
Research Article
An Enhanced Differential Evolution with
Elite Chaotic Local Search

Zhaolu Guo,1 Haixia Huang,2 Changshou Deng,3 Xuezhi Yue,1 and Zhijian Wu4

1 Institute of Medical Informatics and Engineering, School of Science, Jiangxi University of Science and Technology,
Ganzhou 341000, China
2School of Literature and Law, Jiangxi University of Science and Technology, Ganzhou 341000, China
3School of Information Science and Technology, Jiujiang University, Jiujiang 332005, China
4State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

Correspondence should be addressed to Zhaolu Guo; gzl@whu.edu.cn

Received 8 October 2014; Accepted 27 April 2015

Academic Editor: Rafik Aliyev

Copyright © 2015 Zhaolu Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Differential evolution (DE) is a simple yet efficient evolutionary algorithm for real-world engineering problems. However, its search
ability should be further enhanced to obtain better solutionswhenDE is applied to solve complex optimization problems.This paper
presents an enhanced differential evolution with elite chaotic local search (DEECL). In DEECL, it utilizes a chaotic search strategy
based on the heuristic information from the elite individuals to promote the exploitation power. Moreover, DEECL employs a
simple and effective parameter adaptation mechanism to enhance the robustness. Experiments are conducted on a set of classical
test functions. The experimental results show that DEECL is very competitive on the majority of the test functions.

1. Introduction

Numerous problems in science and engineering can be
converted into optimization problems. Therefore, it is of
significance both in theory and in engineering applications
to develop effective and efficient optimization algorithms
for solving complex problems of science and engineering.
Differential evolution (DE), proposed by Storn and Price
in 1997 [1], is a simple yet effective global optimization
algorithm. According to frequently reported theoretical and
experimental studies, DE has exhibited competitive perfor-
mance than many other evolutionary algorithms in terms of
both convergence speed and solution precision over several
benchmark functions and real-life problems [2–4]. Due to
its simplicity, easy implementation, and efficiency, DE has
stimulated many researchers’ interests since its development.
Therefore, it has become a hot research topic in evolutionary
computation over the past decades [5–7].

However, its search ability should be further enhanced
to obtain better solutions when DE is used to solve various
real-life optimization problems [2, 8, 9]. Particularly, DEmay
suffer from premature convergence and/or slow convergence

when solving complex multimodal optimization problems.
In order to improve the performance of the conventional
DE, a number of DE variants have been proposed in recent
decades [2, 6, 10]. Recognizing that the performance of DE
depends on the control parameters, Brest et al. [11] presented
a self-adaptive DE (jDE), in which both 𝐹 and CR are created
independently for each individual by an adaptivemechanism.
Specifically, the new 𝐹 is created by a random value from
0.1 to 0.9 with a probability 0.1 during the search process.
Meanwhile, the new CR obtains a random value from 0.0
to 1.0 with a probability 0.1. Unlike jDE, JADE, proposed
by Zhang and Sanderson [12], utilizes a distinct parameter
adaptation mechanism, in which the new 𝐹 and CR are
created for each individual by a normal distribution and a
Cauchy distribution, respectively. In addition, JADE learns
knowledge from the recent successful 𝐹 and CR and applies
the learned knowledge for creating new𝐹 andCR. Identifying
that both the mutation strategies and their associated control
parameters can directly influence the performance of DE,
Qin et al. [7] proposed a novel self-adaptive DE, SaDE,
which adaptively tunes the trial vector generation strategies
and their associated control parameter values by extracting

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 583759, 11 pages
http://dx.doi.org/10.1155/2015/583759

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195007907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Computational Intelligence and Neuroscience

knowledge from the previous search process in generating
promising solutions. Mallipeddi et al. [13] introduced an
improved DE with ensemble of parameters and mutation
strategies (EPSDE), which employs a pool of diverse trial
vector generation strategies and a pool of values for the con-
trol parameters 𝐹 and CR. By incorporating an opposition-
based learning strategy into the traditional DE for population
initialization and generating new solutions, Rahnamayan
et al. [14] proposed an opposition-based DE (ODE). The
experimental results confirmed that the opposition-based
learning strategy can improve the convergence speed and the
solution accuracy of DE. Further, Wang et al. [15] improved
the opposition-based learning strategy, proposed a general-
ized opposition-based learning strategy, and presented an
enhanced DE with generalized opposition-based learning
strategy (GODE). Jia et al. [16] presented an effectivememetic
DE algorithm, DECLS, which utilizes a chaotic local search
with a shrinking strategy to improve the search ability.
Experimental results indicated that the performance of the
canonical DE is significantly improved by the chaotic local
search. Recently, Wang et al. [17] proposed a composite DE,
called CoDE, the main idea of which is to randomly combine
several well studied trial vector generation strategies with a
number of control parameter settings highly recommended
by other researchers at each generation to create new trial
vectors. Experimental results on all the CEC2005 contest test
instances show that CoDE is very competitive.

