
Hindawi Publishing Corporation
Journal of Chemistry
Volume 2013, Article ID 908586, 13 pages
http://dx.doi.org/10.1155/2013/908586

Research Article
Prediction of Gas Chromatography-Mass Spectrometry Retention
Times of Pesticide Residues by Chemometrics Methods

��aheh �ono�� �mir �. M. Sarra�� ��ire�a �ei�ba�hsh� and �ahra �ashtbo�orgi

Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran 13185-768, Iran

Correspondence should be addressed to Elaheh Konoz; konozelaheh@gmail.com

Received 14 January 2012; Accepted 30 April 2012

Academic Editor: Yenamandra S. Prabhakar

Copyright © 2013 Elaheh Konoz et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A quantitative structure-retention relationships (QSRRs) method is employed to predict the retention time of 300 pesticide
residues in animal tissues separated by gas chromatography-mass spectroscopy (GC-MS). Firstly, a six-parameter QSRR model
was developed by means of multiple linear regression. e six molecular descriptors that were considered to account for the effect
of molecular structure on the retention time are number of nitrogen, Solvation connectivity index-chi 1, Balaban Y index, Moran
autocorrelation-lag 2/weighted by atomic Sanderson electronegativity, total absolute charge, and radial distribution function-
6.0/unweighted. A 6-7-1 back propagation arti�cial neural network (ANN) was used to improve the accuracy of the constructed
model. e standard error values of ANN model for training, test, and validation sets are 1.559, 1.517, and 1.249, respectively,
which are less than those obtained reveals by multiple linear regressions model (2.402, 1.858, and 2.036, resp.). Results obtained
the reliability and good predictability of nonlinear QSRR model to predict the retention time of pesticides.

1. Introduction

Pesticides are used on a large scale for agricultural purposes.
e adverse effects of pesticides on both human health and
the environment are a matter of public concern. us, both
the actual state and the transition of pesticide residues in var-
ious matrices including water, soil, and agricultural products
should be extensively monitored. ese researches should
be undertaken using an efficient analytical system with a
laborsaving and cost-effective device, as pesticides as well
as applicable �elds of research rang over a broad spectrum.
Conventional sample preparation methods used to analyze
pesticide residues in various matrices require expensive
instrumentation, an expert analyst [1–4]. Besides the above
mentioned, the experimental determination of chromato-
graphic retention parameters of pestocides is time consuming
and expensive. Alternatively, quantitative structure-retention
relationship (QSRR) provides a promising method for the
estimation of retention time based on descriptors derived
solely from the molecular structure to �t experimental data.
e advantages of this approach lie in the fact that it
requires only the knowledge of chemical structure and is not
dependent on any experiment properties.

QSRR studies [5, 6] started from the calculation and
selection of descriptors, to �nding their relation to retention
times and derivation of mathematical models that involve
these multivariate data in order to be used for predic-
tive purposes in chromatographic system. Multivariate data
consist of the results of observations of many different
variables (molecular descriptors) for a number of individuals
(molecules). Known methods for this include the multiple
regression analysis, experimental design techniques, and
nonlinear regression.e drawback, sometimes, of these very
popular techniques is their inability to give highly predictive
models due to hidden nonlinearity inside the data variables
or the prerequisite to specify the mathematical model before
the �tting of the data. So there is a need to improve further
such kind of models in order to extract the most accurate
prediction. �o this end, arti�cial neural networks (ANNs)
could be used successfully in QSRR studies providing better
results than the conventional regression models.

�oday arti�cial neural networks [7–10] have become an
important modeling technique for QSAR and QSPR, and
also this technique has been applied in numerous application
areas of chemistry and pharmacy [11–16]. e mathematical
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adoptability of ANN commends them as powerful tool
for pattern classi�cation and building predictive models. A
particular advantage of ANNs is their inherent ability to
incorporate nonlinear dependencies between the dependent
and independent variables without using an explicit mathe-
matical function. ere are few reports about the application
of QSRR in the chromatographic studies: D’Archivio et al.
modeled the combined effect of solute structure and eluent
composition on the retention behavior of 26 pesticides
in isocratic reversed-phase high-performance liquid chro-
matography using multilinear regression and arti�cial neural
networks [17]. In another study, they applied a six-parameter
nonlinearQSRRmodel to predict the retention behavior of 26
pesticides including commonly used insecticides, herbicides,
and fungicides as well as some metabolites in reversed-
phase high-performance liquid chromatography [18]. Also
Ghasemi and his coworkers used multiple linear regression
and partial least squares regression to QSRR study of the
gas chromatography retention time of 38 diverse chlorinated
pesticides, herbicides, and organohalides by using molecular
descriptors [19]. In the present study, the application of ANN
is being described in order to predict accurately the retention
time values of 300 pesticides in four groups with different
molecular structures [20].

2. Methods

2.1. Dataset. Development of the multiple linear regression
and arti�cial neural networks in the present work relies on
a data set taken from reference [20]. is dataset (Table 1)
consists of 300 pesticides in animal tissues such as beef,
mutton, pork, chicken, and rabbit ranging in retention time
from 5.62 to 35.77min. All of these 300 pesticides divided
into four groups, depending upon properties and retention
time of each pesticide. Each group is consisting different kind
of pesticides such as acaricides, insecticides, and Fungicides.
To apply the ANN modeling, the dataset was randomly
divided into three groups of training, test, and validation
sets consisting of 256, 22, and 22 pesticides, respectively.
e training set was used for the model generation. e
test set plays a different role in the cases of the MLR
and the ANN models. For the ANN model, this set was
used for early stopping to optimize learning iteration and
avoid overtraining. e validation set was used to assess the
accuracy of the ANN predictions. On the other hand, in the
case of theMLRmodel, the test set and the validation set were
used to evaluate the model. As can be seen from Table 1, the
pesticides in the test and validation sets were chosen in a way
that adequately represents the training set in termof retention
time.

