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We propose a species-based hybrid of the electromagnetism-like mechanism (EM) and back-propagation algorithms (SEMBP) for
an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS) design.The interval type-2 asymmetric
fuzzy membership functions (IT2 AFMFs) and the TSK-type consequent part are adopted to implement the network structure
in AIT2FNS. In addition, the type reduction procedure is integrated into an adaptive network structure to reduce computational
complexity. Hence, the AIT2FNS can enhance the approximation accuracy effectively by using less fuzzy rules. The AIT2FNS is
trained by the SEMBP algorithm, which contains the steps of uniform initialization, species determination, local search, total force
calculation, movement, and evaluation. It combines the advantages of EM and back-propagation (BP) algorithms to attain a faster
convergence and a lower computational complexity. The proposed SEMBP algorithm adopts the uniform method (which evenly
scatters solution agents over the feasible solution region) and the species technique to improve the algorithm’s ability to find the
global optimum. Finally, two illustrative examples of nonlinear systems control are presented to demonstrate the performance and
the effectiveness of the proposed AIT2FNS with the SEMBP algorithm.

1. Introduction

In recent years, fuzzy neural networks (FNNs) have been
used successfully in many applications [1–20]. For FNNs,
the asymmetric fuzzy membership functions (AFMFs) have
been discussed and analyzed to improve the approximation
accuracies and to effectively reduce the number of fuzzy
rules [3, 12, 14, 16, 19, 21]. These AFMFs also provide
better performance than traditional fuzzy systems do in
the applications of function approximation, modeling, and
control. Thus, the learning capability and flexibility can be
upgraded. In addition, there has been a growing interest
in type-2 fuzzy sets (T2FSs), also known as interval-valued
fuzzy sets [1, 2, 10, 11, 20, 22–36]. T2FSs, which are extended
from type-1 fuzzy sets, were first proposed by Zadeh [37].
Recently, Mendel and Karnik developed the complete theory
of interval type-2 fuzzy logic systems (IT2 FLSs) [28–33, 38].
Many studies have shown that interval-valued fuzzy sets
and interval type-2 fuzzy sets (IT2FSs) are the same [12, 28,
29, 32, 37, 39]. The resulting type-2 fuzzy neural network

(T2FNN), which adopts IT2FSs as membership functions,
provides better performance than those of type-1 do [10–12].

In this paper, we propose an interval type-2 fuzzy neural
systemwithAFMFs, referred to as anAIT2FNS, for nonlinear
system controller design. The interval type-2 AFMFs (IT2
AFMFs) and theTSK-type consequent part are used to imple-
ment the network structure in AIT2FNS. It is well known
that the major computational effort of an IT2FLS system is
in type reduction, and the most commonly adopted method
to accomplish this is the Karnik-Mendel (KM) procedure [32,
33].The KMprocedure computes the left and right endpoints
needed to characterize type-2 fuzzy sets. As described in the
literature [2], the type reduction is integrated into the net-
work layers; that is, the KM procedure can be removed. This
removal effectively reduces the required computational effort.
In this paper, we use this integration technique to construct
an AIT2FNS with reduced computational complexity.

For training of the fuzzy neural systems, the back-
propagation (BP) algorithm is a powerful and widely used
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training technique [11, 14, 17, 18, 31]. This method typically
cannot find the global solution even if a local minimum is
obtained rapidly. The optimization algorithms are less likely
to become stuck in a local minimum than are gradient-
based learning algorithms (e.g., genetic algorithms, GAs;
particle swarm optimizations, PSOs; and electromagnetism-
like mechanisms, EMs) [4–6, 8, 9, 15, 17, 38, 40, 41]. A
novel hybrid algorithm, the improved electromagnetism-
like mechanism using a BP technique (IEMBP), has been
proposed to improve the EM algorithm performance [8,
9]. In IEMBP, the random neighborhood local search of
the EM algorithm is replaced by a competitive selection
and BP technique. However, a statistical analysis should be
performed to obtain average performance results, and results
are dependent on the population size.

Here, we propose a species-based hybrid algorithm of
the EM and BP algorithms (SEMBP) for the proposed
AIT2FNS design. Several modifications are introduced to
improve performance. One of these modifications is in the
initialization step. The initial solution agents are generated
using the uniform method [3, 35, 42], and these solution
agents are evenly scattered over the feasible solution region.
The uniform method does not require statistical analysis,
which utilizes repetitive training to obtain average perfor-
mance data. Additionally, the uniform method which has
a lower probability of producing outliers can reduce the
computational effort (only one trial should be performed)
and can attain better performance. Another modification
is the use of a species technique, wherein the population
is dynamically divided into subpopulations (or subspecies)
based on a similarity measurement, and multiple optima are
located. By locatingmultiple optima, the possibility of finding
the global optimum is increased. In these ways, the SEMBP
algorithm combines the advantages of the uniform method,
the species technique, and the BP local search by species
seed. This algorithm has a faster convergence and a lower
computational complexity; therefore, it is globally optimized.
Finally, we use simulation results of nonlinear system control
to illustrate the effectiveness of the AIT2FNS design with the
SEMBP algorithm.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the proposed AIT2FNS sys-
tem. Section 3 introduces the hybrid SEMBP algorithm for
AIT2FNS. Section 4 describes the simulation results and
compares these results with other methods of nonlinear sys-
tem control. Finally, Section 5 summarizes our conclusions.

2. An Interval Type-2 Fuzzy Neural
System with Asymmetric Fuzzy Membership
Functions (AIT2FNS)

2.1. Interval Type-2 Asymmetric Fuzzy Membership Functions.
The literature indicates that using AFMFs can improve
approximation accuracy and can effectively reduce the num-
ber of fuzzy rules [3, 12, 14, 16, 19, 21]. It also provides better
performance than traditional fuzzy systems do in the appli-
cations of function approximation, modeling, and control.
The learning capability and flexibility can be upgraded. Here,
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Figure 1: The interval type-2 AFMF [8, 12].

we introduce the IT2AFMFs. According to previous results
[12], Gaussian functions are used to construct IT2AFMFs, as
shown in Figure 1. Each IT2AFMF is constructed by parts of
four Gaussian functions. The upper and lower membership
functions (MFs) are constructed using two Gaussian MFs
and one segment. The superscripts “𝑙” and “𝑟” denote the left
and right curves of MF, respectively. The parameters of the
lower and upperMFs are denoted by “

−

” and “−,” respectively.
Accordingly, the upper AFMF is constructed as
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where 𝑚𝑙 and 𝑚
𝑟 denote the means of two Gaussian MFs
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𝑙

≤ 𝑚
𝑟 and 𝜎

𝑙 and 𝜎
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(width) of the two Gaussian MFs. Similarly, the lower AFMF
is given as
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where𝑚𝑙 ≤ 𝑚𝑟. To avoid a small activation value, 𝛾 is chosen
so that 0.5 ≤ 𝛾 ≤ 1.Thus, the restrictions𝑚𝑙 ≤ 𝑚𝑙 ≤ 𝑚𝑟 ≤ 𝑚𝑟,
𝜎
𝑙

≤ 𝜎
𝑙, 𝜎𝑟 ≤ 𝜎

𝑟, 0.5 ≤ 𝛾 ≤ 1 should be added to avoid
unreasonable MFs.

