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Range estimation is crucial for maintaining a safe distance, in particular for vision navigation and localization. Monocular
autonomous vehicles are appropriate for outdoor environment due to their mobility and operability. However, accurate range
estimation using vision system is challenging because of the nonholonomic dynamics and susceptibility of vehicles. In this paper,
a measuring rectification algorithm for range estimation under shaking conditions is designed. The proposed method focuses
on how to estimate range using monocular vision when a shake occurs and the algorithm only requires the pose variations of
the camera to be acquired. Simultaneously, it solves the problem of how to assimilate results from different kinds of sensors. To
eliminatemeasuring errors by shakes, we establish a pose-range variationmodel. Afterwards, the algebraic relation betweendistance
increment and a camera’s poses variation is formulated. The pose variations are presented in the form of roll, pitch, and yaw angle
changes to evaluate the pixel coordinate incensement. To demonstrate the superiority of our proposed algorithm, the approach is
validated in a laboratory environment using Pioneer 3-DX robots.The experimental results demonstrate that the proposed approach
improves in the range accuracy significantly.

1. Introduction

The applications of mobile robots for observation and rescue
missions have received an increasing attention in recent
years. Current advances in sensing and computing promote
mobile robots as a suitable option in occasions such as search
and rescue, SLAM (Simultaneous Localization and Map-
ping), automatic navigation, and target detection. For mobile
robots, retrieving their position is one of the important issues.
In recent years, to solve this problem, vision sensors have
attracted a lot of attention because vision sensors are relatively
inexpensive and compact with low power consumption.
Furthermore, methods using version sensors can localize
the robot in various environments where it is difficult for
general localizationmethods likewheel odometry andGPS. If
localization can be performed only using image information,
a robot’s flexibility will be improved remarkably.

However, the precondition to a successful intelligent
robot system is the exact perception of surroundings, where
the range and azimuth information of targets around play an

important role. The range estimation algorithms using vision
sensors are known as VO (visual odometry).

Approaches for range estimation can mainly be divided
into three categories: radar-based, laser-based, and vision-
based. As a typical paradigm of noncontact approaches,
ultrasonic sensors have the advantages of time efficiency and
measurement accuracy. However, it is arduous to detect those
objects with small surfaces or situated at a wide angle related
to the ultrasonic sensor(s). Among all perception sensors,
computer visions have an added advantage of acquiring
large amount of information at a lower cost. The vision-
based method can solve both range and azimuth estimation
problems using only the acquired image themselves. There
has been much interest in research on object detection
by stereo camera [1–4], but the monocular camera is still
strongly advantageous for its large sensing area, low cost, and
easy installation.

To achieve precise VO in outdoor environments, some
problems remain to be solved. In this work, the problems
of VO on bumpy courses which exist mostly in outdoor
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environments are considered,where the bumpy coursesmean
that the environments include rough roads on which the
VO accuracy is dynamically affected by the pose change of
vision sensors. Furthermore, if precise VO is realized in the
environments including rough roads, we believe that it can be
utilized in any outdoor environments.

In the researches of intelligent unmanned vehicle systems,
computer vision generally adopts the methods of imaging
processing algorithms. In those works, the image features are
extracted, along with the model of the ambient environment,
for vehicle localization and obstacle avoidance. Range and
azimuth information are then refined from the above model
using vision system. It is unrealistic to assume that the road
is absolutely flat in the process. This paper concentrates on
the dynamicmeasurement rectification problem inwhich the
camera pose changes abruptly. This approach is particularly
suitable for applications such as navigating the autonomous
vehicles running on rough terrains. Pose variations are firstly
measured by a three-axis angle sensor and sequentially
applied to calculate the distance offsets using the proposed
range-pixel model. Although monocular visual odometry
has an advantage in wide FOV (field of view), factors such
as lighting conditions, shadows, and random noise would
unavoidably decrease the measurement precision, which are
induced from both human limitations and sensor character-
istics. On the contrary, noncontact sensors such as sonar are
typically not susceptible to those external conditions which
would infect the result accuracy. Nevertheless, one main
defect is the existence of inherent blind areas. In the view
of these possible advantages and corresponding limitations,
sensor assimilation technique based onOI (Optimal Interpo-
lation) method is employed. The main contributions of this
paper are summarized as follows.