2.2. Molecular Descriptors. All structures were generated
with the HyperChem (Version 7) [21] and optimized with
the classic potential MM+ included. Molecular geometry
was optimized with the Austin Model 1 (AM1) method
[22], and then the molecular descriptors were calculated
by the soware Dragon 3.0 [23]. Overall more than 1400
theoretical descriptors were calculated for each molecule
by this soware. ese descriptors can be classi�ed into

several groups: 0D: constitutional descriptors; 1D: functional
groups, atom-centered fragments, empirical descriptors and
molecular properties; 2D: topological descriptors, molec-
ular walk counts, BCUTs descriptors, Galvez topological
charge indices, and 2D autocorrelations; 3D: aromaticity
indices, Randic molecular pro�les from the geometry matrix,
geometrical, RDF, 3D-MORSE, WHIMs, and GETAWAYs
descriptors. Molecular descriptor meanings and their calcu-
lation procedure are explained in Handbook of molecular
descriptors by Todeschini. ese molecular descriptors of
different kinds were used to describe compound chemical
diversity.

2.3. Regression Analysis. e main goal of the generation of
the MLR model was to choose a set of suitable descriptors
that can be used as inputs for construction of the ANN
model. Linear models were formed by a stepwise selection of
important descriptors andMLRmodel construction [24].e
best MLR model is one that has high correlation coefficient
and 𝐹𝐹-value, low standard error, and high prediction power.
e statistics of the constructed MLR model is presented in
Table 2.

2.�. Arti�cial �eural �et�or�. A detailed description of
theory behind arti�cial neural networks has been adequately
described in several publications [25–31]. An ANN program
was written in MATLAB 7 in our laboratory. is network
was feed-forward fully connected that has three layers with
sigmoidal transfer function. Descriptors appearing in the
MLR models were used as inputs of network and signal of
the output node represent the retention time of interested
compound. us, this network has six nodes in input layer
and one node in output layer. e value of each input was
divided into its mean value to bring them into dynamic
range of the sigmoid transfer function of the network. e
back-propagation algorithm was used for the training of the
network [32, 33]. Before training the network, the parameters
of the number of nodes in the hidden layer, weights and
biases learning rates, and momentum values were optimized
[34–36]. Optimized values of these parameters were numbers
of nodes in the input layer (=6), numbers of nodes in the
hidden layer (=7), numbers of nodes in the output layer
(=1), weights learning rates (=0.1), bias learning rate (=0.4),
momentum (=0.5), and transfer function was sigmoid. e
ANN-calculated values of permeability coefficient for train-
ing, test, and prediction sets, are shown in Table 1.