Although there already existmanyDE variants for solving
complex optimization problems, according to the no free
lunch (NFL) theory [18], the performance of DE for some
benchmark functions and real-life problems should be fur-
ther enhanced to obtain better solutions. Moreover, many
studies have revealed that embedding local search strategy
can greatly enhance the search ability of DE [14, 16, 19].
Motivated by these considerations, in order to promote the
performance of DE on complex optimization problems, this
study proposes an enhanced differential evolution with elite
chaotic local search, called DEECL. In DEECL, we utilize a
chaotic search strategy based on the heuristic information
from the elite individuals to promote the exploitation power.
Further, we also design a simple and effective parameter
adaptation mechanism to enhance the robustness.

The rest of the paper is organized as follows. The con-
ventional DE is introduced in Section 2. Section 3 presents
the enhanced DE. Numerical experiments are presented in
Section 4 for the comparison and analysis. Finally, the paper
is concluded in Section 5.

2. Differential Evolution

Without loss of generality, only minimization problems are
considered in this study. We suppose that the objective func-
tion to beminimized isMin𝑓(𝑋),𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝐷], and
the search space is

Ω =

𝐷

∏

𝑗=1
[LB
𝑗
,UB
𝑗
] , (1)

where 𝐷 is the number of dimensions of the problem, LB
𝑗

andUB
𝑗
denote the lower and upper boundaries of the search

space, respectively.
Similar to other evolutionary algorithms, DE also has

a simple structure, only including three simple operators,
namely, mutation, crossover, and selection operators [2]. In
the initial phase, DE creates an initial population 𝑃(𝑡) =

{𝑋
𝑡

𝑖
}, which is randomly generated from the search space,

where 𝑋𝑡
𝑖
= [𝑋
𝑡

𝑖,1, 𝑋
𝑡

𝑖,2, . . . , 𝑋
𝑡

𝑖,𝐷
], 𝑖 = 1, 2, . . . , 𝑁𝑃; 𝑁𝑃 is the

population size and 𝑡 is the generation. After initialization,
themutation and crossover operators are performed to create
the trial vectors, and then the selection operator is utilized to
select the better one between the offspring individual and the
parent individual for the next generation. DE performs these
steps repeatedly to converge toward the global optima until
the terminating criterion is reached [20]. In the following
subsections, the evolutionary operators of DE will be intro-
duced in detail.

2.1. Mutation Operator. In the mutation operator, a mutant
vector 𝑉𝑡

𝑖
is created by using a predetermined mutation

strategy for each individual 𝑋𝑡
𝑖
, namely, target vector, in the

current population [17]. DE has many mutation strategies
used in its implementations, such as DE/rand/1, DE/best/1,
DE/rand-to-best/1, DE/best/2 and DE/rand/2 [2]. Among
these mutation strategies, DE/rand/1 is the most frequently
used mutation strategy, which is expressed as follows [1]:

𝑉
𝑡

𝑖
= 𝑋
𝑡

𝑟1 +𝐹× (𝑋
𝑡

𝑟2 −𝑋
𝑡

𝑟3) , (2)

where 𝑟1, 𝑟2, and 𝑟3 are randomly selected from the set
{1, 2, . . . , 𝑁𝑃} \ {𝑖}, and they are mutually different from each
other. 𝐹 is called as scaling factor, amplifying the difference
vector𝑋𝑡

𝑟2 − 𝑋
𝑡

𝑟3.

