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Cloud computing has come to be a significant commercial infrastructure offering utility-oriented IT services to users worldwide.
However, data centers hosting cloud applications consume huge amounts of energy, leading to high operational cost and greenhouse
gas emission. Therefore, green cloud computing solutions are needed not only to achieve high level service performance but also
to minimize energy consumption. This paper studies the dynamic placement of virtual machines (VMs) with deterministic and
stochastic demands. In order to ensure a quick response toVMrequests and improve the energy efficiency, a two-phase optimization
strategy has been proposed, inwhichVMs are deployed in runtime and consolidated into servers periodically. Based on an improved
multidimensional space partition model, a modified energy efficient algorithm with balanced resource utilization (MEAGLE) and
a live migration algorithm based on the basic set (LMABBS) are, respectively, developed for each phase. Experimental results have
shown that under different VMs’ stochastic demand variations, MEAGLE guarantees the availability of stochastic resources with a
defined probability and reduces the number of required servers by 2.49% to 20.40% comparedwith the benchmark algorithms. Also,
the difference between the LMABBS solution and Gurobi solution is fairly small, but LMABBS significantly excels in computational
efficiency.

1. Introduction

Cloud computing is a new paradigm for the dynamic provi-
sioning of computing services supported by state-of-the-art
data centers. With the rapid development of cloud comput-
ing, the data centers are growing at an unprecedented rate.
However, an average data center consumes as much energy
as 25,000 households [1] and it was estimated that the energy
consumption from data centers would have accounted for
about two percent of the worldwide energy consumption
by 2020 [2]. High power consumption not only produces
huge operational cost for data centers, but also significantly
contributes to the growing environmental issues of global
warming. Therefore, green cloud computing is driven to
achieve high level service performance and to minimize
energy consumption.

Virtual machines are attractive to modern cloud data
centers because they can significantly promote the efficiency

and flexibility of resource management helping to cut back
the power consumptions [3–5]. However, such an incentive
highly relies on a well-designed VM placement scheme [6,
7]. When multiple VMs run on the same physical host or
rack, they share all the physical resources. According to
how resource-intensive applications are, usersmay customize
different types of VMs such as CPU-intensive, memory-
intensive, and bandwidth-intensive VMs. If all VMs in a
cloud data center have the same intensive resource, VMP is
then reduced to the classical one-dimensional VMplacement
problem. But a cloud data center often has VMswith different
resource intensities [8], and, thus, an efficient multidimen-
sional algorithm is required for the VMs placement.

In cloud data centers the VM placement problem (VMP)
has been tackled in both research work [7, 9–17] and com-
mercial products [18, 19]. In most of the research work, VMP
is formulated as a multidimensional bin packing problem,
aiming to minimize the number of required servers and
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Figure 1: The deployment and removal of VMs.

with constraints from various management fields [4], such
as the resource demands of VMs, security/isolation policies
(e.g., ensuring that certain VMs will not run on the same
server), and compatibility/location policies (e.g., restrict the
placement of certain VMs to certain servers). Variants of the
classic packing algorithms such as First Fit (FF) and First
Fit Decreasing (FFD) [20] are often used to solve VMP. In
particular, Li et al. [17] proposed an energy efficient algorithm
with balanced resource utilization. However, in these studies,
the VMs’ demands are assumed to be deterministic for
all resources and these algorithms are called deterministic
resource algorithms.

Recent studies [11, 21–23] indicate that VMs’ demands
for some resources like network bandwidth are stochastic
and highly volatile. Regarding the placement of VMs with
stochastic demands, the deterministic resource algorithm can
be adopted by using the mean or maximum of the demand
as its estimated value. But this naive approach may lead to
either poor user experience or resourcewaste.Wang et al. [24]
and Breitgand and Epstein [25] assumed the VMs’ bandwidth
demand to be normally distributed. They described VMP
as a stochastic bin packing problem and used improved bin
packing heuristics to solve it. Nevertheless, only the network
resources with stochastic demands were considered in their
study while system resources with deterministic demands
were not included.

In reality, the VMs’ demands for all resources have dif-
ferent characteristics. For some resources, such as CPU and
memory, VMs’ demands are constant or have a very small
fluctuation and, thus, can be considered as deterministic. For
other resources, such as network bandwidth, VMs’ demands
are time varying and have high volatility, and, thus, can be
considered as stochastic. Yet, little work has focused on the
placement of VMs with both deterministic and stochastic
demands. Jin et al. [26] considered both kinds of demands
and proposed a polynomial time algorithm to solve the
multidimensional stochasticVMplacement problem. In their
work, the VM deployment requests were given beforehand
and the VMs were placed in a static manner. Practically, VM
requests dynamically arrive at the cloud data center.

Taking into account VMs’ deterministic and stochastic
demands, this paper studies the VMP problem in a practical
dynamic cloud environment. The paper is organized as
follows. Section 2 formulates the instant-deployment prob-
lem for VMs and the periodic-consolidation problem for

servers. Section 3 presents an improved multidimensional
space partition model. Section 4 describes the execution
procedures of the proposed two-phase optimization strategy,
and two developed algorithms, respectively, for VM deploy-
ment and server consolidation based on the model in the
previous section. In Section 5, the algorithms are validated by
simulation experiments. Section 6 concludes the paper with
a summary of results and future work directions.

2. Problem Formulation

Assume that servers are homogeneous in a cloud data center
and there are sufficient server resources to meet all the VM
requests. For VMs’ demands, the server resources fall into
two types: deterministic resources and stochastic resources.
Denote 𝐷 the set of deterministic resources and 𝑄 the set
of stochastic resources. Servers should supply fixed-value
deterministic resources required by VMs and provide an
availability guarantee of stochastic resources with probability
at least 1 − 𝛼, where 𝛼 is called target overflow probability
specified in the service level agreements (SLAs).