3. Results and Discussion

3.1. Analysis by Multiple Linear Regressions. e best MLR
model (Table 2) for the training set includes six descriptors.
ese descriptors are number of nitrogen, Solvation con-
nectivity index-chi 1, Balaban 𝑌𝑌 index, Moran autocorre-
lationlag 2/weighted by atomic Sanderson electronegativity,
total absolute charge, and radial distribution function-6.0/
unweighted.
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T 1: Experimental, ANN, and MLR predicted values of the retention times (𝑡𝑡𝑅𝑅) of training, test, and validation sets.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
Training set
1 Allidochlor 8.78 10.22 9.83 −1.05
2 Dichlormid 9.74 10.27 9.88 −0.14
3 Etridiazol 10.42 16.11 12.9 −2.48
4 Chlormephos 10.53 11.88 14 −3.47
5 Propham 11.36 14.17 12.13 −0.77
6 Cycloate 13.56 16.32 16.4 −2.84
7 Diphenylamine 14.55 18.13 15.58 −1.03
8 Chlordimeform 14.93 17.44 13.69 1.24
9 Ethal�uralin 15.00 16.17 14.56 0.9
10 iometon 16.20 18.1 17.82 −1.62
11 Atrazine-desethyl 16.76 13.96 17.25 −0.49
12 Clomazone 17.00 20.95 18.63 −1.63
13 Fonofos 17.31 20.48 16.24 1.07
14 Simazine 17.85 16.99 18.93 −1.08
15 Propetamphos 17.97 19.72 18.93 −0.96
16 Secbumeton 18.36 20.2 19.21 −0.85
17 Dichlofenthion 18.80 21.02 17.38 1.42
18 Pronamide 18.72 19.61 21.15 −2.43
19 Mexacarbate 18.83 17.05 18.64 0.2
20 Aldrin 19.67 22.92 21.33 −1.66
21 Dinitramine 19.35 18.57 16.45 2.9
22 Ronnel 19.80 22.63 21.2 −1.4
23 Cyprazine 20.18 19.82 18.43 1.75
24 Beta-HCH 20.31 16.11 16.93 3.38
25 Metalaxyl 20.67 20.19 21.92 −1.25
26 Chlorpyrifos (-ethyl) 20.96 25.26 22.59 −1.63
27 Methyl-parathion 20.82 22.85 21.44 −0.62
28 Malathion 21.54 21.2 22.9 −1.36
29 Fenitrothion 21.62 23.17 21.19 0.43
30 Paraoxon-ethyl 21.57 22.19 21.39 0.18
31 Triadimefon 22.22 25.41 25.62 −3.4
32 Parathion 22.32 24 23.28 −0.96
33 Pendimethalin 22.59 20.84 19.77 2.82
34 Linuron 22.44 21.13 19.94 2.5
35 Bromophos-ethyl 23.06 23.18 21.51 1.55
36 trans-chlordane 23.29 23.4 22.61 0.68
37 Phenthoate 23.30 24.91 25.59 −2.29
38 Fenothiocarb 23.79 23.76 24.85 −1.06
39 Prothiophos 24.04 24.99 23.69 0.35
40 Dieldrin 24.43 24.77 24.55 −0.12
41 Procymidone 24.36 22.91 26.47 −2.11
42 Methidathion 24.49 27.18 26.96 −2.47
43 Napropamide 24.84 24.35 23.12 1.72
44 Fenamiphos 25.29 23.4 26.85 −1.56
45 Aramite 25.60 26.63 25.36 0.24
46 Bupirimate 26.00 25.11 24.63 1.37
47 Carboxin 26.25 23.23 25.54 0.71
48 Flutolanil 26.23 22.66 27.39 −1.16
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T 1: Continued.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
49 Ethion 26.69 26.7 26.6 0.09
50 Sulprofos 26.87 25.6 25.14 1.73
51 Etaconazole-2 26.89 22.06 26.1 0.79
52 Myclobutanil 27.19 26.34 26.45 0.74
53 Diclofop-methyl 28.08 28.79 27.35 0.73
54 Propiconazole 28.15 30.15 28.96 −0.81
55 Fensulfothin 27.94 25.84 26.94 1
56 Bifenthrin 28.57 27.56 29.69 −1.12
57 Mirex 28.72 28.48 28.33 0.39
58 Benodanil 29.14 22.77 27.08 2.06
59 Nuarimol 28.90 26.9 26.93 1.97
60 Oxadexyl 29.59 23.49 25.44 4.06
61 Tetramethirn 29.59 28.2 28.88 0.71
62 Phosmet 30.46 29.34 29.94 0.52
63 Oxycarboxin 31.00 25.76 28.63 2.37
64 cis-Permethrin 31.42 31.5 32.3 −0.9
65 trans-Permethrin 31.68 32.74 32.6 −0.92
66 Pyrazophos 31.60 32.87 29.97 1.63
67 Cypermethrin 33.19 33.64 33.73 −0.54
68 Fenvalerate 34.45 35.59 34.07 0.38
69 Deltamethrin 35.77 32.69 33.93 1.84
70 EPTC 8.54 9.64 11.15 −2.61
71 Butylate 9.49 10.01 10.12 −0.63
72 Dichlobenil 9.75 11.27 11.75 −2
73 Pebulate 10.18 11.32 11.54 −1.36
74 Nitrapyrin 10.89 10.95 12.12 −1.23
75 Chloroneb 11.85 15.37 13.01 −1.16
76 Tecnazene 13.54 15.8 16.61 −3.07
77 Heptenophos 13.78 18.84 15.01 −1.23
78 Hexachlorobenzene 14.69 16.1 18.31 −3.62
79 Ethoprophos 14.40 13.64 12.5 1.9
80 cis-Diallate 14.75 14.67 15.7 −0.95
81 Propachlor 14.73 16.12 13.97 0.76
82 Tri�uralin 15.23 19.7 14.95 0.28
83 Chlorpropham 15.49 16.41 16.17 −0.68
84 Sulfallate 15.75 12.79 12.78 2.97
85 Alpha-HCH 16.06 15.99 18.04 −1.98
86 Terbufos 16.83 16.38 17.13 −0.3
87 4,4-DDE 23.92 24.19 24.68 −0.76
88 Chlorbufam 17.85 18.15 18.66 −0.81
89 Fluotrimazole 28.39 26.67 28.64 −0.25
90 Terbuthylazine 18.07 18.42 19.7 −1.63
91 Monolinuron 18.15 19.36 20.27 −2.12
92 Cyanophos 18.73 20.34 19.53 −0.8
93 Chlorpyrifos-methyl 19.38 23.86 21.45 −2.07
94 Desmetryn 19.64 17.4 18.43 1.21
95 Alachlor 20.03 19.24 19.27 0.76
96 Terbutryn 20.61 20.03 19.37 1.24
97 iobencarb 20.63 20.77 19.73 0.9
98 Dicofol 21.33 23.76 23.45 −2.12
99 Metolachlor 21.34 21.05 21.68 −0.34
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T 1: Continued.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
100 Methoprene 21.71 23.08 22.07 −0.36
101 Bromofos 21.75 23.72 22.31 −0.56
102 Ethofumesate 21.84 24.27 23.8 −1.96
103 Isopropalin 22.10 26.6 24.73 −2.63
104 Propanil 22.68 16.94 19.79 2.89
105 Crufomate 22.93 21.31 19.59 3.34
106 Chlorfenvinphos 23.19 23.53 23.32 −0.13
107 cis-Chlordane 23.55 23.4 21.71 1.84
108 Tolyl�uanide 23.45 22.76 23.52 −0.07
109 Butachlor 23.82 22.55 24.27 −0.45
110 Chlozolinate 23.83 25.54 23.06 0.77
111 Crotoxyphos 23.94 24.26 24.8 −0.86
112 Iodofenphos 24.33 23.85 21.87 2.46
113 Chlorbromuron 24.37 21.89 20.71 3.66
114 Profenofos 24.65 22.73 23.34 1.31
115 Buprofezin 24.87 24.53 23.88 0.99
116 2,4�-DDD 24.94 23.16 23.56 1.38
117 Endrin 25.15 24.92 25.1 0.05
118 Hexaconazole 24.92 26.84 26.97 −2.05
119 2,4-DDT 25.56 22.31 23.68 1.88
120 Methoprotryne 25.63 26.87 25.6 0.03
121 Erbon 25.68 25.93 26.83 −1.15
122 Chloropropylate 25.85 25.43 25.32 0.53
123 Nitrofen 26.12 23.08 28.85 −2.73
