizes the system revenue
while associating MSs with the minimum total transmission
power. They use Benders’ decomposition to solve nonconvex
optimization problem optimally. Throughput maximization
is also used as an objective function. In [8], sum rate is
maximized and authors in [9, 10] maximize the log-utility of
a network under the proportional fairness. In [11], MSs are
associated with BSs in a way that global outage probability is
minimized.However, it has been shown that the optimization
problem is an NP-hard problem.

To overcome the NP-hardness, different kinds of opti-
mization techniques are used to solve the cell association
problem. Markov decision process is used in [12, 13]. How-
ever, it is hard to define state transition probability and
the complexity increases substantially as the number of
states increases. In [14], the structure of the network utility
maximization problem is used to solve the problem directly.
Dual decomposition is often employed to design a distributed
algorithm by relaxing the optimization constraints [10, 15].
However, since the computational cost of these methods is
high, it is not clear whether these methods can be applied at
a small time scale when the values of input variables change
very fast.

Game theory is also applied to solve the cell association
problem. In [16], an evolutionary game theory is used

to devise an algorithm for cell association and antenna
allocation in 5G networks with massive MIMO. Authors
in [17] show that the game that users selfishly select base
stations giving them the best throughput and BSs allocate
the same time to their users has one Nash equilibrium point
which achieves proportional fairness system-wide. However,
the convergence of the algorithms based on a game theory
is not guaranteed generally. Additionally, in terms of the
implementation, they usually cause large overhead, which
deteriorates resource utilization.

Stochastic geometry has been used to analyze the cell
association problem. In [18], authors propose a distributed
belief propagation algorithm to resolve user association prob-
lem and analyze the average sparsity and degree distribution
using stochastic geometry. Stochastic geometry is also used
in [19] to analyze the service success probability. Then, they
derive the impact of cell association and user scheduling
on the service success probability. Unlike the optimization
methods that maximize the utility function for the current
network configuration, stochastic geometry performs opti-
mization over the average utility. Therefore, even though the
complexity and overhead of a stochastic geometry approach
are lower than those of repeating optimization process
whenever network configuration changes, the results will be
suboptimal.

Unlike the association methods based on a theoretical
static interference model, a practical measurement based
interference-aware association policy is proposed in [20].

There have been research works that optimize jointly
cell association and other performance metrics. In [21], a
tractable framework is proposed to analyze the performance
of eICIC by jointly considering cell association, resource
partitioning, and transmit power reduction. An energy effi-
cient user association scheme is proposed in [22, 23]. Joint
BS association and power control algorithm that updates
iteratively BS association solution then the transmit power of
each user is proposed in [24].

3. Cell-Guided Association Method

3.1. System Model. We consider a downlink of a wireless net-
work that provides best effort data service to MSs. We denote
by𝑁𝑐 the set of cells in a network and by |𝑁𝑐| the cardinality
of𝑁𝑐. We assume that the system fully reuses frequency.

Since radio resources of a cell are allocated to MSs in
the unit of radio resource block (RB) in modern wireless
networks such as LTE, we assume that each cell 𝑥 has 𝑅𝑥 RBs.
We consider long term SINR and throughput. In other words,
we assume that the timescale measuring these values is much
larger than that of fast channel variation. Thus, if we denote
the transmit power of a cell 𝑥 as 𝑃𝑥, the SINR between a MS
𝑦 and a cell 𝑥 is given by

𝑆𝑥,𝑦 =
𝑃𝑥𝐺𝑥,𝑦

𝐴𝑁 + ∑𝑐∈𝑁𝑐−{𝑥} 𝑃𝑐𝐺𝑐,𝑦
, (1)

where 𝐴𝑁 is the noise power and 𝐺𝑥,𝑦 denotes the channel
gain between a cell 𝑥 and a MS 𝑦 which includes the system
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parameter such as antenna gain and channel parameters such
as path loss and shadowing.