Let the time-slots be of equal length Δ𝑡. The deployment
and removal of VMs only occur at each time instant [27]. As
shown in Figure 1, VMs, on arrival, will be placed at the next
time instant. In order to ensure high responsiveness,Δ𝑡 needs
to be properly chosen.

For a cloud provider, quick response to the incoming VM
requests is crucial for a high service quality. Thus, an instant-
deployment strategy is adopted for VMs. However, VMs are
being continuously removed over time, as shown in Figure 1.
Over a long time period, the infrastructuremay be brought to
a poor state (e.g., there are only a few VMs in some servers).
Therefore, it is necessary to implement server consolidation
periodically.

2.1. The Instant-Deployment for VMs. A newly arriving VM
is denoted by V𝑘. The strategy is to select a suitable physical
machine (PM) to deploy V𝑘 in runtime. VM migration is
not involved. Considering VMs’ deterministic and stochastic
demands, a placement scheme is regarded as feasible only if
it satisfies the following conditions: (1) for each deterministic
resource of a server, the server’s capacity should not be
exceeded by the total demand of all the VMs on the server;
(2) for each stochastic resource of a server, the probability that
the server’s capacity is exceeded is no larger than 𝛼.
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Denote VM V𝑖’s demand for a deterministic resource 𝑟 as
𝑑
𝑟

𝑖
and server ℎ’s corresponding capacity as C𝑟

ℎ
.

Condition (1) can be represented as

𝑑
𝑟

𝑘
+ ∑

𝑖∈𝑈ℎ

𝑑
𝑟

𝑖
≤ C𝑟
ℎ
, ∀𝑟 ∈ 𝐷. (1)

Condition (2) can be represented as

Pr{𝑑𝑟
𝑘
+ ∑

𝑖∈𝑈ℎ

𝑑
𝑟

𝑖
≤ C𝑟
ℎ
} ≥ 1 − 𝛼, ∀𝑟 ∈ 𝑄 (2)

𝑈ℎ is the set of VMs running on server ℎ.
The VM instant-deployment problem is to find a VM

placement scheme for a newly arriving VM V𝑘, which satisfies
the above two conditions and minimizes the number of
required servers.

2.2.The Periodic-Consolidation for Servers. Server consolida-
tion refers to gathering VMs into as few servers as possible
and then turning off the idle servers or putting them in a low
energy mode. To formulate the strategy, a stochastic chance-
constrained programming model is presented.

Firstly, the notations used are listed in the following.
(i) Parameters:

𝑡: the time instant to trigger server consolida-
tion.
𝑉(𝑡): the set of VMs which have been deployed
and will not be removed at time instant 𝑡.
𝑃(𝑡): the set of PMs which are running at time
instant 𝑡, 𝑃(𝑡) = {1, 2, . . . , ℎ, . . . , 𝑛𝑝(𝑡)}.
𝑝𝑖(𝑡): the PM onwhich VM V𝑖 is running at time
instant 𝑡, 𝑖 ∈ 𝑉(𝑡), 𝑝𝑖(𝑡) ∈ 𝑃(𝑡).
𝑁: the total number of PMs in a cloud data
center.

(ii) Decision variables:
the three variables below define the status of PMs and
VMs after the server consolidation.

𝑦𝑖ℎ(𝑡) ∈ {0, 1}: is equal to 1 if VM 𝑖 is mapped to
PM ℎ, 0 otherwise.
𝑜ℎ(𝑡) ∈ {0, 1}: is equal to 1 if PM ℎ is used, 0
otherwise.
𝑚𝑖(𝑡) ∈ {0, 1}: is equal to 1 if VM 𝑖 is migrated to
another PM (namely,∑

ℎ∈𝑃(𝑡)
ℎ ⋅ 𝑦𝑖ℎ(𝑡) ̸= 𝑝𝑖(𝑡)), 0

otherwise.

The most effective way to reduce power consumption is
to decrease the total number of required servers. Given the
overhead of live migration, the objective is to minimize the
number of migrations, in addition to the number of required
servers.

Thus, the server consolidation problem for the VM set
𝑉(𝑡) can be formulated as

(Model 0)min𝑓1 = ∑
ℎ∈𝑃(𝑡)

𝑜ℎ (𝑡) (3)

min𝑓2 = ∑
𝑖∈𝑉(𝑡)

𝑚𝑖 (𝑡) (4)

subject to

𝑜ℎ (𝑡) ≤ ∑

𝑖∈𝑉(𝑡)

𝑦𝑖ℎ (𝑡) , ∀ℎ ∈ 𝑃 (𝑡) (5)

𝑜ℎ (𝑡) ≥ 𝑦𝑖ℎ (𝑡) , ∀𝑖 ∈ 𝑉 (𝑡) , ∀ℎ ∈ 𝑃 (𝑡) (6)

−𝑚𝑖 (𝑡) ⋅ 𝑁 ≤ 𝑝𝑖 (𝑡) − ∑

ℎ∈𝑃(𝑡)

ℎ ⋅ 𝑦𝑖ℎ (𝑡)

≤ 𝑚𝑖 (𝑡) ⋅ 𝑁, ∀𝑖 ∈ 𝑉 (𝑡)

(7)

∑

ℎ∈𝑃(𝑡)

𝑦𝑖ℎ (𝑡) = 1, ∀𝑖 ∈ 𝑉 (𝑡) (8)