(1) The relation between range increment and cam-
era’s pose variation has been formulated, based on
which a feasible data rectification algorithm has been
designed to modify the metrical results. To the best of
our knowledge, it is the first work to solve range esti-
mation problem under camera shaking conditions.

(2) An improved estimation mechanism of range infor-
mation in OI model has been developed, which
enhances adaptability and accuracy of multisensor
measuring system.

(3) Experiments on mobile robots and analytical results
have been demonstrated.

The rest of this paper is organized as follows. The
following section will provide some background and a more
detailed literature review. Section 3 defines the problems and
related literatures. Section 4 details the proposed approach
for measurement rectification and sensor fusion. Finally,
experiment results and conclusions are given in Sections 5
and 6.

2. Related Works

Visual distance estimation is a specialized set of approaches
which focus on real-time and accurate image capture

followed by range information acquirement. Several of these
mechanisms have been developed as foundational elements
of 3D reconstruction, simultaneous localization, and map
building.

Some basic algorithms as well as their improvements for
range estimation have been developed: epipolar constraint
model [2], defocusing method [3–5], coordinate mapping
scheme [6, 7], and camera movement approach [1, 8]. Kat-
suyuki et al. proposed a coupled estimation of unknown
vehicle width and following distance by sequential Bayesian
estimation. The method can run in real-time and produce
highly accurate estimation of the following distance under a
precondition that no camera shaking happens.

Those proposed methods can be divided into two cate-
gories: monocular and stereo system. Monocular approaches
involve a single no sophisticated camera that compute the
pixel size or coordinates which are used for range estimation.
Examples of these are studied in [9]. Stereo vision approaches
can provide much higher accuracy than monocular, but they
have small field of view and high operational complexity.
Several intelligent and operable algorithms [10, 11] fall into
this category.

Monocular and stereo vision approaches have advantages
in different aspects. Monocular approaches are usually easy
to be implemented and have optimal view scope. Meanwhile,
they require much lower cost compared to the former. Stereo
vision methods, in contrast, have a good performance in
accuracy due to the subpixel synthetical localization tech-
nology, while their biggest drawback lies in the complicated
operations and high computational complexity, especially
during the calibration process.

Among these emerged researches, most work assumes
the camera pose is fixed [3, 6, 9, 10, 12–14]. Some notable
exceptions, which have similarity to the present work, are as
follows. (1) Guo et al. [15] put forward a parallel constraint
method based on the two lane boundaries. (2) Vehicles are
equipped with an angle sensor to accurately acquire the
pitching angle of the camera in [13, 16, 17], where the author
proposed an improved algorithm in angle calculation by
using a function of the angles representing the two parallel
lane lines.

Some other approaches have also been proposed. Typical
paradigms are as follows. Han et al. [18] devise a feature
point based method for monocular measurement, but they
hinder the real-time implementation. Malis and Rives [19]
design a hybrid algorithm to minimize the token relative
displacements between two frames and then estimate the
image-space distance.

3. Problem Formulation

In Figure 1 suppose P󸀠 is a point in the image plane of the
camera in a pose of Ps, and suppose that we have an estimate
of the pose of the camera by a three-axis gyroscope. From this
information a standard ground-constrained model [18] can
be used to estimate the position of P in the world coordinate.
If the camera’s pose suddenly changes to Pf , we can use this
information to project point P into the camera’s image plane,
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Figure 1: The imaging geometry of the observation model.

which obtains a second pointP󸀠󸀠. Now assuming that the pose
measurement is reasonably accurate and that the position
estimate algorithm works well, the problem is to estimate P
utilizing measurements including P󸀠, P󸀠󸀠, and pose variation
of the camera.