124 �xy�uorfen 26.13 25.59 29.37 −3.24
125 Chlorthiophos 26.52 26.26 25.96 0.56
126 Endosulfan I 26.72 23.96 26.39 0.33
127 4,4-DDT 27.22 22.9 25.15 2.07
128 Carbofenothion 27.19 27 26.87 0.32
129 Benalyxyl 27.54 27.7 27.98 −0.44
130 Edifenphos 27.94 25.87 25.96 1.98
131 Triazophos 28.23 27.84 26.84 1.39
132 Chlorbenside sulfone 28.88 26.15 27.85 1.03
133 Endosulfan-sulfate 29.05 28.31 28.93 0.12
134 Bromopropylate 29.30 25.93 27.74 1.56
135 Benzoylprop-ethyl 29.40 28.81 28.84 0.56
136 Fenpropathrin 29.56 28.79 29.79 −0.23
137 Phosalone 31.22 31.11 31.56 −0.34
138 Azinphos-methyl 31.41 31.36 30.37 1.04
139 Fenarimol 31.65 29.56 28.81 2.84
140 Azinphos-ethyl 32.01 32.91 31.79 0.22
141 Prochloraz 33.07 33.03 31.52 1.55
142 Coumaphos 33.22 28.77 30.86 2.36
143 Cy�uthrin 32.94 34.18 33.61 −0.67
144 Dichlorvos 7.80 9.72 7.98 −0.18
145 Biphenyl 9.00 16.62 11.96 −2.96
146 Vernolate 9.82 11.57 10.9 −1.08
147 3,5-Dichloroaniline 11.20 10.42 10.55 0.65
148 Molinate 11.92 14.07 13.92 −2
149 Methacrifos 11.86 15.7 13.49 −1.63
150 2-Phenylphenol 12.47 16.32 12.14 0.33
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T 1: Continued.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
151 cis-1,2,3,6-tetrahydrophthalimide 13.39 12.35 11.96 1.43
152 Fenobucarb 14.60 14.42 13.7 0.9
153 Prometon 16.66 18.42 16.82 −0.16
154 Triallate 17.12 15.55 13.9 3.22
155 Pyrimethanil 17.28 18.45 18.46 −1.18
156 Gamma-HCH 17.48 16.12 18.09 −0.61
157 Disulfoton 17.61 16.97 16.66 0.95
158 Heptachlor 18.49 21.61 19.83 −1.34
159 Isazofos 18.54 22.62 20.07 −1.53
160 Fenpropimorph 19.22 25 21.3 −2.08
161 Trans�uthrin 19.04 23.96 22.15 −3.11
162 Tolclofos-methyl 19.69 21.11 18.51 1.18
163 Metobromuron 20.07 19.92 20.38 −0.31
164 HCH, epsilon- 20.78 16.05 17.54 3.24
165 Dipropetryn 20.82 20.32 21.8 −0.98
166 Formothion 21.42 17.67 18.96 2.46
167 Diethofencarb 21.43 20.66 19.42 2.01
168 Dimepiperate 22.28 21.74 21.92 0.36
169 Bioallethrin-1 22.29 22.9 21.57 0.72
170 2,4-DDE 22.64 22.46 24.45 −1.81
171 Fenson 22.54 23.65 21.87 0.67
172 Chlorthion 22.86 24.7 22.65 0.21
173 Prallethrin 23.11 23.96 22.59 0.52
174 Mecarbam 23.46 22 25.24 −1.78
175 Flumetralin 24.10 27.85 24.44 −0.34
176 Triadimenol 24.22 25.2 24.81 −0.59
177 Pretilachlor 24.67 22.65 24.59 0.08
178 Uniconazole 26.15 25.53 26 0.15
179 Flusilazole 26.19 29.21 27.8 −1.61
180 Fluorodifen 26.59 25.19 25.07 1.52
181 Diniconazole 27.03 26.95 27.24 −0.21
182 Piperonyl butoxide 27.46 28.93 26.8 0.66
183 Mepronil 27.91 25.31 27.43 0.48
184 Fenazaquin 28.97 29.38 30.6 −1.63
185 Fenoxycarb 29.57 29.01 30.52 −0.95
186 Sethoxydim 29.63 24.8 27.28 2.35
187 Anilofos 30.68 29.82 28.59 2.09
188 Permethrin 31.57 30.27 32.38 −0.81
189 Pyridaben 31.86 31.57 30.56 1.3
190 Fluoroglycofen-ethyl 32.01 34.85 33.64 −1.63
191 Bitertanol 32.25 32.05 30.82 1.43
192 Etofenprox 32.75 32.57 32.87 −0.12
193 Cycloxydim 33.05 28.55 30.36 2.69
194 Alpha-cypermethrin 33.35 28.9 31.06 2.29
195 Esfenvalerate 34.65 36.73 34 0.65
196 Difenconazole 35.40 36.14 33.03 2.37
197 Flumioxazin 35.50 32.67 32.45 3.05
198 Dimefox 5.62 −0.46 7.13 −1.51
199 Tri-iso-butyl phosphate 11.65 10.47 12.32 −0.67
200 Crimidine 13.13 12.37 12.09 1.04
201 Chlorfenprop-methyl 13.57 17.75 13.6 −0.03
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T 1: Continued.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
202 2,3,5,6-Tetrachloroaniline 14.22 13.5 12.71 1.51
203 Tri-n-butyl phosphate 14.33 16.15 14.42 −0.09
204 2,3,4,5-Tetrachloroanisole 14.66 15.91 14.51 0.15
205 Tebutam 15.30 16.51 17.61 −2.31
206 Dioxabenzofos 16.14 17.74 15.19 0.95
207 Simetone 16.69 17.79 16.84 −0.15
208 Atratone 16.70 18.87 18.68 −1.98
209 Bromocylen 17.43 18.53 17.24 0.19
210 Cycluron 17.95 17.22 19.68 −1.73
211 Musk ambrette 18.62 18.86 17.77 −1.15
212 Musk xylene 18.66 20.74 18.81 −0.15
213 Pentachloroaniline 18.91 15.38 16.2 2.71
214 Aziprotryne 19.11 21.05 19.07 0.04
215 Sebutylazine 19.26 19.07 19.03 0.23
216 Isocarbamid 19.24 16.72 17.15 2.09
217 Musk moskene 19.46 21.79 21.16 −1.7
218 Dimethenamid 19.55 20.54 20.39 −0.84
219 Fenchlorphos oxon 19.72 21.04 18.44 1.28
220 BDMC-2 19.74 15.49 19.3 0.44
221 Paraoxon-methyl 19.83 20.87 20.76 −0.93
222 Monalide 20.02 19.22 21.33 −1.31
223 Isobenzan 20.55 22.18 21.66 −1.11
224 Pyrimitate 20.59 22.79 18.97 1.62
225 Isodrin 21.01 21.88 22.55 −1.54
226 Isomethiozin 21.06 22.14 19.89 1.17
227 Dacthal 21.25 22.38 21.38 −0.13
228 4,4-Dichlorobenzophenone 21.29 21.45 19.45 1.84
229 Nitrothal-isopropyl 21.69 21.85 21.6 0.09
230 Rabenzazole 21.73 21.17 24.36 −2.63
231 Fuberidazole 22.10 20.67 21.26 0.84
232 Isofenphos oxon 22.04 23.32 21.78 0.26
233 Dicapthon 22.44 22.74 22.2 0.24
234 Isocarbophos 22.87 24.01 22.75 0.12
235 Phorate sulfone 23.15 19.74 25.53 −2.38
236 Chlorfenethol 23.29 21.98 22.52 0.77
237 trans-Nonachlor 23.62 25.1 24.51 −0.89
238 Dinobuton 23.88 22.71 22.01 1.87
239 DEF 24.08 21.24 23.61 0.47
240 Flurochloridone 24.31 18.15 21.83 2.48
241 Bromfenvinfos 24.62 25.03 24.94 −0.32
242 Ditalimfos 24.82 25.28 25.31 −0.49
243 4,4-Dibromobenzophenone 25.30 23.06 24.62 0.68
244 Disulfoton sulfone 26.16 20.66 24.24 1.92
245 Cyproconazole 27.23 26.87 26.41 0.82
246 Phthalic acid, benzyl butyl ester 27.56 27.11 26.22 1.34
247 Clodinafop-propargyl 27.74 31.2 29.61 −1.87
248 Fenthion sulfone 28.55 27.46 29.4 −0.85
249 Metamitron 28.63 21.78 27.39 1.24
250 Tebufenpyrad 29.06 30.01 29.27 −0.21
251 Cloquintocet-mexyl 29.32 29.62 29.85 −0.53
252 Lenacil 29.70 21.63 28.28 1.42
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T 1: Continued.