∑

𝑖∈𝑉(𝑡)

𝑦𝑖ℎ (𝑡) ⋅ 𝑑
𝑟

𝑖
≤ C𝑟
ℎ
, ∀ℎ ∈ 𝑃 (𝑡) , 𝑟 ∈ 𝐷 (9)

Pr{ ∑
𝑖∈𝑉(𝑡)

𝑦𝑖ℎ (𝑡) ⋅ 𝑑
𝑟

𝑖
≤ C𝑟
ℎ
} ≥ 1 − 𝛼, ∀ℎ ∈ 𝑃 (𝑡) , 𝑟 ∈ 𝑄

(10)

𝑦𝑖ℎ (𝑡) ∈ {0, 1} , ∀𝑖 ∈ 𝑉 (𝑡) , ∀ℎ ∈ 𝑃 (𝑡) (11)

𝑜ℎ (𝑡) ∈ {0, 1} , ∀ℎ ∈ 𝑃 (𝑡) (12)

𝑚𝑖 (𝑡) ∈ {0, 1} , ∀𝑖 ∈ 𝑉 (𝑡) . (13)

In (3), 𝑓1 defines the number of required servers after
the server consolidation. In (4), 𝑓2 defines the number of
migrations needed during the server consolidation. Con-
straints (5)–(7) define the implicit relations between the
decision variables. Constraint (8) states each VM (𝑖 ∈ 𝑉(𝑡)) is
placed on a single server. Constraint (9) states that for each
deterministic resource of a server, the total demand of all
the VMs on the server must not exceed the server’s capacity.
Constraint (10) states that for each stochastic resource of a
server, the demands of all the VMs on the server should be
satisfied with the given probability 1−𝛼. Constraints (11)–(13)
define the domain of the variables.

3. An Improved Multidimensional Space
Partition Model

3.1. The Model for Deterministic Resources. Most existing
algorithms (such as Next Fit and First Fit) simply perform
the placement computation by comparing the VM’s demand
with the server’s available capacity, without considering the
balanced utilization ofmultidimensional resources.However,
as long as an arbitrary dimensional resource of a server is
exhausted, even when all other dimensional resources are
sufficient, no more VMs can be placed on the server. In order
to avoid this and reduce resource waste, Li et al. [17] proposed
a multidimensional space partition model and based on the
model presented an energy efficient algorithm with balanced
resource utilization (EAGLE for short). Figure 2 shows
the two-dimensional space partition model. In the figure,
the vertical and horizontal axes, respectively, stand for the
utilization ratios of resource 1 and resource 2 in server ℎ;
the point E(1.0, 1.0) indicates the two types of resources are
exhausted, while the pointO(0, 0)means server ℎ is idle.
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Figure 2: The multidimensional space partition model [17].

In the partition model, there are three domains: the AD
domain which implies all resources are nearly exhausted, the
FD domain which indicates there is an obvious disequilib-
rium of multidimensional resource utilization, and the SD
domain which represents the balanced case. As shown in
Figure 2, the unit square is partitioned into three parts by
three quarter circles. The AD domain is one quarter circle
with center E and radius 𝑟0 (𝑟0 ∈ [0, 1.0]). The FD domain is
divided into two subparts by two symmetrical quarter circles,
with the same radius 𝑅0 (𝑅0 ∈ [0, 1.0]). The point O1 is the
center of the red quarter circle and the pointO2 is the center
of the green quarter circle. The SD domain is bounded by the
three quarter circles and square edges.

Generally, in the𝑀-dimensional space partition model,
one point is corresponded to each usage state, expressed as
USh = (𝜂1ℎ, 𝜂

2

ℎ
, . . . , 𝜂

𝑟

ℎ
, . . . , 𝜂

𝑀

ℎ
). 𝜂𝑟
ℎ
represents the utilization

ratio of resource 𝑟 in server ℎ. Given USh, the parameters 𝑟0
and 𝑅0, the domain determination function f can be defined
as

f (USh) =
{{{{

{{{{

{

AD, if distance (USh,E) ≤ 𝑟0,
SD, else if (∀𝑟, distance (USh,Or) ≤ 𝑅0) ‖

(∀𝑟, 𝜂
𝑟

ℎ
≤ 1 − 𝑅0) ‖ (∀𝑟, 𝜂

𝑟

ℎ
≥ 𝑅0) ,

FD, otherwise
(14)

distance(USh,Or)means the Euclidean distance between the
two points USh and Or. The point Or is represented as
(𝑥1, 𝑥2, . . . 𝑥𝑘, . . . , 𝑥𝑀), where

𝑥𝑘 = {
1 − 𝑅0, if 𝑘 = 𝑟;
𝑅0, otherwise.

(15)

Denote V𝑘 as a VM to be deployed. According to EAGLE
in [17], for each running PM ℎ, firstly compute the posterior

usage state, expressed as PSh,vk , which refers to the new usage
state when VM V𝑘 is placed on it, then determine the domain
f(PSh,vk ) for each PM ℎ, which has sufficient resources to
host VM V𝑘, and finally select a PM Host(V𝑘) for VM V𝑘 by
following the steps below.

(1) Check whether 𝑃AD is empty, where 𝑃AD is a PM set
in which each PM ℎ satisfies f(PSh,vk ) = AD;

(2) if 𝑃AD is nonempty, then let Host(V𝑘) = ℎAD, where
ℎAD ∈ 𝑃AD is the PMwith the highest overall resource
utilization, otherwise check whether 𝑃SD is empty,
where 𝑃SD is a PM set in which each PM ℎ satisfies
f(PSh,vk ) = SD and go to the next step;

(3) if 𝑃SD is nonempty, then let Host(V𝑘) = ℎSD, where
ℎSD ∈ 𝑃SD is the PM with the most balanced
utilization of multidimensional resource, otherwise
turn on a PM ℎNew and let Host(V𝑘) = ℎNew.