The spectral efficiency is an increasing function of 𝑆𝑥,𝑦.
A variety of functions have been devised to reflect the
effect of operational frequency and modulation and coding
schemes [25–27]. However, to avoid system dependency, we
use Shannon’s formula to obtain the data rate for given SINR.
If a cell 𝑥 allocates 𝑅𝑥,𝑦 RBs to a MS 𝑦, the data rate of 𝑦 is
obtained as

𝐷𝑥,𝑦 = 𝑅𝑥,𝑦𝑊𝑅log2 (1 + 𝑆𝑥,𝑦) , (2)

where 𝑊𝑅 is the bandwidth of a RB. The number of RBs
allocated to aMS is determined by the type of scheduler a cell
uses. A scheduler considers the number of MSs sharing cell
resources, the channel quality between a cell, and a MS when
it allocates resources at each frame. In case of a round-robin
scheduler, the long term RBs allocated to each MS becomes
𝑅𝑥/|𝑀𝑥|, where𝑀𝑥 is the set of MSs that a cell 𝑥 serves.

However, it is shown that there is a multiuser diversity
gain when a cell exploits a proportional fair scheduler [28–
30]. In this paper, we assume a cell uses a proportional
fair scheduler. Then according to the results of [30], 𝑅𝑥,𝑦 is
determined as follows.

𝑅𝑥,𝑦 =
𝑅𝑥󵄨󵄨󵄨󵄨𝑀𝑥

󵄨󵄨󵄨󵄨
𝑔 (𝑀𝑥) , (3)

where 𝑔(𝑀𝑥) = ∑
|𝑀𝑥|
𝑖=1 (1/𝑖) is the multiuser diversity gain.

3.2.QoSMetric. When aMS requests for a guaranteed service
such as a voice call, the number of RBs to provide the service
is guaranteed by a cell. Moreover, no more RBs are allocated
to the request even if a cell has surplus RBs. However, when
a cell provides data service, the number of RBs allocated to
each MS varies according to the number of MSs served by
a cell simultaneously. For example, even when there is only
one MS associated with a cell, the cell allocates all its RBs
to the MS. We also note that even if a MS uses data service,
users tend to give up using a network when they did not
receive a minimum rate from a network. Thus, we use the
outage probability [31–33] as the QoS metric for a MS. The
outage probability is defined as the probability that a data
rate provided to a MS is less than a given threshold 𝜃𝑑. We
use the outage probability model derived in a network whose
frequency reuse factor is one and where rayleigh fading
channel is assumed [33]. When a MS 𝑦 associates with a cell
𝑥, the outage probability of 𝑦 is modeled as

𝑂𝑥,𝑦 = Prob (𝐷𝑥,𝑦 < 𝜃𝑑)

= 1

− 𝑒

𝐴𝑁𝐵𝑥,𝑦
𝐺𝑥,𝑦𝑃𝑥 ∏

𝑖∈𝑁𝑐−{𝑥}

1/ (𝐺𝑖,𝑦𝑃𝑖)

𝐵𝑥,𝑦/ (𝐺𝑥,𝑦𝑃𝑥) + 1/ (𝐺𝑖,𝑦𝑃𝑖)
,

(4)

where 𝐵𝑥,𝑦 = 2𝜃𝑑/𝐷𝑥,𝑦 − 1. Since 𝑂𝑥,𝑦 is a decreasing function
of𝐷𝑥,𝑦,𝑂𝑥,𝑦 decreases if𝑅𝑥,𝑦 or 𝑆𝑥,𝑦 increases.Therefore𝑂𝑥,𝑦
can be regarded as a metric that represents the degree of cell
load.

3.3. CGAM Algorithm. CGAM is composed of two algo-
rithms, a MS algorithm and a cell algorithm, that operate
independently of each other. Algorithm 1 shows each algo-
rithm.

A MS that needs to associate with a cell searches neigh-
boring cells by hearing signals sent by them. Then, a MS 𝑦
constructs a set of adjacent cells (𝐶𝑦) that contains the cell
identification numbers and SINR received from each cell in
𝐶𝑦. Then, 𝑦 initializes a potential cell list 𝐶󸀠𝑦 = 𝐶𝑦 and
attempts to associate with a cell 𝑥 in 𝐶󸀠𝑦 that gives it the
maximum SINR by sending an association request message
and waits for the response from 𝑥. If 𝑦 receives an association
response message from 𝑥 saying that 𝑥 does not accept the
request, 𝑦 removes the cell 𝑥 in 𝐶󸀠𝑦 and attempts to associate
with a cell in 𝐶󸀠𝑦 giving the highest SINR to it (i.e., the second
best cell in 𝐶𝑦 in terms of SINR). A MS 𝑦 repeats the same
process until it receives a positive association response from
a cell. If 𝑦 does not receive a positive response from any cell
in 𝐶𝑦, it means that 𝑦 cannot be provided with the minimum
data rate from its neighboring cells. Thus, it suspend the
association attempt.