2.2. Fuzzy Reasoning of the Proposed AIT2FNS. Given the
system input data 𝑥

𝑖

(𝑖 = 1, 2, . . . , 𝑛) and the fact that the
AIT2FNS has 𝑀 fuzzy rules, the 𝑗th rule of the proposed
AIT2FNS can be expressed as follows.
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, (3)
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where 𝑗 = 1, 2, . . . ,𝑀; 𝐹
𝑖𝑗

is the antecedent fuzzy set that is
formed by the IT2AFMFs shown in Figure 1; 𝐶

𝑖𝑗

denotes the
consequent fuzzy set;𝑌

𝑗

is the output of 𝑗th rule. As described
above, the antecedent part 𝜇

̃

𝐹𝑖𝑗
is an interval set; that is,
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Then, the firing set of 𝑗th rule computed using the product
𝑡-norm is
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Hence, the output of the fuzzy logic system can be obtained
using the extension principle and is given as
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Herein, we need to compute the left-end point 𝑦𝑙 and right-
end point𝑦𝑟 by utilizing theKMalgorithm [32, 33]. In theKM
algorithm, the left-end and right-end points are represented
as
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Then, we have to find the proper switch point values 𝐿 and 𝑅
by iterative procedure, where more details can be referred to

[32, 33]. However, this iterative procedure for finding switch
point values is time-wasted. In the proposed AIT2FNS, a
simple weight-average method is used to replace the iterative
procedure for finding 𝐿 and𝑅. Hence, we define the left-most
and right-most points of firing strength by
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where 𝜔
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are adjustable weights. In (10),
the uncertainty of the antecedent is reduced such that the
requirement of the type-reduction is satisfied. In the sequel,
we obtain the left-end point and right-end point of the output
of interval type-2 fuzzy inference system as follows:
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Finally, the defuzzified output of AIT2FNS is

𝑦 (𝑥) =
𝑦
𝑙

+ 𝑦
𝑟

2
. (12)

As above description, the iterative KM algorithm is
replaced by several direct node operations such that the
computational complexity of the proposed method is intu-
itively lower. Therefore, we analyze the computational cost
between KM algorithm and left-most and right-most layers.
For a two-input-single-output interval type-2 fuzzy system,
we accumulate the used times of the addition and the
multiplication operations in each method. The comparison
results are shown inTable 1.These results are performedusing
Matlab running on a computer with Intel i5-661 3.33GHz and
3.24GB of main memory. We can observe that the proposed
simplified network structure does reduce the computational
effort on computation time and operations.

2.3. Network Structure of the AIT2FNS. Herein, we introduce
the network structure of AIT2FNS. The multi-input-single-
output case is considered here for convenience. An AIT2FNS
with 𝑀 fuzzy rules is implemented as the six-layer network
shown in Figure 2. It can be noted that the operation of
layers 4 and 5 is normalization, which will be introduced
as follows. The signal propagation and operation functions
of the nodes are indicated in each layer. In the following
description, 𝑂(𝑘)

𝑖

denotes the 𝑖th output of a node in the 𝑘th
layer.

Layer 1: Input Layer. For the 𝑖th node of layer 1, the net input
and output are represented as

𝑂
(1)

𝑖

= 𝑥
𝑖

, 𝑖 = 1, . . . , 𝑛, (13)
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Table 1: Computation results between the KM algorithm and left-most and right-most layer.

Number of rules Operation Computational effort
KM algorithm Left-most and right-most layer

10
Addition 162.4 60

Multiplication 81.9 50
Computational time 0.000208 sec. 0.000120 sec.

20
Addition 325.6 120

Multiplication 163.3 100
Computational time 0.000278 sec. 0.000136 sec.

30
Addition 534.2 180

Multiplication 267.6 150
Computational time 0.000331 sec. 0.000171 sec.

40
Addition 715.8 240

Multiplication 358.4 200
Computational time 0.000493 sec. 0.000228 sec.

Layer 4: left-most and  

right-most layer

Layer 2: membership layer

Layer 5: TSK layer

Layer 1: input layer

Layer 3: rule layer
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Figure 2: Network structure of the proposed AIT2FNS with𝑀 rules.

where 𝑥
𝑖

represents the 𝑖th input to the 𝑖th node of layer 1.The
nodes in this layer only transmit input values to the next layer
directly.

Layer 2: Membership Layer. In this layer, each node performs
an IT2 AFMF:

𝑂
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= 𝜇
̃
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𝑖

)] ,

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑀,

(14)

where the subscript “𝑖𝑗” indicates the 𝑗th term of the 𝑖th
input.

Layer 3: Rule Layer. The links in this layer are used
to implement the antecedent matching. Using the prod-
uct t-norm, the firing strength associated with the 𝑗th
rule is

𝑓
𝑗

= 𝜇
̃

𝐹1𝑗

(𝑂
(1)

1

) ∗ ⋅ ⋅ ⋅ ∗ 𝜇
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𝑛

) ,

𝑓
𝑗

= 𝜇
̃

𝐹1𝑗
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(1)

1
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̃

𝐹𝑛𝑗

(𝑂
(1)

𝑛

) ,

(15)
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where 𝜇
̃

𝐹𝑖𝑗

(⋅) and 𝜇
̃

𝐹𝑖𝑗

(⋅) are the lower and upper membership
grades of 𝜇

̃

𝐹

(⋅), respectively. Therefore, a simple product
operation is used. Accordingly,

𝑂
(3)

𝑗
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(3)

𝑗
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(3)
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] . (16)

Layer 4: Left-Most and Right-Most Layer. This layer evaluates
the left-most and right-most firing points. Therefore, the
output of layer 4 is

𝑂
(4)

𝑗

= [𝑂
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where 𝑂
(4)

𝑗𝑙

and 𝑂
(4)

𝑗𝑟

denote the left-most and right-most
points of firing strength, respectively; 𝜔𝑙

𝑗

, 𝜔𝑙
𝑗

, 𝜔𝑟
𝑗

, and 𝜔
𝑟

𝑗

are adjustable weights. According to the results presented in
[2], the type reduction is integrated into the corresponding
network layers. A simple weight-averaging method is used
to allow the adaptive algorithm to evaluate the left-most
and right-most firing points. Therefore, the traditional KM
procedure, which is an iterative procedure for finding the
right-most and left-most points of the centroid, is removed.
Comparing with the use of a traditional KM algorithm for
type reduction, there is a significant reduction in computa-
tional cost.

Layer 5: TSK Layer. Because the IT2 FSs are used for the
antecedents and the interval type-1 fuzzy sets are used for
the consequent sets of the type-2 TSK rules, it is possible
to state that the 𝐶

𝑗𝑖

terms are interval sets. In other words,
𝐶
𝑗𝑖

= [𝑐
𝑗𝑖

− 𝑠
𝑗𝑖

, 𝑐
𝑗𝑖

+ 𝑠
𝑗𝑖

], where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑀.
In this expression, 𝑐

𝑗𝑖

denotes the center of𝐶
𝑗𝑖

and 𝑠
𝑗𝑖

denotes

the spread of 𝐶
𝑗𝑖

, where 𝑠
𝑗𝑖

≥ 0. Therefore, the consequent of
rule 𝑗 is

TSK
𝑗

= [TSK𝑙
𝑗

,TSK𝑟
𝑗

]

= [(𝑐
𝑗0

+

𝑛

∑

𝑖=1

𝑐
𝑗𝑖

𝑥
𝑖

) − (𝑠
𝑗0

+

𝑛

∑

𝑖=1

𝑠
𝑗𝑖

𝑥𝑖
) ,

(𝑐
𝑗0

+

𝑛

∑

𝑖=1

𝑐
𝑗𝑖

𝑥
𝑖

) + (𝑠
𝑗0

+

𝑛

∑

𝑖=1

𝑠
𝑗𝑖

𝑥𝑖
)] .