By comparing the experimental results of EAGLE and
First Fit, Li et al. [17] validated that EAGLE work efficiently
on the balanced utilization of multidimensional resources,
and, thus, reduce the number of required servers. Besides,
they analyzed the impact of model parameters (𝑅0 and 𝑟0) on
the algorithm performance and got that the least number of
servers is required when 𝑅0 is equal to 0.8 and 𝑟0 is equal to
0.1. In this paper, it is adopted that 𝑅0 = 0.8 and 𝑟0 = 0.1.

3.2. An Improved Model for Both Deterministic and Stochastic
Resources. As with [17], this work focuses on the VMP
with multidimensional resources and aims to reduce the
number of required servers. However, different from [17],
VMs’ stochastic demands and periodic server consolidation
are taken into account in this paper. Considering these
characteristics, a new partition is presented for the 𝑀-
dimensional resource usage state space.

For a PM ℎ with PSh,vk ≤ 0.2 and f(PSh,vk ) = SD,
it can be regarded as a candidate for the subsequent server
consolidation, thus the criterion for selecting Host(V𝑘) from
these PMs should focus on migration cost reduction. In view
of this, the original SD domain is partitioned and then a new
domain LD is obtained where the utilization ratio is less than
0.2 for all resources. Besides, for a usage state USh ≥ 0.8, it
takes on a high and balanced utilization of 𝑀-dimensional
resources, which is the feature of states in the AD domain. So
these states are incorporated into the AD domain and then
a new domain HD is obtained where the utilization ratio is
higher than 0.8 for all resources. Figure 3 shows the improved
two-dimensional space partitionmodel.The improvedmodel
includes four domains as follows.

(i) Unbalanced utilization domain (NBD): this domain
indicates that there is an obvious disequilibrium of
multidimensional resource utilization, which should
be avoided.

(ii) Balanced utilization domain (BD): this domain rep-
resents the balanced case.

(iii) High utilization domain (HD): this domain implies
that all resources are nearly exhausted, which is an
ideal case for all PMs.
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Figure 3: The improved multidimensional space partition model.

(iv) Low utilization domain (LD): this domain indicates
that the utilization ratio is very low for all resources.
The PMs whose corresponding usage state lies in this
domain may be candidates for the subsequent server
consolidation.

For the𝑀-dimensional space partition model, according
to USh, the parameters 𝑟0 and 𝑅0, the domain determination
function f󸀠 can be defined as

f󸀠 (USh) =

{{{{{{{

{{{{{{{

{

HD, if ∀𝑟, 𝜂𝑟
ℎ
≥ 𝑅0

LD, else if ∀𝑟, 𝜂𝑟
ℎ
≤ 1 − 𝑅0

BD, else if ∀𝑟, distance (USh,Or) ≤ 𝑅0

NBD, otherwise.
(16)

In related studies, the stochastic resources refer primarily
to the network bandwidth. Moreover, it is shown in [22, 24]
that the VMs’ bandwidth demands approximately follow a
normal distribution. So this paper assumes VM V𝑖’s demand
𝑑
𝑟

𝑖
(𝑟 ∈ 𝑄) follows a normal distribution𝑁(𝜇𝑟

𝑖
, (𝜎
𝑟

𝑖
)
2
). Based

on this assumption, for the stochastic resource 𝑟, the upper
confidence limits of the total demand of all the VMs on the
server ℎ can be calculated as

∑

𝑖∈𝑈ℎ

𝜇
𝑟

𝑖
+ Φ
−1
(1 − 𝛼)√∑

𝑖∈𝑈ℎ

(𝜎
𝑟

𝑖
)
2
, ∀𝑟 ∈ 𝑄, (17)

where Φ−1(1 − 𝛼) is the quantile of𝑁(0, 1) at probability 𝛼.

Thus, 𝜂𝑟
ℎ
can be defined as

𝜂
𝑟

ℎ
=

∑
𝑖∈𝑈ℎ
𝑑
𝑟

𝑖

C𝑟
ℎ

, ∀𝑟 ∈ 𝐷,

𝜂
𝑟

ℎ
=

∑
𝑖∈𝑈ℎ
𝜇
𝑟

𝑖
+ Φ
−1
(1 − 𝛼)√∑𝑖∈𝑈ℎ

(𝜎
𝑟

𝑖
)
2

C𝑟
ℎ

, ∀𝑟 ∈ 𝑄.

(18)

4. Strategy and Algorithms

4.1. A Two-Phase Optimization Strategy. Figure 4(a) shows
the interactions between the two phases in optimization,
which are, respectively, for VM deployment and server
consolidation. At each time instant 𝑡, firstly checks whether
there are newly arrivingVMs to be deployed; if there are, then
enter into the VM deployment phase and place these VMs in
the order they arrive.The procedure to deploy a VM is shown
in Figure 4(b), where 𝑃1 represents the set of the PMs with
some VMs running.

When the server consolidation is triggered, an optimal
scheme can be obtained by solving the model in Section 2.2.
According to formula (17), the deterministic form equivalent
with the chance constraint (10) can be derived as follows:

∑

𝑖∈𝑉(𝑡)

𝑦𝑖ℎ (𝑡) ⋅ 𝜇
𝑟

𝑖
+ Φ
−1
(1 − 𝛼)√ ∑

𝑖∈𝑉(𝑡)

𝑦𝑖ℎ (𝑡) ⋅ (𝜎
𝑟

𝑖
)
2
≤ C𝑟
ℎ
,

∀ℎ ∈ 𝑃 (𝑡) , 𝑟 ∈ 𝑄.