Number Pesticide 𝑡𝑡𝑅𝑅 (EXP) 𝑡𝑡𝑅𝑅 (MLR) 𝑡𝑡𝑅𝑅 (ANN) (𝑡𝑡𝑅𝑅)EXP − (𝑡𝑡𝑅𝑅)ANN
253 Bromuconazole 29.90 28.32 29.66 0.24
254 Fenamiphos sulfone 31.34 29.08 30.17 1.17
255 Fluquinconazole 32.62 32.22 30.22 2.4
256 Fenbuconazole 34.02 33.6 31.53 2.49
Test set
257 Tetradifon 30.70 29.14 30.26 0.44
258 Fluorochloridone 25.14 19.72 24.4 0.74
259 Cyanofenphos 28.43 27.78 29.74 −1.31
260 EPN 30.06 30.42 31.71 −1.65
261 Ben�uralin 15.23 16.21 14.16 1.07
262 Atrizine 17.64 16.45 19.4 −1.76
263 Simetryn 20.18 18.85 19.71 0.47
264 Metribuzin 20.33 17.61 17.78 2.55
265 Bioallethrin-2 22.34 23.58 21.89 0.45
266 Kresoxim-methyl 25.04 27.47 27.78 −2.57
267 Propargite 27.87 26.85 30.06 −2.19
268 Amitraz 30.29 28.83 29.76 0.53
269 Trietazine 17.53 18.78 19.76 −2.23
270 Prosulfocarb 19.51 21.08 21.51 −2
271 Octachlorostyrene 20.60 20.81 23.38 −2.78
272 Methfuroxam 22.45 21.15 24.43 −1.98
273 Flutriafol 25.31 26.82 27.15 −1.84
274 Diclobutrazole 25.95 27.22 27.61 −1.66
275 Triphenyl phosphate 28.65 26.88 30.41 −1.76
276 Desbrom-leptophos 30.15 27.97 28.32 1.83
277 Propisochlor 19.89 16.96 19.98 −0.09
278 Ametryn 20.11 18.98 19.4 0.71
Valid set
279 Quintozene 16.75 18.1 18.4 −1.65
280 Prometryne 20.13 19.82 19.71 0.42
281 Chlorbenside 22.96 23.73 25.4 −2.44
282 Oxadiazone 25.06 26.67 26.72 −1.66
283 Tetrasul 25.85 25.48 26.27 −0.42
284 Etaconazole-1 26.81 28.41 27.98 −1.17
285 Pyridaphenthion 30.17 29.14 29.64 0.53
286 trans-Diallate 15.29 14.82 15.52 −0.23
287 Propazine 17.67 18.15 19.5 −1.83
288 Pirimiphos-methyl 20.30 23.66 22.81 −2.51
289 Dichlo�uanid 21.68 22.03 22.53 −0.85
290 Pro�uralin 17.36 22.64 17.16 0.2
291 Tetrachlorvinphos 24.36 22.75 24.14 0.22
292 Chlorfenson 25.05 26.07 23.34 1.71
293 2,4-DDD 24.94 26.13 27.65 −1.75
294 Leptophos 30.19 30.5 29.65 0.54
295 Nitralin 30.92 29.65 29.37 1.55
296 Fenamiphos sulfoxide 31.03 26.93 30.38 0.65
297 Dicloran 17.89 26.94 17.14 0.75
298 Perthane 24.81 15.1 26.01 −1.2
299 Cyprodinil 21.94 22.19 22.63 −0.69
300 Mefenacet 31.29 29.75 30.27 1.02
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T 2: Speci�cations of the selected multiple linear regression model.