(18)

Accordingly, the output of layer 5 is

𝑂
(5)

= [𝑂
(5)

𝑙

, 𝑂
(5)

𝑟

] = [

[

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

TSK𝑙
𝑗

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

,

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

TSK𝑟
𝑗

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

]

]

.

(19)

Layer 6: Output Layer. Layer 6 is used to implement the
defuzzification operation. The output is

𝑂
(6)

=
𝑂
(5)

𝑙

+ 𝑂
(5)

𝑟

2
. (20)

Based on the above interval type-2 fuzzy inference sys-
tem, a connection structure based on the 𝑗th fuzzy rule can be
illustrated as in Figure 3, where ∑ denotes a normalization-
like operation used in Layers 4 and 5 (see (17) and (19)), and
TSK
𝑗

is introduced in (18).

3. Species-Based Hybrid Algorithm SEMBP for
Training AIT2FNS

This section introduces the proposed species-based hybrid
algorithm, SEMBP, for training of the AIT2FNS on non-
linear control applications. The SEMBP algorithm combines
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Figure 4: Description of the proposed SEMBP algorithm.

the advantages of the EM and BP algorithms with uniform
initialization, the species technique, and the BP local search
by species seed. This combination results in high-speed
convergence, lower computational complexity, and global
optimization. Figure 4 shows the flow chart of the SEMBP
algorithm. There are four phases in the SEMBP algorithm:
“initialization,” “evaluation,” “species,” and “IEM operation.”
Additionally, the modifications of the EM algorithm are the
use of the uniform initializationmethod, the operation of the
charge movement of each species, the local search using the
best particle of each species, and the removal of the redundant
particles.

The SEMBP for optimization problem is in the form of

Minimize 𝑓 (𝑥)

subject to 𝑥 ∈ 𝑆, 𝑆 = {𝑥 ∈ R
𝑛

| 𝑙
𝑘

≤ 𝑥
𝑘

≤ 𝑢
𝑘

, 𝑙
𝑘

, 𝑢
𝑘

∈ R,

𝑘 = 1, . . . , 𝑛} ,

(21)

where 𝑢
𝑘

and 𝑙
𝑘

are the corresponding upper and lower
bounds and 𝑓(𝑥) is the function that is being minimized.

z-1z-1z-1z-1z-1z-1z-1z-1

AIT2FNS

z-1z-1z-1z-1z-1z-1z-1

Learning
algorithm

controller
Nonlinear
system

z−1

yr
yu

e
+

−

∑

Figure 5:The SEMBP-based AIT2FNS control scheme for a nonlin-
ear system.

Each particle 𝑥 represents a solution where the charge
depends on the fitness function 𝑓(𝑥).

When considering the nonlinear control problem, our
goal is to generate a proper control signal 𝑢(𝑘) such that the
systemoutput𝑦(𝑘) follows the desired trajectory𝑦

𝑟

(𝑘), where
𝑘 is the discrete time index. The AIT2FNS with the SEMBP
algorithm plays the role of controller for a nonlinear plant,
and the SEMBP-based AIT2FNS control scheme is shown in
Figure 5. The tracking error is 𝑒(𝑘) = 𝑦

𝑟

(𝑘) − 𝑦(𝑘). Next, we
define the objective function as

𝐸 (⋅) =
1

2
∑

𝑘

𝑒(𝑘)
2

. (22)

Our goal is to generate the control signal such that the
tracking error approaches zero, that is, to minimize the
objective function 𝐸(⋅). Thus, the fitness function can be
chosen as the mean-square-error of the tracking error; that
is, MSE: ∑𝑇

𝑘=1

𝑒
2

(𝑘)/𝑇, where 𝑇 is the data number.

3.1. Initialization Phase. By using the SEMBP algorithm for
training the AIT2FNS, each particle denotes a weighting
vector with dimension 𝐷 (Figure 6). Typically, the initial
particles are chosen randomly from the feasible solution
region. When using random initialization, the particles may
be crowded in a region or the particle diversity may be lost.
Therefore, a statistical analysis with repetitive training should
be performed. To overcome this requirement, we adopted the
uniform initialization method [3, 42, 43].The initial particles
are “uniformly distributed”; that is, all initial particles can
be evenly distributed within the high-dimensional region.
Furthermore, limited data can be used to achieve credible
results, and the required simulation time is greatly reduced.
Here, we used the good lattice point method, which is one
of the uniform methods for constructing the uniform arrays
that are used in the initialization phase. Using the uniform
method, a statistical analysis is not necessary, and only one
trial should be performed. This reduction in trials reduces
the computational effort required for performance analysis.
In addition, the uniform method has a lower probability of
producing outliers thatmay deeply affect the results.Here, the
good lattice point method of uniform initialization provides
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Figure 6: Particle representation of the AIT2FNS.
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Figure 7: Illustrated example of removing redundant particles by similarity measurement in one dimension problem.

a series of uniform arrays, 𝑈
𝑁

(𝑞
𝑚

), for different values of
𝑚 and 𝑞 [42, 44]. Based on 𝑈

𝑁

(𝑞
𝑚

), 𝑁 particles can be
generated such that

𝑥𝑖

= [𝑥𝑙1 +
2𝑢𝑖1 − 1

2𝑞
(𝑥𝑢1 − 𝑥𝑙1) ⋅ ⋅ ⋅ 𝑥𝑙𝑚 +

2𝑢𝑖𝑚 − 1

2𝑞
(𝑥𝑢𝑚 − 𝑥𝑙𝑚)] ,

(23)

where𝑥
𝑖

represents the particles,𝑢
𝑖𝑘

is the element of𝑈
𝑁

(𝑞
𝑚

),
𝑖 = 1, . . . , 𝑁, and 𝑘 = 1, . . . , 𝑚. One can choose 𝑢

𝑘

∈ 𝑈 such
that the lattice points are uniformly scattered in the feasible
solution region [42, 44].

As suggested by the literature [9], the population size
(denoted as PS) can be chosen as the half of problem
dimension; that is, PS = 𝐷/2. However, because of the
restrictions imposed by a uniform array, the population size is
chosen to be approximately𝐷+1. By using a primenumber,𝑃,
the lattice points are uniformly scattered in feasible solution
region [42]. If the selected prime number, 𝑃, is smaller than
the dimension,𝐷, of the problem,we use the peak value of the
upperMF.After training, this parameterwas not changed and
was used to supply the difference of parameters, (𝐷 − 𝑃 + 1),
in the initial array.

3.2. Evaluation Phase. This phase is used to calculate fitness
values for the entire set of particles and to take the MSE
ranking for each species. Particles that have improved MSEs
between the particles of generation 𝑔 and 𝑔 + 1 are retained,
and this process can be used to attain better performance
from the algorithm. Another task in this phase is to remove

the redundant particles as determined by a similarity mea-
surement. The conditions of the “particles combination”
process are


𝑥
𝑖

− 𝑥
𝑗

2
<
𝑟
𝑠

10
,



MSE (𝑥
𝑖

) −MSE (𝑥
𝑗

)

MSE (𝑥
𝑖

)



< 𝜇th, 𝑖 ̸= 𝑗,

(24)

where ‖ ⋅ ‖
2

is the Euclidean norm, 𝑟
𝑠

is the species radius, and
𝜇th is the threshold. In general, similar (or identical) particles
may converge to the same (or similar) optima; our method
retains the best of these similar particles.The other redundant
particles do not contribute further to the improvement of
convergence. In addition, all particles are retainedwhen these
particles are similar to the species seed (the best particle of
species). Hence, the particles will be led in the best direction
while the efficiency of the SEMBP algorithm is improved.
Figure 7 describes the removal of redundant particles when
particles are identified by similarity measurement. In the
case of particles 𝑆

1

and 𝑄
5

, the particles satisfy the particles
combination conditions, and particle 𝑄

5

should be removed.
The fitness values of particles𝑄

1

and𝑄
2

are almost equal, but
the distance, dis(𝑄

1

, 𝑄
2

), is not smaller than 0.1×𝑟
𝑠

. Although
particles𝑄

3

and𝑄
4

have a similar location, they do not satisfy
the other condition for particle removal.