(19)

Based on the equivalent form, the Model 0 can be trans-
formed into a deterministic model called Model 1, which
includes (3)–(9), (11)–(13), and (19). Model 1 is a multiob-
ject integer programming model. From a service provider’s
perspective, minimizing the number of required servers can
reducemore cost thanminimizing the number ofmigrations,
so the two objectives can be arranged in order of importance,
given that, the Lexicographic method [28] is adopted to solve
Model 1. However, the method is only applied to solve a
small-scale problem of server consolidation. As the scale of
the problem gets larger, it may happen that the general solver
such as Gurobi and Cplex cannot get a feasible solution in a
reasonable time.Thus, a heuristic algorithm of live migration
is designed in Section 4.3.

4.2. AModified EAGLEAlgorithm forVMDeployment. Based
on the improved multidimensional space partition model, a
modified EAGLE algorithm (MEAGLE) is proposed. With
the MEAGLE algorithm, the steps below can be followed to
select Host(V𝑘) for VM V𝑘.

(1) For eachPM ℎ in𝑃1, compute the posterior usage state
PSh,vk . Let 𝑃fea(V𝑘) = {ℎ | ℎ ∈ 𝑃1 and PSh,vk ≤ 1}.

(2) For each PM ℎ in 𝑃fea(V𝑘), determine the domain
f󸀠(PSh,vk ) according to the formula (16) and PSh,vk .

(3) Divide 𝑃fea(V𝑘) into four sets: 𝑃HD, 𝑃LD, 𝑃BD, 𝑃NBD.
𝑃HD is a PM set in which each PM ℎ satisfies
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Figure 4: The flowchart of the two-phase optimization strategy.

f󸀠(PSh,vk ) = HD, and the definitions of𝑃LD,𝑃BD,𝑃NBD
are similar with 𝑃HD.

(4) Checkwhether𝑃HD is empty. If𝑃HD is nonempty, then
let Host(V𝑘) = ℎHD, where ℎHD ∈ 𝑃HD is the PM with
the highest overall resource utilization, otherwise go
to step (5).

(5) Check whether 𝑃BD is empty. If 𝑃BD is nonempty, then
let Host(V𝑘) = ℎBD, where ℎBD ∈ 𝑃BD is the PM with

the most balanced utilization of multidimensional
resource, otherwise go to step (6).

(6) Check whether 𝑃LD is empty. If 𝑃LD is nonempty, then
let Host(V𝑘) = ℎLD, where ℎLD ∈ 𝑃LD is the PM with
the largest number of VMs, otherwise turn on a PM
ℎNew and let Host(V𝑘) = ℎNew.

For a PM ℎ with the usage state (𝜂1
ℎ
, 𝜂
2

ℎ
, . . . , 𝜂

𝑟

ℎ
, . . . , 𝜂

𝑀

ℎ
),

the overall resource utilizationRℎ and the equilibriumdegree
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of𝑀-dimensional resource utilization Dℎ can be calculated
as follows:

Rℎ =
1

𝑀
∑

𝑟∈𝐷∪𝑄

𝜂
𝑟

ℎ

Dℎ = √ ∑
𝑟∈𝐷∪𝑄

(𝜂
𝑟

ℎ
−
1

𝑀
∑

𝑟∈𝐷∪𝑄

𝜂
𝑟

ℎ
)

2

.

(20)

4.3. A Live Migration Algorithm for Server Consolidation.
Based on the improved multidimensional space partition
model and MEAGLE algorithm, a live migration algorithm
based on the basic set (LMABBS) is proposed. Let the basic
set 𝑃BS = {ℎ | f󸀠(USh) = HD or Iℎ = max𝑗∈𝑃1I𝑗} and the
nonbasic set 𝑃NBS = 𝑃1 \ 𝑃BS, whereI𝑗 indicates the number
of VMs on the PM 𝑗. The key idea of LMABBS is to turn
off as many PMs in 𝑃NBS as possible by live migration. The
algorithm is terminated when 𝑃NBS is empty or there is no
server in 𝑃NBS as a candidate for server consolidation. Here a
candidate means a PM on which all VMs can be migrated to
other PMs.

The function JudgeMigratable (ℎ𝑖) in Algorithm 1
describes the procedures to determine whether a PM ℎ𝑖 is a
candidate and returns a plan for VMs’ migrations if so. The
main points of the function are as follows.

(1) Firstly according to MEAGLE, check each VM V𝑖
on server ℎ𝑖 in the ascending order of VMs’ ID,
to see whether it can be migrated into a directly-
deployed server, on which the original VMs need not
be migrated out before VM V𝑖’s migration.

(2) If there is only one VM V𝑙 without directly-deployed
servers, then go on looking for an indirectly-deployed
server, into which V𝑙 can be migrated after some
original VMs on it are migrated out, otherwise judge
that the PM ℎ𝑖 is not a candidate.

(3) In order to keep migration cost as low as possible,
three types of indirectly-deployed servers are consid-
ered: (a) a PM on which an original VM is needed
to migrate out before VM V𝑖’s migration, (b) a PM on
which two original VMs are needed to migrate out
before VM V𝑖’s migration, and (c) a PM on which an
original VM is needed to be exchanged with a VM on
the other non-ℎ𝑖 PM before VM V𝑖’s migration.

(4) If there are two VMs on server ℎ𝑖, and there exists
one VM without directly-deployed and indirectly-
deployed servers, then return to step (1) and check
each VM again in the descending order of VMs’ ID.