The initial and final poses of the camera are denoted by
Ps = (𝑟𝑠, 𝑝𝑠, 𝑦𝑠) and Pf = (𝑟𝑓, 𝑝𝑓, 𝑦𝑓), respectively, where 𝑟𝑖,
𝑝
𝑖
, and 𝑦

𝑖
(𝑖 = 𝑠, 𝑓) stand for the initial roll, pitch, and yaw

angles. Although the actual relative distance from the optical
center to the target changes slightly, the measured results
deviate from the truth significantly. This is mainly because
of the nonlinear mapping between pixel coordinates and
corresponding distance values. The problem is to correct the
actual measurements to be close to the truth by eliminating
the pose perturbation of the camera.

4. Data Rectification Algorithm

In this section we describe our approach to the problem of
monocular vision-based measurement rectification. Since a
robot’s trajectory is most conveniently described in a world
coordinate system, while the target on the ground is generally
described by its camera coordinate system, we start with
a preview of these two coordinate systems. To model the
problem in a general geometrodynamical architecture, the
algebraic relation between the camera pose displacement and
the displacement of measuring distance is derived.

4.1. World and Camera Coordinates System. Assume that
𝑋𝑌𝑍 and𝑋󸀠𝑌󸀠𝑍󸀠 are, respectively, a world coordinate system
and the camera’s coordinate system as shown in Figure 2.The
coordinates of a point P under these two coordinate systems
are transformed by

[
[

[

𝑋

𝑌

𝑍

]
]

]

= R
[
[
[

[

𝑋
󸀠

𝑌󸀠

𝑍󸀠

]
]
]

]

+ T, (1)

where (𝑋, 𝑌, 𝑍) and (𝑋󸀠, 𝑌󸀠, 𝑍󸀠) are point P coordinates in
the world and robot camera coordinate system. Moreover,
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Figure 2: The world and camera coordinate systems.

R and T are, respectively, the rotation and translation from
the camera to theworld’s coordinate system,which determine
the position and orientation of the camera in the world
coordinate system. Furthermore, for a 3D point P in the
FOV of the camera, its image coordinates are given by the
projection equation as follows:

[𝑢 V]𝑇 = [𝑋
󸀠

𝑍󸀠
𝑌󸀠

𝑍󸀠
]

𝑇

⋅ 𝑓, (2)

where (𝑢, V) are the coordinates of P in the image coordinate
system and 𝑓 is the camera’s focal length.

4.2. Chebyshev Best Uniform Approximation Rectification
Algorithm. The distance-orientation information between
targets and the camera can be derived from corresponding
pixel coordinate in the image [20, 21]. It is found that the ratio
of image pixel motion to the camera rotation angles varies
nonlinearly along the main optical axis. The main idea of the
designed algorithm is to piecewise linearize the nonlinear rate
and then calculate the rate of change with respect to rotation
angles as well as themeasured distance. Equation (3) presents
the rotation matrix in 3D space:

𝑅 =
[
[

[

1 0 0

0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

]
]

]

⋅
[
[

[

cos𝜓 0 − sin𝜓
0 1 0

sin𝜓 0 cos𝜓

]
]

]

⋅
[
[

[

cos𝜑 sin𝜑 0

− sin𝜑 cos𝜑 0

0 0 1

]
]

]

.

(3)

Variations of pixel coordinates are associated with the
world coordinates by a rotation matrix whose parameters are
attitude angles of the camera, which is described by

Δ𝑢
𝑘+1

= 𝐹
𝑥
⋅ (
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(4)

where inner parameters𝐹
𝑥
and𝐹
𝑦
are only determined by the

CCD structure itself.
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For the convenience of discussion, we assume that the
camera poses change mainly along the yaw angle direction.