3.3. Species Determination Phase. The species technique aims
to identify multiple species 𝑖 population followed by iden-
tification of the best particle in each species. The dominant
particle in each species is regarded as the “neighborhood
best” and is deemed the “species seed.” All particles that fall
within a given distance from the species seed are classified
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Figure 8: Illustration of species determination for a one-
dimensional problem.

as being of the same species. This distance depends on the
radius, 𝑟

𝑠

, which is the particle’s distance from the seed.
Therefore, if 𝑟

𝑠

is small, many isolated species are created in
each generation. These isolated particles tend to prematurely
identify a local minimum. If there are not sufficient numbers
of particles in each species, the species will stop evolving.
However, if 𝑟

𝑠

is large, it is possible to cover the entire variable
range with one species, and the species technique would have
no effect.

Next, the particles in the population are sorted by their
fitness values in the MSE ranking step. Then, during species
determination, the best performing particle is denoted as
the species seed. The particles whose distance from the first
species seed is smaller than 𝑟

𝑠

are categorized into the first
species. The remaining particles do not categorize to the first
species seed, and the particle with the minimum MSE is
selected as a new species seed. The remaining particles are
then checked to determine if they belong to the new species.
These steps are repeated until all of the particles have been
categorized. Figure 8 illustrates this phase. In this example,
the algorithm locates three species, and particles 𝑆

1

, 𝑆
2

, and 𝑆
3

are identified as species seeds. It can be noted that there is an
overlap between the first species and the third species. Hence,
the previously identified species (centered at 𝑆

1

) dominates
the overlap that belongs to the third species. In other words,
particle 𝑄 should belong to the species led by 𝑆

1

.

3.4. IEM Operation Phase. There are three steps in the IEM
operation phase: “local search for best particle by BP,” “total
force calculation,” and “movement.” To improve the random
process, the step length (𝜆) in movement is chosen to be one
that is expected to accelerate the convergence speed. After
species determination, each subspecies proceeds to the total
force calculation and movement steps, which are the same as

in IEMBPs [9]. Nevertheless, in contrast to that of the com-
plete population, determining the electromagnetic charge of
each particle in the subpopulations has lower computational
complexity. In other words, the complete population should
require PS×(PS−1)×⋅ ⋅ ⋅×1 charge computations during total
force calculation, but the subpopulations should only require
∑
𝑠

𝑝
𝑠

× (𝑝
𝑠

− 1) × ⋅ ⋅ ⋅ × 1 computations. In these expressions,
𝑠is the number of species and 𝑝

𝑠

is the number of particles
in each of the subpopulation, respectively. The best particle
of the subspecies then proceeds to the local search by BP
step.

3.4.1. Local Search of Species Seed by BP. The BP technique
is adopted to derive a local search procedure in the SEMBP
algorithm for AIT2FNS optimization. For clarification, we
consider the single-output system and define the error cost
function as (22); that is, 𝐸(𝑔) = (1/2)∑

𝑘

𝑒(𝑘)
2, where 𝑔 is

the generation index. Using the BP technique, the updated
parameters law is

W (𝑔 + 1) = W (𝑔) + ΔW (𝑔) = W (𝑔) + 𝜂(−
𝜕𝐸 (𝑔)

𝜕W
) ,

(25)

where 𝜂 is the learning rate. W = [W,W, 𝛾,W
𝜔

,C]𝑇 denote
the adjustable parameters, whereC represents the parameters
of the TSK layer, W

𝜔

represents the consequent weights, W
represents the parameters of the lowerMFs,W represents the
upper MFs parameters, and 𝛾 represents the column vectors;
that is,

C = [𝑐 𝑠]
𝑇

,

W
𝜔

= [𝜔
𝑙

𝜔
𝑟

𝜔
𝑙

𝜔
𝑟

]
𝑇

,

W = [𝑚
𝑙

𝑚
𝑟

𝜎
𝑙

𝜎
𝑟

]
𝑇

,

W = [𝑚
𝑙

𝑚
𝑟

𝜎
𝑙

𝜎
𝑟

]
𝑇

.

(26)

For the nonlinear controller design problem, 𝜕𝐸(𝑔)/𝜕W
cannot be obtained directly [7, 9]. The update law should
be multiplied by the system information term (i.e., the plant
sensitivity, 𝜕𝑦/𝜕𝑢). Based on the results described in the
literature [8, 9, 18], the gradient of𝐸 should be replaced by
the following:

𝜕𝐸

𝜕W
=
𝜕𝐸

𝜕𝑒
⋅
𝜕𝑒

𝜕𝑦
⋅
𝜕𝑦

𝜕𝑢
⋅
𝜕𝑢

𝜕W

= −∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑢

𝜕W

= −∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

𝜕W
,

(27)
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where 𝑒(𝑘) = 𝑦
𝑟

(𝑘) − 𝑦(𝑘) and Δ𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1). Thus,
(25) can be rewritten as

W (𝑔 + 1) = W (𝑔) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕W
. (28)

The remaining steps require finding the corresponding par-
tial derivative with respect to each parameter.

The Derivation of the Update Law for C. The update law for
the AIT2FNS parameter C is

𝑐
𝑗

(𝑘 + 1) = 𝑐
𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝑐
𝑗

,

𝑠
𝑗

(𝑘 + 1) = 𝑠
𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝑠
𝑗

,

(29)

where

𝜕𝑂
(6)

(𝑘)

𝜕𝑐
𝑗0

=
1

2

[

[

𝑂
(4)

𝑗𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

+

𝑂
(4)

𝑗𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝑐
𝑗𝑖

=
1

2
⋅ 𝑥
𝑖

⋅ [

[

𝑂
(4)

𝑗𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

+

𝑂
(4)

𝑗𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝑠
𝑗0

=
1

2

[

[

−

𝑂
(4)

𝑗𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

+

𝑂
(4)

𝑗𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝑠
𝑗𝑖

=
1

2
⋅
𝑥𝑖
 ⋅
[

[

−

𝑂
(4)

𝑗𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

+

𝑂
(4)

𝑗𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

]

]

.

(30)

The Derivation of the Update Law for W
𝜔

. The update law for
the AIT2FNS parameterW

𝜔

is

𝜔
𝑗

(𝑘 + 1) = 𝜔
𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝜔
𝑗

,

𝜔
𝑗

(𝑘 + 1) = 𝜔
𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝜔
𝑗

,

(31)

where

𝜕𝑂
(6)

(𝑘)

𝜕𝜔𝑙
𝑗

=
1

2

[

[

TSK𝑙
𝑗

− 𝑂
(5)

𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

⋅

𝑂
(3)

𝑗

− 𝑂
(4)

𝑗𝑙

𝜔𝑙
𝑗

+ 𝜔
𝑙

𝑗

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝜔𝑟
𝑗

=
1

2

[

[

TSK𝑟
𝑗

− 𝑂
(5)

𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

⋅

𝑂
(3)

𝑗

− 𝑂
(4)

𝑗𝑟

𝜔𝑟
𝑗

+ 𝜔
𝑟

𝑗

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝜔
𝑙

𝑗

=
1

2

[

[

TSK𝑙
𝑗

− 𝑂
(5)

𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

⋅

𝑂
(3)

𝑗

− 𝑂
(4)

𝑗𝑙

𝜔𝑙
𝑗

+ 𝜔
𝑙

𝑗

]

]

,

𝜕𝑂
(6)

(𝑘)

𝜕𝜔
𝑟

𝑗

=
1

2

[

[

TSK𝑟
𝑗

− 𝑂
(5)

𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

⋅

𝑂
(3)

𝑗

− 𝑂
(4)

𝑗𝑟

𝜔𝑟
𝑗

+ 𝜔
𝑟

𝑗

]

]

.