5. Simulation Experiment

5.1. Simulation Configuration. Consider a cloud data center
with 200 servers with the same capacity. Each VM is assumed
to have three types of resources demands: CPU, memory, and
bandwidth. Set 𝐷 = {CPU,memory}, 𝑄 = {bandwidth}, and
𝛼 = 5%.The ratio of the resource demand to server capacity is
employed to identify the demand intensity of each resource.

Among all resources, the resource with the largest DCR value
is defined as the intensive resource and others are defined as
the nonintensive resources. To emulate a typical data center
setting, four groups of VMs are generated: CPU-intensive
VMs, memory-intensive VMs, bandwidth-intensive VMs,
and general VMs, where each group contains a quarter of
all VMs. For each VM in the first three groups, the intensive
resource randomly selects its DCR value from a higher range
[30%, 40%] andother nonintensive resources randomly select
their DCR values from a lower range [5%, 10%], which is
based on the data generationmethod in [26]. For each VM in
the fourth group, all resources select their DCR value from a
general range [3%, 10%] to validate the MEAGLE algorithm
when 𝑅0 = 0.8. For the stochastic bandwidth demand, the
selected DCR value represents the ratio between the mean
of the bandwidth and the server capacity. Coefficients of
variation for all VMs’ bandwidth demands are set 0.2 by
default.

Assume that the number of VM requests reaching the
cloud data center in a period follows a Poissonian distribution
with a mean 𝜆. Here a period includes 60 time instants.
In order to evaluate the performance of our MEAGLE and
LMABBS, respectively, the experiment consists of two parts:
(1) comparing the solutions of MEAGLE and EAGLE and
(2) comparing the solutions of LMABBS and Gurobi. The
Gurobi solutions are obtained by using Gurobi 5.5.0 to solve
Model 1, which is formulated by YALMIP [29] in MATLAB
environment. All experiments are performed on a computer
with Intel Core i7 3.40GHz CPU and 4GB RAM.

5.2. The Result and Analysis

5.2.1. Comparison between MEAGLE and EAGLE. This sub-
section is conducted to evaluate the performance of MEA-
GLE on the instant-deployment for VMs. Assume that there
is no VM on each server at 𝑡 = 0. Eighty periods are con-
sidered and 220VMs on average are arriving in a period (i.e.,
𝜆 = 220). According to the settings, a VM set is generated and
called VmSet which includes all the VMs arriving during the
eighty periods. The VMs are deployed instantly as soon as
they arrive. For each VM V𝑘 ∈ VmSet, EAGLE, SEAGLE,
and MEAGLE are, respectively, adopted to search Host(V𝑘).
A VM’s bandwidth demand is constant and taken as the
mean in EAGLE while it is regarded as a random variable
in SEAGLE and MEAGLE. When using SEAGLE, firstly for
each PM ℎ in 𝑃1, compute the posterior usage state PSh,vk
according to formula (18) then perform the same steps as
EAGLE described in Section 3.

Figure 5(a) shows the number of required servers at
each time instant. The reduction of the servers at some time
instants is a result of turning off the idle servers as some
VMs are removed. To further validate the actual overflow
probability, the following procedures are carried out. Firstly,
for each VM’s bandwidth demand at per time instant, we
sample the trace to obtain 1000 samples of the momentary
value of bandwidth consumption. Then for each packing
obtained by the algorithms at per time instant and for
each server in the packing, we sum up the total momen-
tary bandwidth consumption per server and check whether
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Procedure MigPlan = JudgeMigratable (ℎ𝑖)

(1) Initialize 𝑆𝑡(ℎ𝑖) as the set of VMs on server ℎ𝑖 at time instant 𝑡
(2) 𝑛 ← 𝑆𝑡(ℎ𝑖). size
(3) for 𝑘 = 1 to 𝑛 do
(4) According to MEAGLE, search for the Host(V𝑘) for V𝑘, where V𝑘 ∈ 𝑆𝑡(ℎ𝑖).
(5) if Host(V𝑘) ∈ 𝑃1 \ {ℎ𝑖}
(6) MigPlan = [MigPlan; V𝑘ℎ𝑖 Host(V𝑘)]
(7) Update the usage state of Host(V𝑘) after V𝑘 is placed on it.
(8) else
(9) 𝑙 ← 𝑘;
(10) 𝑛count← 𝑛count + 1
(11) if 𝑛count > 1
(12) /∗In 𝑆𝑡(ℎ𝑖), there exists more than one VM without directly-deployed servers.
(13) MigPlan = [];
(14) return MigPlan
(15) end if
(16) end if
(17) end for
(18) if 𝑛count == 1
(19) /∗In 𝑆𝑡(ℎ𝑖), there is only one VM V𝑙 without directly-deployed servers.
(20) if ∃ℎ1, ℎ2 ∈ 𝑃1 \ {ℎ𝑖}, V𝑙 can be placed on ℎ1

after an original VM on ℎ
1
is migrated into ℎ

2
, then

(21) Update MigPlan
(22) else if ∃ℎ1, ℎ2, ℎ3 ∈ 𝑃1 \ {ℎ𝑖}, V𝑙 can be placed on ℎ1

after two original VMs on ℎ1 are respectively migrated into ℎ2 and ℎ3, then
(23) Update MigPlan
(24) else if ∃ℎ1, ℎ2 ∈ 𝑃1 \ {ℎ𝑖}, V𝑙 can be placed on ℎ1

after an original VM on ℎ1 is exchanged with a VM on ℎ2, then
(25) Update MigPlan
(26) else
(27) MigPlan = []
(28) returnMigPlan
(29) end if
(30) end if
(31) return MigPlan

Algorithm 1: The procedures to judge whether a PM ℎ𝑖 is a candidate for server consolidation.
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Figure 5: The comparisons of simulation results.

the server capacity constraint is broken. Figure 5(b) shows the
cumulative distribution function (CDF) of server compliance
with the overflowprobability. FromFigure 5, it can be seen, by
EAGLE the number of required servers at each time instant
is the least but only about 42% of servers respect the target
overflow probability 𝛼 = 5%. For MEAGLE and SEAGLE,

almost all servers obey the target overflow probability, yet
MEAGLE uses a smaller number of servers.