Denote Ψ(𝜃, 𝜓, 𝜑) = (𝑅
11
𝑥
𝑤
+ 𝑅
12
𝑦
𝑤
)/(𝑅
31
𝑥
𝑤
+ 𝑅
32
𝑦
𝑤
);

using (3) and (4), we obtain

Ψ (𝜃, 𝜓, 𝜑) = cos 𝜕 + sin 𝜕 cot𝛽, (5)

where

𝜕 = arctan(
𝑥
𝑤

𝑦
𝑤

) + arctan(
𝑦
𝑤

𝑥
𝑤

) ,

𝛽 = 𝜑 − arctan(
𝑦
𝑤

𝑥
𝑤

) .

(6)

Substituting (3) in (5) results in

Ψ (𝜃, 𝜓, 𝜑) = cot(𝜑 − arctan(
𝑦
𝑤

𝑥
𝑤

)) . (7)

From Figure 3, we can see that the slope of curves
tends to be constant within a sliding interval of independent
variable. This interval becomes smaller when the ratio of
𝑥
𝑤
to 𝑦
𝑤
increases. The Chebyshev approximation method

has the characteristics of uniform approximation on selected
closed-interval. Inspired by this, the nonlinear rate can be
approximated by linear polynomial and the deviation caused
by poses change of a camera can be effectively compensated.
The second derivative is taken as

Ψ
󸀠󸀠
(𝜑) = 2 cot(𝜑 − arctan(

𝑦
𝑤

𝑥
𝑤

))

⋅ (cot(𝜑 − arctan(
𝑦
𝑤

𝑥
𝑤

))

2

+ 1) .

(8)

Considering the yaw angle variations of a PTZ (Pan/Tilt/
Zoom) camera caused by uneven pavement during practical
robot motion, a closed subinterval [𝑎, 𝑏] ([𝑎, 𝑏] ⊆ [0 ∼ 𝜋/12])
is chosen for further deduction. Since (8) is a continuous
function and keeps consistency in sign, the best consistent
approximation method can be used.

Denote 𝑎∗
1
= (Ψ(𝑏) − Ψ(𝑎))/(𝑏 − 𝑎), using this to acquire

normal equation of approximation:

Ψ
󸀠
(𝜑) = 𝑎

∗

1
. (9)

Set the solution of (9) as 𝑥
Δ
. Then the approximation

equation is written as follows:

𝑝
∗

(𝑥) =
𝑓 (𝑎) + 𝑓 (𝑥

Δ
)

2
+ 𝑎
∗

1
⋅ (𝑥 −

𝑎 + 𝑥
Δ

2
) . (10)

We explore the slope of line after linear approximation to
study the function of different ratios of𝑥

𝑤
to𝑦
𝑤
. Results show

that the slope converges to its limit uniformly. Moreover, this
constant value is irrelevant to the ratio above:

𝜅 =
Ψ (𝑏) − Ψ (𝑎)

𝑏 − 𝑎
. (11)
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Figure 3: Pixel coordinates along 𝑈-axis vary with the yaw angles:
a set of 𝑦

𝑤
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values are considered. (𝑥

𝑤
, 𝑦
𝑤
) is the coordinate of P

in the world coordinate system.

Substituting (7) in (11) results in

𝜅 =
1

𝑏 − 𝑎
⋅

1 + (𝑦/𝑥)
2

(tan (𝑏) − 𝑦/𝑥) (tan (𝑏) − 𝑦/𝑥)

⋅ (tan (𝑎) − tan (𝑏)) .

(12)

To demonstrate the convergence of 𝜅, we have also analyzed
the limit value given by

lim
𝑦/𝑥→∞

𝑘 =
tan (𝑎) − tan (𝑏)

𝑏 − 𝑎
. (13)

Solid curves in Figure 4 are the results of actual slope and
linear approximation, respectively.These two curves coincide
with each other well after a translation operation. This
indicates a high accuracy in slope using linear approximation.
Figure 5manifests the convergence of slope related to ametric
of 𝑦
𝑤
/𝑥
𝑤
, which is in good agreement with experimental

results. Another important property that should be noted
is that the function value rapidly reaches convergence after
a dramatic increase; that is, the measured range would
vary with the metric 𝑦

𝑤
/𝑥
𝑤

with high nonlinearity. This
also implies that the measurement should be conducted on
the smooth interval to reduce the errors caused by camera
shakings. On the other hand, it is impossible to compensate
the deviations when the metric is too small.