(32)

The Derivation of the Update Law for W. The update law for
the AIT2FNS parameterW is

𝑚
𝑖𝑗

(𝑘 + 1) = 𝑚
𝑖𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝑚
𝑖𝑗

𝜎
𝑖𝑗

(𝑘 + 1) = 𝜎
𝑖𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝜎
𝑖𝑗

,

(33)

where

𝜕𝑂
(6)

(𝑘)

𝜕W
= −

1

4
𝛾[

[

TSK𝑙
𝑗

− 𝑂
(5)

𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

⋅

𝜔
𝑙

𝑗

⋅ 𝑂
(3)

𝑗

𝜔𝑙
𝑗

+ 𝜔
𝑙

𝑗

+
TSK𝑟
𝑗

− 𝑂
(5)

𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

⋅

𝜔
𝑟

𝑗

⋅ 𝑂
(3)

𝑗

𝜔𝑟
𝑗

+ 𝜔
𝑟

𝑗

]

]

×
𝜕((𝑥 − 𝑚) /𝜎)

2

𝜕W
,

𝜕

𝜕𝑚𝑙
𝑖𝑗

(

𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

𝜎𝑙
𝑖𝑗

)

2

= − 2

(𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

)

(𝜎𝑙
𝑖𝑗

)
2

,

𝜕

𝜕𝑚𝑟
𝑖𝑗

(

𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

𝜎𝑟
𝑖𝑗

)

2

= − 2

(𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

)

(𝜎𝑟
𝑖𝑗

)
2

,

𝜕

𝜕𝜎𝑙
𝑖𝑗

(

𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

𝜎𝑙
𝑖𝑗

)

2

= − 2

(𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

)
2

(𝜎𝑙
𝑖𝑗

)
3

,

𝜕

𝜕𝜎𝑟
𝑖𝑗

(

𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

𝜎𝑟
𝑖𝑗

)

2

= − 2

(𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

)
2

(𝜎𝑟
𝑖𝑗

)
3

.

(34)
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The Derivation of the Update Law for W. The update law for
the AIT2FNS parameterW is

𝑚
𝑖𝑗

(𝑘 + 1) = 𝑚
𝑖𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝑚
𝑖𝑗

,

𝜎
𝑖𝑗

(𝑘 + 1) = 𝜎
𝑖𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝜎
𝑖𝑗

,

(35)

where

𝜕𝑂
(6)

(𝑘)

𝜕W
= −

1

4

[

[

TSK𝑙
𝑗

− 𝑂
(5)

𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

⋅
𝜔
𝑙

𝑗

⋅ 𝑂
(3)

𝑗

𝜔𝑙
𝑗

+ 𝜔
𝑙

𝑗

+
TSK𝑟
𝑗

− 𝑂
(5)

𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

⋅
𝜔
𝑟

𝑗

⋅ 𝑂
(3)

𝑗

𝜔𝑟
𝑗

+ 𝜔
𝑟

𝑗

]

]

×
𝜕((𝑥 − 𝑚) /𝜎)

2

𝜕W
,

𝜕

𝜕𝑚
𝑙

𝑖𝑗

(
𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

𝜎
𝑙

𝑖𝑗

)

2

= − 2
(𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

)

(𝜎
𝑙

𝑖𝑗

)
2

,

𝜕

𝜕𝑚
𝑟

𝑖𝑗

(
𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

𝜎
𝑟

𝑖𝑗

)

2

= − 2
(𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

)

(𝜎
𝑟

𝑖𝑗

)
2

,

𝜕

𝜕𝜎
𝑙

𝑖𝑗

(
𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

𝜎
𝑙

𝑖𝑗

)

2

= − 2
(𝑥
𝑖

− 𝑚
𝑙

𝑖𝑗

)
2

(𝜎
𝑙

𝑖𝑗

)
3

,

𝜕

𝜕𝜎
𝑟

𝑖𝑗

(
𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

𝜎
𝑟

𝑖𝑗

)

2

= − 2
(𝑥
𝑖

− 𝑚
𝑟

𝑖𝑗

)
2

(𝜎
𝑟

𝑖𝑗

)
3

.

(36)

The Derivation of the Update Law for 𝛾. The update law for
the AIT2FNS parameter 𝛾 is

𝛾
𝑖𝑗

(𝑘 + 1) = 𝛾
𝑖𝑗

(𝑘) + 𝜂∑

𝑘

(𝑒 + Δ𝑒)
𝜕𝑂
(6)

(𝑘)

𝜕𝛾
𝑖𝑗

, (37)

where

𝜕𝑂
(6)

(𝑘)

𝜕𝛾
𝑖𝑗

=
1

2

[

[

TSK𝑙
𝑗

− 𝑂
(5)

𝑙

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑙

⋅

𝜔
𝑙

𝑗

𝜔𝑙
𝑗

+ 𝜔
𝑙

𝑗

+
TSK𝑟
𝑗

− 𝑂
(5)

𝑟

∑
𝑀

𝑗=1

𝑂
(4)

𝑗𝑟

⋅

𝜔
𝑟

𝑗

𝜔𝑟
𝑗

+ 𝜔
𝑟

𝑗

]

]

𝑂
(3)

𝑗

𝛾
𝑖𝑗

.

(38)

4. Simulation Results

This section presents two examples of nonlinear system
control to demonstrate the performance of theAIT2FNSwith

the SEMBP algorithm. The first example is nonlinear plant
tracking control. In the second example, we focus on a more
practical control problem. Hence, the control of temperature
in a water bath system is presented. All simulations were
performed using Matlab running on an Intel Pentium 4
computer with a clock rate of 3GHz and 1.25GB of main
memory. The SEMBP algorithm is adopted to adjust the
parameters of an AIT2FNS controller such that the tracking
error approaches zero. The block diagram of the SEMBP-
based AIT2FNS control scheme for the nonlinear system is
shown in Figure 5. We adopt MSE as the performance index,
which is defined as

MSE ≡ 𝐸 (𝑔) = 1

𝑇

𝑇

∑

𝑘=1

𝑒
2

(𝑘) , (39)

where 𝑇 is the data number.

Example 1 (nonlinear plant tracking control). Consider the
tracking control of the following nonlinear system [42]:

𝑦 (𝑘 + 1) =
𝑦 (𝑘)

1 + 𝑦2 (𝑘)
+ 𝑢
3

(𝑘) , (40)

where 𝑦(𝑘) is the nonlinear system output and 𝑢(𝑘) is
the control input of the plant. In designing the AIT2FNS
controller, the reference trajectory 𝑦

𝑟

(𝑘) is

𝑦
𝑟

(𝑘) = sin(𝜋𝑘
50
) cos(𝜋𝑘

30
) . (41)

The inputs and output of AIT2FNS are 𝑦
𝑟

(𝑘), 𝑦(𝑘 − 1), and
𝑢(𝑘), respectively. The total number of time steps, 𝑁, is 250.
The dimension, 𝐷, is 120, and the population size, PS, is 113.
The initial parameters for AIT2FNS are generated uniformly
between [−1.5, 1.5]. The threshold, 𝜇th, is selected to be 0.5,
and the learning rate of BP is 0.01. The parameters of the
SEMBP algorithm and the AIT2FNS are chosen in a manner
described as follows:

(i) total number of rules (𝑅): 4;
(ii) network structure (layer 1∼layer 6): (2-8-4-8-2-1);
(iii) parameters number of AIT2FNS (𝐷): 120;
(iv) population size (PS): 113;
(v) maximum generation (𝐺): 20.