Descriptor Notation Coefficient Mean effect
Number of nitrogen atoms 𝑛𝑛N 0.980 (±0.123) 0.091
Solvation connectivity index-Chi1 𝜒𝜒1sol 2.191 (±0.125) 1.467
Balaban 𝑌𝑌 index 𝑌𝑌 index −4.639 (±0.401) −0.421
Moran autocorrelation-lag 2/weighted by atomic sanderson electronegativity MATS2e −7.386 (±1.022) −0.104
Total absolute charge (electronic charge index—ECI) Qtot 0.499 (±0.084) 0.211
Radial Distribution-6.0/unweighted RDF060u −0.156 (±0.025) −0.140
Constant 7.045 (±1.346)
𝑁𝑁 𝑁 𝑁𝑁𝑁, 𝐹𝐹 𝐹𝐹 𝐹𝐹, 𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅, SE =2.456 .
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Cl
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F 1: Comparison of 𝜒𝜒1sol values for HCH-epsilon and allidochlor.

e correlation between these descriptors is shown in
Table 3. As shown in this table, there are no signi�cant
correlations between these descriptors.

e �rst descriptor with the largermean effect is solvation
connectivity index—chi 1 (𝜒𝜒1sol) that de�ned in order to
model solvation entropy and describe dispersion interactions
in solution. Taking into account the characteristic dimension
of the molecules by atomic parameters, they are de�ned as

𝑚𝑚𝜒𝜒𝑠𝑠𝑞𝑞 = 󶀤󶀤
1
2
󶀴󶀴
𝑚𝑚𝑚𝑚
⋅
𝑘𝑘
󵠈󵠈
𝑘𝑘𝑘𝑘
󶀨󶀨
󶀢󶀢∏𝑘𝑘𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎󶀲󶀲𝑘𝑘
󶀡󶀡∏𝑛𝑛𝑎𝑎𝑎𝑎𝛿𝛿𝑎𝑎󶀱󶀱

1/2
𝑘𝑘

󶀸󶀸 , (1)

where 𝐿𝐿𝑎𝑎 is the principal quantum number (2 for C, N, O
atoms, 3 for Si, S, Cl,…) of the 𝑎𝑎th atom in the 𝑘𝑘th subgraph
and 𝛿𝛿𝑎𝑎 the corresponding vertex degree; 𝑘𝑘 is the total number
of 𝑚𝑚th order subgraphs; 𝑛𝑛 is the number of vertices in the
subgraph. e normalization factor 1/(2)𝑚𝑚𝑚𝑚 is de�ned in
such a way that the indices 𝑚𝑚𝜒𝜒 and 𝑚𝑚𝜒𝜒𝑠𝑠 for compounds
containing only second-row atoms coincide. e �rst-order
solvation connectivity index is

1𝜒𝜒𝑠𝑠 =
1
4
⋅ 󶀩󶀩
󶀢󶀢𝐿𝐿𝑖𝑖 ⋅ 𝐿𝐿𝑗𝑗󶀲󶀲𝑏𝑏
󶀢󶀢𝛿𝛿𝑖𝑖 ⋅ 𝛿𝛿𝑗𝑗󶀲󶀲

1/2
𝑏𝑏

󶀹󶀹 , (2)

where 𝑏𝑏 runs over all the bonds; 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 are the principal
quantum numbers of the two vertices incident to the consid-
ered bond.is index coincides with the Randic connectivity
index 1𝜒𝜒 for the hydrocarbons; 𝐿𝐿 𝐿𝐿  for all the atoms.
ese molecular descriptors are de�ned for an H-depleted
molecular graph [37].

e positive sign for the mean effect of this descriptor
reveals that molecules have higher numerical value of 𝜒𝜒1sol,
therefore, they have longer retention time. For example,
HCH-epsilon (compound 164) with 6 chloride atoms in its
structure has bigger 𝜒𝜒1sol (7.75) than Allidochlor (com-
pound 1) with one chloride atom in its structure (5.61) and

also has longer retention time than Allidochlor (20.78 and
8.78min, resp., Figure 1). Compounds that have more atoms
in their structure have larger numerical value of 𝜒𝜒1sol and
so they have longer retention time, for example, compound
194 (Alpha-cypermethrin) has 𝜒𝜒1sol value of 13.32 and
retention time of 33.35min but compound 4 (Chlormephos),
which has less atoms and shorter structure than Alpha-
cypermethrin, has 𝜒𝜒1sol and retention time of 7.21 and
10.53min, respectively (Figure 2). e second important
descriptor is Balaban 𝑌𝑌 index which was calculated by the
same formula as the Balaban distance connectivity index 𝐽𝐽,
but by using atomic information indices instead of vertex
distance degrees [38].e𝑌𝑌 index is de�ned based on atomic
information indices 𝑦𝑦𝑖𝑖 calculated for vertices of a H-depleted
molecular graph as follows:

𝑦𝑦𝑖𝑖 =
𝜂𝜂𝜂𝜂

󵠈󵠈
𝑔𝑔𝑔𝑔

𝑔𝑔𝑓𝑓𝑖𝑖 ⋅𝑔𝑔 𝑔 𝑔𝑔𝑔2𝑔𝑔𝑔 (3)

where 𝑔𝑔 runs over all of the different topological distances
from the 𝑖𝑖th vertex, 𝑔𝑔𝑓𝑓𝑖𝑖 is the number of distances from
the 𝑖𝑖th vertex equal to 𝑔𝑔, and 𝜂𝜂𝑖𝑖 is the 𝑖𝑖th atom eccentricity
(i.e., the maximum topological distance from the considered
atom) [38]. So, the Balaban 𝑌𝑌 index is calculated as

𝑌𝑌index = 𝐵𝐵
𝐶𝐶 𝐶𝐶
⋅ 󵠈󵠈
edge(𝑖𝑖𝑖𝑖𝑖𝑖
󶀢󶀢𝑦𝑦𝑖𝑖 ⋅ 𝑦𝑦𝑗𝑗󶀲󶀲

−1/2
, (4)

where 𝐵𝐵 is the number of bonds and 𝐶𝐶 is the cyclomatic
number. As the number of cycles, and branching inmolecular
structures increased (so 𝑦𝑦𝑖𝑖 in (2) increased), the value of
𝑌𝑌 index decreased. For example, compounds 70 (EPTC),
80 (Cis-Diallate), and 97 (iobenarb) which have amine
group in their structures with retention time of 8.54, 14.75,
20.63min have 𝑌𝑌 index values of 2.27, 2.15, 1.02, respec-
tively. is descriptor has negative sign for its mean effect.
erefore, as the numerical value of this descriptor increased
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F 2: Comparison of 𝜒𝜒1sol values for 𝛼𝛼-cypermethrin and allidochlor.
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F 3: Comparison of Qtot values for pirimiphos-methyl and dichlobenil.
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F 4: Plot of the calculated 𝑡𝑡𝑅𝑅 by MLR method versus the experimental values for training, test, and validation sets (a) and the plot of
retention time values predicted by 6–7–1 feed forward ANN (𝑡𝑡𝑅𝑅 (ANN)) against the experimental values (𝑡𝑡𝑅𝑅 (EXP)) (b).

T 3: Correlation matrix for descriptors applying in this work.

𝑛𝑛𝑛𝑛 𝜒𝜒1sol 𝑌𝑌 index MATS2e Qtot RDF060u
𝑛𝑛𝑛𝑛 1
𝜒𝜒1sol −0.162 1
𝑌𝑌index −0.120 0.540 1
MATS2e 0.315 −0.240 0.065 1
Qtot −0.082 0.427 0.034 −0.535 1
RDF060u 0.084 0.634 −0.363 0.162 0.433 1
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T 4: Statistical parameters obtained using the ANN and MLR models.

Model SEtr SEt SEv 𝑅𝑅tr 𝑅𝑅t 𝑅𝑅v 𝐹𝐹tr 𝐹𝐹t 𝐹𝐹v
ANN 1.559 1.517 1.249 0.969 0.951 0.971 3928 188 334
MLR 2.402 1.858 2.036 0.925 0.924 0.922 1508 118 113
tr: training, t: test, v: valid.
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F 5: Plot of the residuals versus the experimental values of 𝑡𝑡𝑅𝑅
for training, test and validation sets.

the retention time of compounds decreased. For example in
compounds 149 (Methacrifos), 27 (Methyl-parathion), 131
(Triazophos) which are organophosphorous compounds 𝑌𝑌
index values are 2.08, 1.18, and 0.81, and retention times are
11.86, 20.82, and 28.23min, respectively.

e total absolute charge is the other descriptor which,
also known as the electronic charge index (ECI), is the sum
of absolute charge over all atoms in a molecule and is a
measure of molecule polarity [37]. erefore, compounds
with polar bonds have more numerical value of Qtot and
have longer retention on a polar stationary phase than
others. For example, compound 288 (Pirimiphos-methyl)
has more retention and polarity (20.30min and 10.14, resp.)
than Dichlobenil (compound 72) that has Qtot of 1.02 and
retention time of 9.75min (Figure 3), also Compounds 9
(Ethalfuralin), 21 (Dinitramine), and 175 (Flumetralin) that
contain CF3 and two nitro groups in their structure have
retention time of 15, 19.35, 24.10, and Qtot value of 6.66,
6.86, and 7.33, respectively. e other molecular descriptors
with lower mean effects are number of nitrogen atoms,
Moran autocorrelation-lag 2/weighted by atomic sanderson
electronegativity and radial distribution-6.0/unweighted. As
number of nitrogen atoms increase, in molecule’s structure
due to increasing the interaction of molecules with polar
stationary phase, the retention time of compound increases.
For example, in etridiazol, atrazine-desethyl, and �uquin-
conazole (compounds 3, 11, and 255, resp.) which have 2, 5,
and 6 nitrogen atoms in their structure, their retention time

is 10.42, 16.76, and 32.62, respectively. AMoran coefficient is
a general index of spatial autocorrelation that, if applied to a
molecular graph, can be de�ned as