4.3. Sonar and Camera Data Assimilation Model. The Opti-
mal Interpolation Algorithm is derived to generate the least
squares results for vectors of observations and background
fields assuming “a priori” known statistical models for the
background error covariance. The Optimal Interpolation
Technique, based on the minimization of variance esti-
mation, plays an important role in data assimilation. It
uses several different real-world observations to produce a
corrected output, which is closer to the truth.
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The motivation of the proposed method comes from the
similar characteristic and phenomena between a camera and
sonar measurement system and an OI algorithm. First, a
camera and sonar system can be considered to be an OI
system that produces an optimal output through several
groups of observations. Second, the OI algorithm has the
dimension-extensible and loose a priori characteristics that
are attractive for camera and sonar measurement system.

The following are given:

(i) A background field 𝑥
𝑏
available in two or three

dimensions.
(ii) A set of 𝑝 observations 𝑥obs available at irregular

positions.

The optimal estimation is described by

𝑥
𝑎
= 𝑥
𝑏
+𝑊(𝑥obs − 𝑥𝑏) . (14)

Table 1: Initial state of camera before calibration.

Rotation angle Pitch angle Zoom
0 −15∘ 0

Table 2: Calibration results.

𝑓
𝑥

𝑓
𝑦

𝑈
0

𝑉
0

731.88 738.65 339.28 249.7

The errors are given by

𝜀
𝑎
= 𝑥
𝑎
− 𝑥
𝑡
,

𝜀
𝑏
= 𝑥
𝑏
− 𝑥
𝑡
,

𝜀
obs
= 𝑥obs − 𝑥𝑡.

(15)

The optimal weight is then as follows:

𝑊 =
(𝜎𝑏)
2

(𝜎obs)
2

+ (𝜎𝑏)
2
, (16)

where 𝜎𝑎 and 𝜎𝑏 represent the mean value of 𝜀𝑎 and 𝜀𝑏. As
data from camera and sonar are unrelated, it is assumed that
𝐸(𝜀
𝑏
𝜀
obs
) = 0.

5. Evaluations and Analysis

In this section, we present the results of a set of physical
experiments to demonstrate the performance of the pro-
posed algorithm in Section 4. To validate the effectiveness
of the proposed data rectification algorithm, we compared
the results before and after a pose change with the truth.
Moreover, we have conducted a set of experiments under
different initial poses of a camera to testify the robust-
ness of this method. Besides, comparative experiments have
been designed to show the validity of the data assimilation
approach.

Autonomous vehicles can be modeled as mobile robots
and then we use the mobile robot Pioneer 3-DX (Figure 6)
mounted with a camera for experiments. To prepare for
experiments, the PTZ camera is firstly calibrated.

5.1. Camera Calibration. Grid size of the calibration board
in experiments is 30mm ∗ 30mm. Picture resolution of
VCC50I is fixed as 640 ∗ 480. To ensure error balance and
calibration accuracy, a group of calibrated images containing
four images from various poses are collected at a distance
interval of 10 cm. Calibration distance ranges from 1500mm
to 4000mm. Considering effects of pitch and rotation angles
as well as the zoom value, the camera state during calibration
is fixed as given in Table 1. Internal parameters are listed in
Table 2, which are crucial to distance measurement.

5.2. Performance Evaluation of the Data Rectification Algo-
rithm. Angle variations are acquired by a three-axis angle
sensor, which act as the input of the rectification algorithm.
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Figure 6: Pioneer 3-DX robot equipped with a Canon-VCC50I PTZ Camera.