The simulation results are shown in Figure 9. Figure 9(a)
shows the system trajectories after training. A comparison of
MSEs between the SEMBP and other algorithms is shown
in Figure 9(b). Obviously, the SEMBP algorithm exhibited
a similar performance (in terms of MSEs) to the SEM and
EM algorithms. However, the SEMBP algorithm spent less
computational time and exhibited a better performance than
the other algorithms. Table 2 summarizes the corresponding
comparisons of simulation results and computational time
when using Matlab. After training (20 generations), the MSE
of the AIT2FNS was 0.0017631, which was less than the best
results of other algorithms (Figure 9(b)). Thus, the AIT2FNS
with the SEMBP algorithm spends less time than the other
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Figure 9: Simulation results for Example 1: (a) output trajectory (solid line: actual output; dotted line: desired output) and (b) the best MSE
in 20 generations.

Table 2: Comparison of average performance in terms ofMSEs and computational complexity for Example 2 when using different algorithms
(𝐺 = 20;𝐷 = 120; 𝑃

𝑠

= 113).

Algorithm SEMBP SEM EM PSO GA
Average time 528.4 14933.7 949.5 338.3 333.2
Average MSE 0.0017631 0.0031130 0.0086983 0.0139041 0.0108090
Best MSE — 0.0022200 0.0029797 0.0089709 0.0066581
Worst MSE — 0.0037332 0.0244482 0.0313254 0.0140582

algorithms do to achieve higher accuracy and the optimal
AIT2NFS. The final IT2 AFMFs are shown in Figures 10(a)
and 10(b). The constructed fuzzy rules are given as follows.

Rule 1.

IF 𝑥
1

is 𝐹
11

and 𝑥
2

is 𝐹
21

THEN

𝑌
1

= [−0.3638, 0.0744] + [−0.9677, −0.3175] 𝑥
1

+ [−0.8312, 0.0316] 𝑥
2

,

(42)

where 𝜔 = [−1.0174, −1.0077] and 𝜔 = [−1.0100, −1.0100].

Rule 2.

IF 𝑥
1

is 𝐹
12

and 𝑥
2

is 𝐹
22

THEN

𝑌
2

= [−0.2134, 0.8584] + [−0.9346, 0.3284] 𝑥
1

+ [0.0845, 1.5459] 𝑥
2

,

(43)

where 𝜔 = [−0.8089, −0.8089] and 𝜔 = [−0.8089, −0.8089].

Rule 3.

IF 𝑥
1

is 𝐹
13

and 𝑥
2

is 𝐹
23

THEN

𝑌
3

= [0.2733, 1.9825] + [−0.5960, 1.3016] 𝑥
1

+ [0.4477, 2.5505] 𝑥
2

,

(44)

where 𝜔 = [−0.6747, −0.6746] and 𝜔 = [−0.6747, −0.6747].

Rule 4.

IF 𝑥
1

is 𝐹
14

and 𝑥
2

is 𝐹
24

THEN

𝑌
4

= [−2.6773, −0.3213] + [−0.2803, 2.3337] 𝑥
1

+ [−2.0843, 0.7631] 𝑥
2

,

(45)

where 𝜔 = [−0.4633, −0.3492] and 𝜔 = [−0.4438, −0.4435].

4.1. Discussion of Algorithms. Table 2 shows the comparison
of MSEs for 20 training generations, and the learning process
is repeated for 20 independent runs. Severalmultiagent based
algorithms, SEM, EM, PSO, and GA, are tested. The SEMBP
algorithm has a smaller MSE (0.0017631) than the other algo-
rithms do(SEM: 0.0022200, EM: 0.0029797, PSO: 0.0089709,
andGA: 0.0066581). Additionally, the SEMBP algorithmonly
requires 528.4 seconds, which indicates a reduction in the
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Figure 10: IT2 AFMFs after training for Example 1: (a) MFs for 𝑥
1

; (b) MFs for 𝑥
2

.
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Figure 11: MSE versus number of evaluations for algorithms tested
in Example 1.

computational complexity. GA and PSO require less compu-
tational time, but they obtain worse results. Figure 11 shows a
comparison of various algorithms in terms ofMSE versus the
number of evaluations.The SEMBP algorithm exhibits better
performance in terms ofMSE and convergence than the other
algorithms.

4.2. Discussion of Network Structure. The comparison results
from Example 1 using different fuzzy neural networks with
SEMBP are shown in Figure 12 and Table 3. Figure 12(a)
shows the comparison of different fuzzy neural networks
using the same number of rules (𝑅 = 4). Figure 12(b) shows
the comparison of different fuzzy neural networks using a

similar parameter number. Figure 12 and Table 3 show that
the AIT2FNS has a better MSE and a higher convergence
speed. Due to the TSK-type consequent part and the AFMFs,
the AIT2FNS exhibits better approximation performance
than the others networks.

4.3. Discussion of Type-Reduction Method. See Table 3; the
AIT2FNS and the IT2TFNN-A have similar structure except
the type-reduction part. The AIT2FNS adopts the left-most
and right-most layers while the IT2TFNN-A adopts the
traditional KM algorithm for type-reduction. The result
using same rule of AIT2FNS and IT2TFNN-A are 0.0017631
and 0.0085178. The computational costs of them are 528.4
and 678.1 second. As above description, we easily find that
the AIT2FNS performs better than IT2TFNN-A with fewer
computational effort. We further increased the number of
rules to make the parameter number of IT2TFNN-A close to
120. The result improved but is still worse than the result of
AIT2FNS.

4.4. Discussion of Maximum Generation (G). The compari-
son of MSEs for AIT2FNS while using different algorithms
for 100 generations is shown in Figure 13. Most curves tend
to smooth at a maximum generation (𝐺 = 20). Therefore,
twenty is suggested as a proper maximum generation for
AIT2FNSs.

4.5. Discussion of Species Radius (𝑟
𝑠

). Table 4 shows the
comparison results from Example 1 using various species
radii. We used 𝑑max/3 (8.439) as the species radius, 𝑟𝑠, which
achieves the sameMSEwith lower computational complexity.
In other words, for a species radius smaller than 8.439, the
SEMBP algorithm may achieve a similar MSE result, but it
requires more computational effort. Therefore, we suggest
𝑑max/3 (8.439) to be a proper species radius for an AIT2FNS
optimization using uniform initialization via the SEMBP
algorithm.
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Figure 12: Simulation results using different networks for Example 1: (a) the same number of rules and (b) a similar parameter number.

Table 3: Comparison of parameter number, computational complexity, and MSE of the SEMBP algorithm for Example 1 using different
networks and number of rules (𝐺 = 20; 𝑃

𝑠

= 113).