In order to better evaluate the performance of MEAGLE,
a series of eight experiments is performed to deploy the VMs
inVmSet under different coefficients of variationwith respect
toVMs’ bandwidth demands.Here the coefficient of variation
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Table 1: The simulation results with different variation coefficients.

Variation coefficients EAGLE SEAGLE MEAGLE
𝜔1 𝜏1 𝜔2 𝜏2 𝜔3 𝜏3

0.01 108.7139 6.03% 107.6639 0.11% 104.9861 0.15%
0.05 108.7139 28.28% 114.1208 0.55% 107.8042 0.60%
0.1 108.7139 44.58% 127.7708 0.46% 113.0083 1.48%
0.15 108.7139 53.28% 141.9153 0.37% 118.6417 1.42%
0.2 108.7139 57.30% 151.4569 0.37% 122.4278 1.27%
0.25 108.7139 59.13% 157.0264 0.39% 124.9875 1.34%
0.3 108.7139 60.56% 163.4546 0.83% 131.5111 2.48%
0.35 108.7139 62.70% 163.7028 1.64% 136.9597 4.33%

Table 2: The possible results obtained by Gurobi.

The type of results Δ The state of solution The percentage of instances with 𝐶𝑖
𝐶1 Decrease Optimal solution 44.52%
𝐶2 Decrease The best feasible solution 31.45%
𝐶3 Invariant Optimal solution 4.42%
𝐶
4

Invariant The best feasible solution 5.65%
𝐶5 — No solution 13.95%

characterizes the variation in demand.The simulation results
are shown in Table 1, where 𝜔𝑖 (𝑖 = 1, 2, 3) represents the
average number of required servers in a time unit and 𝜏𝑖 (𝑖 =
1, 2, 3) refers to the proportion of servers violating the target
overflow probability. From Table 1, it can be seen, (1)with the
same volatility (or coefficient of variation), 𝜏1 is significantly
larger than 𝜏2 and 𝜏3 while the difference between 𝜏2 and 𝜏3
is very small; (2) as the coefficient of variation increases, 𝜏1
is rising sharply while 𝜏2 and 𝜏3 are keeping at very low level;
(3) 𝜔3 is 2.49%–20.40% less than𝜔2 with the same coefficient
of variation and 𝜔3 is the least when the variation coefficient
is 0.01 and 0.05.

From the results shown in Table 1, it can be concluded
that SEAGLE and MEAGLE work well to obey the target
overflow probability, while EAGLE brings a high proportion
of servers violating the target overflowprobability as it cannot
detect the change of VM’s burst level. Furthermore, though
MEAGLE is slightly inferior to SEAGLE in lowering the
overflow probability of servers as shown in Figure 5(b),
MEAGLE uses a smaller number of servers than SEAGLE
does. This is primarily due to the fact that by SEAGLE, a VM
V𝑘 must not be placed on a PM ℎ with f(PSh,vk ) = FD and
a new PM will be turned on if there is no proper server to
host V𝑘. VMs in our study have different resource intensities
and a PM is more likely to incur an imbalanced utilization of
multidimensional resources after it hosts a nongeneral VM
(such as a CPU-intensive VM). Therefore, according to the
procedures of SEAGLE andMEAGLE, SEAGLEwill usemore
servers than MEAGLE obviously.

5.2.2. Comparison between LMABBS and Gurobi. Within the
two-phase optimization strategy, the server consolidation
is implemented for every 4 periods. In order to test the
performance of LMABBS, 𝜆 = 11, 12, . . . , 26 is set and twenty
running states are chosen for each value of 𝜆. A running state

for server consolidation is regarded as a problem instance
and then 320 instances are generated. For each instance,
the corresponding problem is solved, respectively, by the
LMABBS and Gurobi. As a note, when solving large scale
problems by Gurobi, one bad case that may arise is that
solutions cannot be obtained due to out of memory. So the
values of 𝜆 in this subsection are relatively smaller than that
in the previous subsection. Here set the solving time limit as
30minutes for Gurobi.Then all instances are divided into five
groups, according to all possible results (𝐶1 ∼ 𝐶5) obtained
by Gurobi shown in Table 2. Δ represents the variation in
the number of required servers by server consolidation. The
state with “the best feasible solution” represents that Gurobi
cannot get an optimal solution but can get a feasible solution
in 30 minutes, while the state with “no solution” means that
Gurobi cannot produce a feasible solution in 30 minutes. Let
𝑆𝑖 denote a set of the problem instances, where 𝑖 = 1, 2, . . . , 5.
Each instance in 𝑆𝑖 has the same result as 𝐶𝑖 if it is solved by
Gurobi.