Table 3: Different conditions set for measurement.

𝜓 𝜃 𝜑

2.13 7.18 0.05
4.89 4.84 2.81
5.68 4.05 3.59
2.93 6.42 2.77
4.07 5.01 1.10

The module (MPU6050) has advantages in low temperature
dependency, high resolution, and low noise. Due to these
advantages, this module is chosen as a tool to measure the
Euler angles.

To validate the robustness of the algorithm, a target is set
at different positions randomly. For each metric 𝑦/𝑥, results
under a set of camera poses are analyzed (yaw, pitch, and roll
angles are random for each metric as set in Table 3). Initial
readings of angle sensor are as follows: 𝜃 (pitch): 9.65,𝜑 (yaw):
−0.27∘, and 𝜓 (roll): −0.94∘. The target position tuples are set
as {(1500, 100), (2000, 100), (2500, 100), (3000, 100)}.

Figure 7(a) shows measurements from the initial camera
state. Compared with the truth, it shows bias along both
horizontal and vertical directions.

The deviations of VO results caused by the camera
motions are rectified independently. Based on the analysis
of the range model in Section 3, the pitch angle is an
independent variable of distance function. Therefore, we
recalculate the pitch angle instead of inversion operations
on pixel coordinates. Figures 7(b)–7(f) show results before
and after rectification. In Figure 7(e), the distance error
along the optical axis is almost as high as 50% using direct
measurement. However, this value decreases to be only 6%
using the proposed algorithm. We can also see that the least
improvement in accuracy in this direction is 10% as shown in

Figure 7(c). Accordingly, much more remarkable effect can
be seen from the results along the direction perpendicular
to the optical axis. In the worst case as shown in Fig-
ure 7(f), the measured distance along𝑋-axis is rectified from
the measured −780mm to the final 98mm. The percentage
gains of measuring precision approach 878%. Even in a
general situation, this percentage can be close to 35% as
demonstrated in Figure 7(c). These figures also show that
the range deviation becomes larger as the distance along the
optical axis direction increases. This is mainly because the
ratio of physical distance to pixel unit increases along the
optical axis.

5.3. Data Assimilation Evaluation. For generality, the assim-
ilation results under different metric size (i.e., manipulating
𝑦/𝑥) with a fixed camera pose are demonstrated. Data from
sonar sensors are set as the background field value and those
from camera are set as the observation field value. In Fig-
ure 8(a), measurement results at some positions are missing,
which indicate that blind zones exist when sonar system only
is adopted. Range data in Figure 8(b) are the results of sensor
assimilation. It demonstrates the accuracy improvement from
both 𝑋-axis and 𝑌-axis compared with measurements solely
from the vision system and sonar sensors. Assimilated results
proved to be as much as 25 percent accurate along𝑋-axis and
9 percent accurate along 𝑌-axis compared to those acquired
using a single type of sensor. This is mainly because new
information is brought in to compensate the output from a
single measuring system, that is, the wild FOV of camera and
the high measurement accuracy of sonar sensors.

6. Conclusions

In this paper, we have proposed an analytical measuring
rectification algorithm formonocular range estimation under
camera shaking conditions. Specifically, we have established
a pose-range model and then the algebraic relation between
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Figure 7: Comparisons between results after and before rectification: a set of camera poses are set to validate the robustness of designed
algorithm.

distance increment and a camera’s poses variation has been
formulated.We have also designed a data assimilation system
to provide reliable range information using different types
of transducer systems. Physical experiments are conducted

to validate the effectiveness and robustness of the proposed
algorithm. For future work we will try to implement our
algorithms on the multiple robots formations as well as
swarm coordination applications.
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Figure 8: Comparisons between results before and after assimilation. (a) Original data from sensors of sonar and camera. (b) Results of
assimilation using the Optimal Interpolation Algorithm. (Results of camera are represented as Δ and those of sonar are described as ∗. The
symbol ∘ stands for truth values and ⬦ are assimilated results.)
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