𝐼𝐼 (𝑑𝑑) =
(1/Δ) ⋅ ∑𝐴𝐴𝑖𝑖𝑖𝑖 ∑

𝐴𝐴
𝑗𝑗𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖 ⋅ 󶀡󶀡𝑤𝑤𝑖𝑖 − 𝑤𝑤󶀱󶀱 ⋅ 󶀢󶀢𝑤𝑤𝑗𝑗 − 𝑤𝑤󶀲󶀲

(1/𝐴𝐴) ⋅ ∑𝐴𝐴𝑖𝑖𝑖𝑖 󶀡󶀡𝑤𝑤𝑖𝑖 − 𝑤𝑤󶀱󶀱
2 , (5)

where𝑤𝑤𝑖𝑖 is any atomic property (here Sanderson electroneg-
ativity), 𝑤𝑤 is its average value on the molecule, 𝐴𝐴 is the atom
number, 𝑑𝑑 is a Kronoker delta (𝛿𝛿𝑖𝑖𝑖𝑖 = 1 if 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑, zero,
otherwise). Δ is the sum of the Kronoker deltas, that is, the
number of vertex pairs at distance equal to 𝑑𝑑 [39].

So the Moran autocorrelation-lag 2/weighted by
atomic sanderson electronegativity can be a factor of
electronegativity of moleculs. e last descriptor is radial
distribution-6.0/unweighted. e 3D coordinates of the
atoms of molecules can be transformed into a structure code
that has a �xed number of descriptors irrespective of the size
of a molecule. is task is performed by a structure coding
technique referred to as radial distribution function code
(RDF code) [40]. In general, there are some prerequisites for
a structure code: independence from the number of atoms,
that is, the size of a molecule, unambiguity regarding the
three-dimensional arrangement of the atoms, and invariance
against translation and rotation of the entire molecule.

Formally, the radial distribution function of an ensemble
of𝑁𝑁 atoms can be interpreted as the probability distribution
to �nd an atom in a spherical volume of radius 𝑟𝑟 [41]. e
equation represents the radial distribution function code as
it is used in this investigation:

𝑔𝑔 (𝑟𝑟) = 𝑓𝑓 𝑓
𝑁𝑁𝑁𝑁
󵠈󵠈
𝑖𝑖

𝑁𝑁
󵠈󵠈
𝑗𝑗𝑗𝑗𝑗
𝐴𝐴𝑖𝑖 ⋅ 𝐴𝐴𝑗𝑗 ⋅ 𝑒𝑒

−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)
2
, (6)

where 𝑓𝑓 is a scaling factor and 𝑁𝑁 is the number of atoms.
By including characteristic atomic properties 𝐴𝐴 of the atoms
𝑖𝑖 and 𝑗𝑗, the RDF codes can be used in different tasks to
�t the requirements of the information to be represented.
e exponential term contains the distance 𝑟𝑟𝑖𝑖𝑖𝑖 between the
atoms 𝑖𝑖 and 𝑗𝑗 and the smoothing parameter 𝐵𝐵 that de�nes
the probability distribution of the individual distances. 𝑔𝑔𝑔𝑔𝑔𝑔
was calculated at a number of discrete points with de�ned
intervals.

e atomic properties 𝐴𝐴𝑖𝑖 and 𝐴𝐴𝑗𝑗 used in this equation
enable the discrimination of the atoms of a molecule for
almost any property that can be attributed to an atom. Such
distribution function provides, besides information about
interatomic distances in a whole molecule, the opportunity
to gain access to other valuable information, for example,
bond distance, ring types, planar and nonplanar systems,
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and atoms types. is fact is a most valuable consideration
for a computer-assisted code elucidation. e radial distri-
bution function in this form meets the entire requirement
mentioned above, especially invariance against linear trans-
lations. As RDF060u has negative sign for its mean effect,
as molecules became larger their RDF factor in 6Å radius
reduces. For example Tebufenpyrad (compound 250) which
has larger structure than Pyrimitate (compound 224) has
lower RDF factor (18.79) than Pyrimitate (29.76); so the
retention time of Tebufenpyrad is higer (29.06min) than
Pyrimitate (20.59).

From the above discussion, it can be seen that all descrip-
tors involved in the QSRR model has physical meaning, and
these descriptors can account for the structural features that
affect the retention time of under studied pesticides.

3.2. Comparison of Neural Network and MLR Models. A
graphical comparison of ANN and MLR analysis is given in
Figure 4, where the retention time values calculated bymeans
of the respective models are plotted against the experimental
values.e statistical parameters obtained by ANN andMLR
models for these sets are shown in Table 4. e standard
errors of training, test and validation sets for the MLR
model are 2.402, 1.858, and 2.036, respectively, which would
be compared with the values of 1.559, 1.517, and 1.249,
respectively, for the ANNmodel. Comparison between these
values and other statistical parameters in Table 4 reveals
the superiority of the ANN model over MLR ones. Figure 5
shows the plot of the residuals against the experimental values
of retention time, for the ANN model. Since the residuals
are propagated on both sides of the zero line, there is no
systematic error in developing of ANN model.

4. Conclusions

Few structure-activity relationships involving pesticides have
been published. In this study, we use MLR and ANN to
predict the retention time of 300 pesticides that were different
in molecular structure. e results of this study demonstrate
that QSRRs method using ANN techniques can generate
a suitable model for prediction of gas chromatographic
retention of pesticides.

Also the results obtained in this work indicate that the
regression and ANN models exhibit reasonable prediction
capabilities. Descriptors which appeared in the obtained
QSRR models reveal that electronic interactions as well as
steric parameters can be affected on the gas chromatographic
retention time of pesticides.
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