Upon receiving an association requestmessage from aMS
𝑦, a cell 𝑥 calculates the outage probabilities of 𝑦 and 𝑗 in
𝑀𝑥 by assuming that it accepts the request. If none of the
outage probabilities are below a threshold value 𝜃𝑜, 𝑥 accepts
the association request of 𝑦 by sending a positive association
response message to 𝑦. Otherwise, 𝑥 guides 𝑦 to associate
with other cells that may satisfy the outage probability
constraint by sending a negative association response to 𝑦.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
cell association methods. Specifically we compare the perfor-
mance of the following three methods in terms of the outage
probability of a MS and data rates provided by cells.

(i) SNM: a MS associates with a cell according to the
maximum signal strength and a cell does not guide
a MS to associate with better cell.

(ii) ONM: a MS associates with a cell based on the
minimumoutage probability and a cell does not guide
a MS to associate with better cell.

(iii) SOM: a MS associates with a cell based on the
maximum signal strength and a cell guide a MS to
associate with better cell with the outage probability
it can provide to an MS.

We construct urban macrocell topology following the
scenario specified in 3GPP [27].We deployed 18 base stations.
Each base station has three sectors. We assume a hexagonal
cell and each cell has 6 neighboring cells. The system
bandwidth is set to 5MHz, and the bandwidth of a RB is
configured as 180KHz. The intersite distance is set to 500m.
Transmit power of a base station is configured to be 46 dBm.
Antenna gain of a base station is 45 dBi and that of a MS
is 2 dBi. The noise power is configured as −111.45 dBm and
frequency reuse factor is set to 1.
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MS Algorithm
(0) cell search
(1) construct Cy
(2) 𝐶󸀠𝑦 ← 𝐶𝑦
(3)While 𝐶󸀠𝑦 ̸= ⌀
(4) 𝑥 ← argmax 𝑖 ∈ 𝐶󸀠𝑦 (𝑆𝑖,𝑦)
(5) send association request message to 𝑥
(6) receive association responsemessage from 𝑥
(7) if (response ̸= OK)
(8) 𝐶󸀠𝑦 ← 𝐶󸀠𝑦 − {𝑥}
Cell Algorithm
(0) Upon receiving association request from a MS 𝑦
(1)𝑀󸀠𝑥 ←𝑀𝑥 ∪ {𝑦}
(2) flag← 0
(3) while 𝑀󸀠𝑥 ̸= ⌀
(4) calculate 𝑂𝑥,𝑗, (𝑗 ∈ 𝑀󸀠𝑥)
(5) if (𝑂𝑥,𝑗 > 𝜃𝑜)
(6) send association response with NOK
(7) flag← 1
(8) break
(9) else
(10) 𝑀󸀠𝑥 ←𝑀𝑥 − {𝑖}
(11) if (flag == 0)
(12) send association response with OK

Algorithm 1: Cell-guided association method.

The path lossmodel of 128.1+37.6 log10(max(𝑑, 0.035)) is
applied, where 𝑑 is the distance in km between a sender and a
receiver. We assume log-normal shadowing channel that has
zero mean and standard deviation of 𝜎dB = 8 dB.

We locate a MS in a network randomly following the
uniform distribution and apply each method for a MS to
determine a cell to associate with. All the statistics are
gathered when the number of MSs reach 5,000.

4.1. MS Performance. To quantify the performance ofMS, we
use two metrics. One metric is the data rate received by a MS
and the other is the outage probability of a MS. According to
the locations of MSs, we further classify MSs into edge MSs
which are defined as the MSs whose Euclidean distance from
its serving base station is larger than intersite distance over
three.