Network Network structure Number of rules Parameter number Time MSE
AIT2FNS 2-8-4-8-2-1 4 120 528.4 0.0017631

IT2TFNN-A 2-8-4-1 4 104 678.1 0.0085178
2-10-5-1 5 130 1044.6 0.0077511

IT2FNN-A 2-8-4-1 4 88 630.3 0.0063496

IT2FNN 2-8-4-1 4 56 580.6 0.0085290
2-14-7-1 7 98 851.5 0.0062085

FNN

2-8-4-1 4 20 178.1 0.0107710
2-20-10-1 10 50 408.2 0.0039030
2-32-16-1 16 80 633.2 0.0036811
2-44-22-1 22 110 768.8 0.0019379

TSK-FNN
2-8-4-1 4 28 185.3 0.0107014
2-20-10-1 10 70 408.2 0.0036001
2-32-16-1 16 112 684.6 0.0034152

4.6. Discussion of Threshold for Particle Recombination (𝜇th).
Table 5 illustrates the discussion of threshold in Example 1.
Themethod of decreasing the threshold can effectively reduce
the computational complexity in the SEMBP algorithm.
Finally, we set the threshold value to 0.5.

Example 2 (control of a water bath temperature system).
Herein, we present a more practical control problem. The
control of the water bath temperature system is given by
[5, 15, 45]

d𝑦 (𝑡)
d𝑡

=
𝑢 (𝑡)

𝐶
+
𝑌
0

− 𝑦 (𝑡)

𝑅𝐶
, (46)

where 𝑦(𝑡) is the system output temperature in ∘C, 𝑢(𝑡) is
heating flowing inward the system, 𝑌

0

is the room temper-
ature, 𝐶 is the equivalent thermal capacity, and 𝑅 is the
equivalent thermal resistance between the system borders
and surroundings.

Assuming that 𝑅 and𝐶 are constants, we can rewrite (46)
into a discrete-time form with some reasonable approxima-
tion. Hence, the system is described as

𝑦 (𝑘 + 1) = 𝑒
−𝛼𝑇𝑠𝑦 (𝑘) +

(𝛽/𝛼) (1 − 𝑒
−𝛼𝑇𝑠)

1 + 𝑒0.5𝑦(𝑘)−40
𝑢 (𝑘)

+ [1 − 𝑒
−𝛼𝑇𝑠] 𝑌

0

.

(47)
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Table 4: Comparison of MSEs and computational complexity for Example 1 when using different radii (𝐺 = 20;𝐷 = 120; 𝑃
𝑠

= 113).

Species radius 16.879
(𝑑max/1.5 )

12.659
(𝑑max/2 )

10.127
(𝑑max/2.5 )

8.439
(𝑑max/3 )

7.234
(𝑑max/3.5 )

Average time 364.3 374.4 419.0 528.4 1040.5
Average MSE 0.011802 0.008501 0.004335 0.0017631 0.0017631
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Figure 13: Comparison of MSEs for Example 1 in 100 generations.

Table 5: Comparison of MSEs and computational complexity for
Example 1 when using different thresholds (𝐺 = 20;𝐷 = 120).

𝜇th 1.5 1 0.5 0.1 0.01
Time 468.9 487.3 528.4 551.6 611.0
MSE 0.0023779 0.0019786 0.0017631 0.0017631 0.0017631
Redundant
particle 14 12 9 6 0

The system parameters used here are 𝛼 = 1.00151 × 10
−4,

𝛽 = 8.67973 × 10
−3, and 𝑌

0

= 25 (∘C), which were obtained
from a real world water bath manufacturer [45]. The plant
control input 𝑢(𝑘) should be positive and is limited between
0V and 5V. The reference water temperature 𝑦

𝑟

(𝑘) is

𝑦
𝑟

(𝑘) =

{{{{{{{

{{{{{{{

{

34
∘C for 𝑘 ≤ 30,

(34 + 0.5 (𝑘 − 30))
∘C for 30 < 𝑘 ≤ 50,

(44 + 0.8 (𝑘 − 50))
∘C for 50 < 𝑘 ≤ 70,

(60 + 0.5 (𝑘 − 70))
∘C for 70 < 𝑘 ≤ 30,

70
∘C for 90 < 𝑘 ≤ 120.

(48)

It can be noted that the upper and lower bounds of the
reference water temperature are 34 and 70. The actual water
temperature is limited at 10∘C∼90∘C. Thus, the inputs for
AIT2FNS are the previous plant output, (𝑦(𝑘−1)−50)/20, and
the reference water temperature, (𝑦

𝑟

(𝑘 − 1) − 50)/20, which
are scaled to the interval [−2, 2] by experience. The output of
the AIT2FNS algorithm is the plant control input, 𝑢(𝑘). Each
simulation is performed over 120 time steps. The AIT2FNS

controller is used to generate the proper control input such
that the system output follows the reference trajectory.

In this simulation, the dimension size is 90 and the
nearest prime number is 89. Therefore, a population size of
89 is chosen to construct the uniform array using the good
lattice point method between [−2, 2]. The threshold, 𝜇th, is
selected to be 0.5, and the learning rate of BP is set at 0.01.
The parameters of the SEMBP algorithm and the AIT2FNS
are chosen as follows:

(i) total number of rules (𝑅): 3;
(ii) network structure (layer 1∼layer 6): (2-6-3-6-2-1);
(iii) parameters number of AIT2FNS (𝐷): 90;
(iv) population size (PS): 89;
(v) maximum generation (𝐺): 20.

The simulation results are shown in Figure 14.
Figure 14(a) shows the system trajectories after 20 training
generations (solid line: plant output; dotted line: reference
signal; blue dashed line: control signal). A comparison of the
MSE results between the SEMBP and each algorithm’s best
result (SEM, EM, PSO, and GA) is shown in Figure 14(b).
The final IT2 AFMFs for 𝑥

1

and 𝑥
2

are shown in Figures
15(a) and 15(b), respectively. The constructed fuzzy rules are
as follows.

Rule 1.

IF 𝑥
1

is 𝐹
11

and 𝑥
2

is 𝐹
21

THEN

𝑌
1

= [−1.1280, −0.0510] + [−1.5286, 2.2266] 𝑥
1

+ [−1.8038, 0.7194] 𝑥
2

,

(49)

where 𝜔 = [0.9664, 1.0040] and 𝜔 = [1.0040, 1.0040].

Rule 2.

IF 𝑥
1

is 𝐹
12

and 𝑥
2

is 𝐹
22

THEN

𝑌
2

= [0.4594, 1.6820] + [−2.8075, 0.9879] 𝑥
1

+ [0.4894, 3.0392] 𝑥
2

,

(50)

where 𝜔 = [−0.3894, −0.3894] and 𝜔 = [−0.3894, −0.3894].

Rule 3.

IF 𝑥
1

is 𝐹
13

and 𝑥
2

is 𝐹
23
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Table 6: Comparison results of algorithms, in terms of MSE and computational complexity, for Example 2 (𝐺 = 20;𝐷 = 90; 𝑃
𝑠

= 89).

Algorithm SEMBP SEM EM PSO GA
Average time 276.1 4981.5 465.2 232.4 236.0
Average MSE 1.9181 1.9279 2.2301 2.1697 2.2299
Best MSE — 1.9188 1.9689 1.9191 1.9443
Worst MSE — 1.9584 2.8230 2.5505 2.5018
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Figure 14: Simulation results of Example 2: (a) output trajectories
(solid line: plant output; dotted line: reference signal; blue dashed
line: control signal) and (b) comparison results in MSE after 20
generations.

THEN

𝑌
3

= [−1.8313, −0.5693] + [−0.2372, 3.6584] 𝑥
1

+ [−0.7165, 1.9071] 𝑥
2

,

(51)

where 𝜔 = [−1.5306, −1.5279] and 𝜔 = [−1.5285, −1.5283].