By statistical analysis on experimental results, the follow-
ing points can be found out: (1) for the 80.95% instances
in 𝑆1, the LMABBS solution coincides with Gurobi solution
on the number of required server and migrations; (2) by
LMABBS, though there exist 19.05% instances in 𝑆1 without
optimal solutions, there are still 29.17%of these instanceswith
the minimum number of required servers (Let 𝑆1 represent
the set of the 19.05% instances in 𝑆1); (3) in 𝑆2, there are
74% instances for which the solutions of the two methods
are identical to the number of required server and there are
60% instances for which the solutions of the twomethods are
identical to the number of required server and migrations;
(4) for the instances in 𝑆3 and 𝑆4, LMABBS as well as
Gurobi cannot obtain a valid consolidation solution which
can reduce the number of required servers; and (5) in 𝑆5,
there are 76.19% instances with valid consolidation solutions
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Table 3: Comparison of LMABBS solution with Gurobi solution.

The sets of instances 𝜌
ℎ

𝜌
𝑚

𝜌
𝑡

Ave Max Min Ave Max Min Ave Max Min
𝑆1 1.1003 1.2500 1.000 0.6988 1.25 0 0.0197 0.1159 1.5621 × 10

−5

𝑆2 1.0286 1.2000 1.000 0.9022 1.50 0 0.0001 0.0008 5.0555 × 10
−6

𝑆3 ∪ 𝑆4 1.000 1.000 1.0000 — — — 4.7288 × 10
−5 0.0002 5.3054 × 10

−6

by LMABBS and the number of required servers declines by
15.98% on average.

For different sets of instances, the comparison results
of LMABBS solution with Gurobi solution are shown in
Table 3, where 𝜌ℎ, 𝜌𝑚, and 𝜌𝑡, respectively, represent the
ratios between the number of required servers, between the
migration number, and between the computation time on the
LMABBS solution andGurobi solution.As one can see,𝜌𝑚 are
both equal to 0 for some instances in 𝑆1 and 𝑆2.This is because
that the servers to turn off are chosen only from the nonbasic
set when implementing server consolidation; in other words,
if there exists a server in the basic set that is a candidate for
server consolidation, the server will not be turned off by live
migration because of high migration cost. Besides, according
to the comparison results for 𝑆3 and 𝑆4, it can be seen that
LMABBS can rapidly identify a situation that the deployment
of VMs on the collection of hosts is compact enough and,
thus, spend little time looking for an invalid consolidation
solution. Taken together, the comparison results suggest that
the difference is fairly small between the number of required
servers obtained by LMABBS and Gurobi and LMABBS
has a significant advantage in lowering migration cost and
improving the computational efficiency.

6. Conclusions

This paper studies the dynamic placement of VMswith deter-
ministic and stochastic demands for green cloud computing.
A two-phase optimization strategy is presented including
instant VM deployment and periodic server consolidation.
The innovations of the strategy can be listed as follows: (1)
taking into account stochastic resources, the VMs’ resource
demands are described as random variables and the equiv-
alent form of chance constraints is introduced to guarantee
the availability for these resources; (2) when deploying VMs,
themigration cost generated in the subsequent server consol-
idation is considered; and (3) given that this work focuses on
the VMs with different resource intensities and the VMs with
complementary demands can be placed on the same server,
a temporary imbalanced utilization of multidimensional
resources is allowed in our method.

For VMdeployment and server consolidation, amodified
EAGLE algorithm (MEAGLE) and a livemigration algorithm
based on the basic set (LMABBS) are proposed, respectively.
The simulation results demonstrate that MEAGLE not only
virtually ensures as good performance of user application as
SEAGLE, but also reduces the number of required servers by
2.49% to 20.40% compared with SEAGLE. In addition, there
is fairly small difference between the number of required

servers obtained by LMABBS and Gurobi, but LMABBS has
a computational efficiency unmatched by Gurobi. For the
instances without a feasible solution in a reasonable time by
Gurobi, LMABBS can obtain valid consolidation solutions
and lower the number of required servers by an average of
15.98%.

For the public clouds that do not provide explicit SLAs
guarantees on VM bandwidth today, the application ofMEA-
GLE algorithm will achieve a specified quality-of-service
and then help to enhance their credibility and win more
customers. Besides, the LMABBS algorithm will help to
improve the efficiency of implementing server consolidation
and reduce the waste of energy consumption effectively.
Thus the proposed two-phase optimization strategy based
on MEAGLE and LMABBS will provide a good solution
to achieve high level service performance and to minimize
energy consumption for green cloud computing. As a future
work, we will intend to draw a specific migration plan for the
implementation of server consolidation, with considering the
intermediate migrations needed when a deadlock occurs in
the actual migration process.
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for bursty connections,” SIAM Journal on Computing, vol. 30,
no. 1, pp. 191–217, 2000.

[24] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
in Proceedings of the 30th IEEE International Conference on
Computer Communications, pp. 71–75, Shanghai, China, April
2011.

[25] D. Breitgand and A. Epstein, “Improving consolidation of vir-
tual machines with risk-aware bandwidth oversubscription in
compute clouds,” in Proceedings of the 31st Conference on Com-
puter Communications (INFOCOM ’12), pp. 2861–2865, IEEE,
Orlando, Fla, USA, March 2012.

[26] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement
with multiple deterministic and stochastic resources in data
centers,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM '12), pp. 2505–2510, Anaheim, Calif,
USA, December 2012.

[27] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “VM
placement strategies for cloud scenarios,” in Proceedings of
the IEEE 5th International Conference on Cloud Computing
(CLOUD ’12), pp. 852–859, Honolulu, Hawaii, USA, June 2012.

[28] R. T. Marler and J. S. Arora, “Survey of multi-objective opti-
mization methods for engineering,” Structural and Multidisci-
plinary Optimization, vol. 26, no. 6, pp. 369–395, 2004.
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