Figure 1 shows the cumulative distribution of data rates
received by MSs and Figure 2 shows the cumulative distribu-
tion of outage probabilities experienced by MSs. Comparing
SNMwith ONM, performances of MSs increase by changing
cell selection metric from SINR to outage probability. For
example, 70% MSs receive less than 575.8 Kbps when SINR
is used as a cell selection metric. On the contrary 70% MSs
receive 607.9 Kbps when MSs use outage probability to select
a cell. In terms of the outage probability, the proportion of
MSswhose outage probabilities are less than 0.2 is 0.794when
SINR is used. On the contrary, the proportion increases to
0.817 when MS selects a cell with an outage probability.

The performances of MSs increase dramatically when a
cell guidesMSswhen they select a cell to associatewith.When

Table 1: Cell statistics in terms of the number of MSs in a cell.

SNM ONM SOM
FI 0.88 0.96 0.92
Avg. 215 208 137
Std. 80 41 43

the association method is changed from SNM to SOM, the
data rate received by 70% MSs increases from 575.8 Kbps to
904.2 Kbps. In addition, the proportion of MSs whose outage
probabilities are less than 0.2 increases 1.06 times from 0.794
to 0.842.

The performance gain obtained by guiding MSs with
outage probability is more significant for the edge MSs.
Ninety percentage of edge MSs receive less than 793.3 Kbps
when SNM is used while it increases to 1301.9 Kbps when
SOM is used. The outage probabilities of 90% edge MSs
are less than 0.5 when SNM is applied while the number
decreases to 0.37 when MSs use SOM to associate with a cell.

4.2. System Performance. Figure 3 shows the total data rate
provided by each cell called cell rate. We can observe that
the cell rate increase dramatically if there is a guide by a cell.
This is attributed to the fact that if MSs choose cells selfishly
to maximize their own performance metric, some cells are
crowded with MSs while the others are loosely populated. To
examine the distribution of MSs in a cell, in Table 1, we show
Jain’s fairness index (FI) in terms of the number of MSs in a
cell. In the table, we also show the average and the standard
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Figure 1: Cumulative distribution of data rates received by MSs.
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Figure 2: Cumulative distribution of MS outage probability.

deviation of the number of MSs in a cell. We can find that
FI is 0.88 and the standard deviation is 80 when SNM is
used while FI and the standard deviation of SOM are 0.92
and 43, respectively, which means that MSs are more evenly
populated when SOM is used than when SNM is used. ONM
also distribute MSs evenly. However, the average number of
MSs in a cell of ONM is higher than those of SOM. Since cell
resources are shared among MSs, the number of RBs that is
allocated to eachMS in a cell becomes smaller as the number
of MSs in a cell increases. In addition, since SINR is inversely
proportional to the distance from a base station and aMS and

we deployed MSs according to the uniform distribution, the
average data rate per RB decreases as the number of MSs in
a cell increases. Therefore, even though cell rate of ONM is
higher than that of SNM, it is smaller than the cell rate of
SOM.

To further investigate the benefit of cell guidance, we
show the minimum data rate provided to a MS by each cell
in Figure 4 and the maximum outage probability among the
MSs in each cell experience in Figure 5. We can observe that
the minimum data rate provided to MSs in a cell increases
and the maximum outage probability in each cell decreases.
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Figure 3: Total data rate provided by a cell.
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Figure 4: Minimum data rate provided to a MS associated with a
cell.
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Figure 5:Maximum outage probability provided to aMS associated
with a cell.

5. Conclusions

In this paper, we propose a cell-guided association method.
Unlike other cell load aware methods where MSs estimate
the load of neighboring cells before attempting to make
associations with a cell, in CGAM, a cell decides whether or
not to accept an association request from a MS. Considering
the amount of available resources, a cell rejects the association
request if it cannot provide the minimum data rate to a MS.
The rejection guides a MS to try to associate with the second

best cell.Thus, even if aMS selfishly selects a cell to maximize
its benefit, they are not densely populated in some cells while
the other cells are sparsely populated. Therefore, CGAM
increases not only the resource utilization of a system but also
the quality of service perceived by MSs. In addition, CGAM
does not require additional information in a cell broadcast
message and conventional cell selection metric of a MS.
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