4.7.Discussion ofAlgorithms. Thecurves in Figure 14(b) seem
to settle at the similar value since they are depicted by
their best results. However, as shown in Figure 14(b), we can
observe that the SEMBP algorithm has the fastest conver-
gence speed than other algorithms. Table 6 summarizes the
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Figure 15:Membership functions for Example 2: (a)MFs for𝑥
1

after
training and (b) MFs for 𝑥

2

after training.

comparison of MSE results and computational effort for 20
training generations repeated for 20 independent runs (algo-
rithms: SEM, EM, PSO, and GA). The MSE of the SEMBP
algorithm (MSE: 1.9181) is smaller than the other average
MSEs of other algorithms (SEM: 1.9279, EM: 2.2301, PSO:
2.1697, and GA: 2.2299). The SEM algorithm also exhibits
better simulation results than the EM algorithm does. This
result indicates that the species technique can enhance the
approximation accuracy. For comparison of computational
complexity, the SEMBP algorithm requires 276.1 seconds,
which indicates a reduction in the computational effort.
Additionally, the SEMBP algorithm produced better MSEs
than the GA and PSO algorithms did, which had similar
(or smaller) computational times. From the best MSE, the
SEM and PSO algorithms exhibit similar performance to
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Figure 16: Comparison of MSE versus number of evaluations for
algorithms examined in Example 2.

that of the SEMBP algorithm. However, they require more
independent trials, where only one trial is needed for the
SEMBP. Additionally, Figure 16 shows the comparison results
in MSEs versus the number of evaluations for the best
result of each algorithm.The SEMBP algorithm also achieves
better MSEs for the same number of evaluations. As above
description, we can conclude that the SEMBP demonstrates
the better performance than other algorithms.

4.8. Discussion of Network Structures. The comparative
results of the network structure for Example 2 are shown
in Figure 17. Figure 17(a) shows the comparison of different
fuzzy neural networks using the same number of rules (𝑅 =

3). Figure 17(b) shows the comparison of different fuzzy
neural networks using a similar parameter number. Figure 17
demonstrates that the AIT2FNS algorithm has a better initial
MSE and a higher convergence speed. As seen in Table 7,
the AIT2FNS performs better than the other algorithms do
while using the same number of rules (𝑅 = 3). Obviously, the
AIT2FNS using TSK fuzzy rules and the AFMFs demonstrate
better performance than the other networks do.

4.9. Discussion of Type-Reduction Method. See Table 7; the
results using same rule of AIT2FNS and IT2TFNN-A are
01.9181 and 2.0504.The computational costs of them are 276.1
and 367.7 second. Obviously, the AIT2FNS performs better
than IT2TFNN-A with fewer computational effort. We also
increased the number of rule to make the parameter number
of IT2TFNN-A similar to AIT2FNS case.The result inMSE is
1.9371 which is very close to the result of AIT2FNS. However,
the computational cost is much huger.

4.10. Discussion of Maximum Generation (G). The compar-
ison of AIT2FNS, in terms of MSE, with regard to the use
of different algorithms (where 𝐷 = 90, 𝑃

𝑠

= 89) for
100 generations is shown in Figure 18. These six algorithms
achieve similar MSEs when the number of generations is
sufficiently large (𝐺 > 40). Also, the curves tend to smooth
at approximately generation (𝐺 = 20). Therefore, we suggest
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Figure 17: Simulation results comparing the different networks
for Example 2: (a) the same number of rules and (b) the similar
parameter number.

that 20 is a proper maximum generation for AIT2FNS
optimization. This parameter can be modified to be the MSE
specification, the maximum number of evaluations, or other
stop criterion.

4.11. Discussion of Species Radius (𝑟
𝑠

). Table 8 shows the
comparison of results from Example 2 when using different
species radii. The good lattice point method is used to
construct the uniform initialization; therefore, the population
size in Example 2 is chosen as PS = 89, where 𝐷 = 90
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Table 7: Comparison of parameter number, computational complexity, and MSEs with the SEMBP algorithm for Example 2 while using
different networks and number of rules (𝐺 = 20).

Network Network structure Number of rules Parameter number Time MSE
AIT2FNS 2-6-3-6-2-1 3 90 276.1 1.9181

IT2TFNN-A 2-6-3-1 3 78 367.7 2.0504
2-8-4-1 4 104 587.8 1.9371

IT2FNN-A 2-6-3-1 3 66 302.9 1.9844

IT2FNN 2-6-3-1 3 42 231.8 3.6466
2-12-6-1 6 84 418.5 1.9694

FNN

2-6-3-1 3 15 94.4 11.4574
2-12-6-1 6 30 146.4 4.9611
2-24-12-1 12 60 272.2 2.0214
2-34-17-1 17 85 344.3 1.9210

TSK-FNN
2-6-3-1 3 21 141.8 8.5124
2-12-6-1 6 42 187.8 3.8451
2-24-12-1 12 84 308.56 1.9332

Table 8: Comparison of MSEs and computational complexity for Example 2 while using different radii (𝐺 = 20;𝐷 = 90; 𝑃
𝑠

= 89).

Species radius 19.4765
(𝑑max/2 )

14.6074
(𝑑max/2.5 )

11.6859
(𝑑max/3 )

9.7382
(𝑑max/3.5 )

8.3471
(𝑑max/4 )

Average time 230.0 240.2 276.1 473.6 558.9
Average MSE 1.9211 1.9211 1.9181 1.9181 1.9181

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Generation

M
SE

SEMBP
SEM
EM

PSO
GA

Figure 18: Comparison of MSEs for 100 generations.

is the dimension of the problem. We use 𝑑max/3 (11.6859)
as the species radius 𝑟

𝑠

, which achieves a similar MSE and
requires less computational complexity. In other words, if the
species radius is smaller than 11.6859, the SEMBP algorithm
achieves a similar result in terms ofMSE, but it requires more
computational effort. Therefore, we propose 𝑑max/3 (11.6859)
to be a proper species radius for AIT2FNS optimization via
the SEMBP algorithm.

4.12. Discussion of Threshold for Particle Recombination (𝜇th).
Table 9 shows the comparative results from Example 2 while

Table 9: Comparison of MSEs and computational complexity for
Example 2 when using different thresholds (𝐺 = 20;𝐷 = 90).

𝜇th 0.8 0.5 0.1 0.01 0.001
Time 268.9 276.1 283.2 293.6 305.8
MSE 2.012 1.9181 1.9181 1.9181 1.9186
Redundant
particles 9 7 4 1 0

using different thresholds𝜇th.The smaller thresholdmayhave
more redundant particles, which cause redundant computa-
tion. Alternately, a larger threshold, which requires less time,
removesmore redundant particles. Nevertheless, higherMSE
values are obtained because too many particles are removed.
As shown in the above discussion, a smaller threshold not
only attains better results but also reduces computational
complexity. We conclude that the method for decreasing the
threshold can effectively reduce computational complexity in
the SEMBP algorithm. Finally, we set the threshold, 𝜇th, to be
0.5.

5. Conclusion

In this paper, we propose a novel interval type-2 fuzzy
neural system with the hybrid-learning algorithm SEMBP
for nonlinear controller design. The proposed AIT2FNS
method uses a type-2 AFMFS and a TSK-type consequent
part to enhance the performance of the IT2FNN. In addition,
the type reduction was integrated into the adaptive net-
work layers, and this integration reduced the computational
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complexity. The update laws of the AIT2FNS for nonlinear
system control are given by SEMBP. The SEMBP algorithm
combines EMandBPwith the species technique and uniform
initialization to obtain faster convergence, reduced com-
putational complexity, and global optimization. Simulation
results including nonlinear system tracking control andwater
bath temperature control were presented to demonstrate the
effectiveness and the performance of the proposed SEMBP
and AIT2FNS methods.
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