2.2. Crossover Operator. Followingmutation, a trial vector𝑈𝑡
𝑖

is generated by executing the crossover operator for each pair
of target vector 𝑋𝑡

𝑖
and its corresponding mutant vector 𝑉𝑡

𝑖

[2]. Binomial crossover is themost commonly used crossover
operators in current popular DE. The binomial crossover is
described as follows [1]:

𝑈
𝑡

𝑖,𝑗
=

{

{

{

𝑉
𝑡

𝑖,𝑗
, if rand (0, 1) < CR or 𝑗 == 𝑗rand

𝑋
𝑡

𝑖,𝑗
, otherwise,

(3)

where rand(0, 1) is generated for each 𝑗 and takes a value
from 0.0 to 1.0 in a uniformly random manner, and CR ∈

[0, 1] is the crossover probability, which limits the number of
parameters inherited from the mutant vector 𝑉𝑡

𝑖
. The integer

𝑗rand is randomly chosen from the range [1, 𝐷], which
guarantees that at least one parameter of the trial vector 𝑈𝑡

𝑖

is inherited from the mutant vector 𝑉𝑡
𝑖
[7].

2.3. Selection Operator. Like the genetic algorithm, the selec-
tion process of DE is also based on the Darwinian law of
survival of the fittest. The selection process is performed
in order to choose the more excellent individuals for the



Computational Intelligence and Neuroscience 3

𝑡 = 0;
FES = 0;
/
∗ Initialize the population ∗/
for 𝑖 = 1 to𝑁𝑃 do

for 𝑗 = 1 to𝐷 do
𝑋
𝑡

𝑖,𝑗
= LB
𝑗
+ rand(0, 1) × (UB

𝑗
− LB
𝑗
);

end for
Evaluate individual𝑋𝑡

𝑖
;

FES = FES + 1;
end for
while FES <MAX FES do

for 𝑖 = 1 to𝑁𝑃 do
Choose three mutually different integers 𝑟1, 𝑟2, 𝑟3 from
the set {1, 2, . . . , 𝑁𝑃} \ {𝑖} in a random manner;
𝑗rand = randint(1,𝐷);
for 𝑗 = 1 to𝐷 do
if rand(0, 1) < CR or 𝑗 == 𝑗rand then
𝑈
𝑡

𝑖,𝑗
=𝑋𝑡
𝑟1,𝑗 + 𝐹 × (𝑋

𝑡

𝑟2,𝑗 − 𝑋
𝑡

𝑟3,𝑗);
else
𝑈
𝑡

𝑖,𝑗
=𝑋𝑡
𝑖,𝑗
;

end if
end for
/
∗ Selection step ∗/
if 𝑓(𝑈𝑡

𝑖
) ≤ 𝑓(𝑋

𝑡

𝑖
) then

𝑋
𝑡+1
𝑖

= 𝑈
𝑡

𝑖
;

if 𝑓(𝑈𝑡
𝑖
) < 𝑓(𝑋

𝑡

Best) then
𝑋
𝑡

Best = 𝑈
𝑡

𝑖
;

end if
else
𝑋
𝑡+1
𝑖

= 𝑋
𝑡

𝑖
;

end if
FES = FES + 1;

end for
𝑡 = 𝑡 + 1;

end while

Algorithm 1: DE algorithm.

next generation. For minimization problems, the selection
operator can be defined in the following form [1]:

𝑋
𝑡+1
𝑖

=

{

{

{

𝑈
𝑡

𝑖
, if 𝑓 (𝑈𝑡

𝑖
) ≤ 𝑓 (𝑋

𝑡

𝑖
)

𝑋
𝑡

𝑖
, otherwise,

(4)

where𝑓(𝑋𝑡
𝑖
) and𝑓(𝑈𝑡

𝑖
) indicate the fitness values of the target

vector𝑋𝑡
𝑖
and its corresponding trial vector 𝑈𝑡

𝑖
, respectively.

2.4. Algorithmic Framework of DE. Based on the above
elaborate introduction of the DE’s operators, we present the
framework ofDEwithDE/rand/1/bin strategy inAlgorithm 1,
where FES is the number of fitness evaluations, Max FES
is the maximum number of evaluations, rand(0,1) indicates
a random real number in the range [0, 1], randint(1, 𝐷)
represents a random integer in the range [1, 𝐷], and 𝑋𝑡Best is
the global best individual found so far.

3. Proposed Approach

3.1. Motivations. DE has been demonstrated to yield superior
performance for solving various real-world optimization
problems [21–23]. However, it tends to suffer from premature
convergence and/or slow convergence when solving complex
optimization problems [6, 24]. To enhance the performance
of DE, many researchers have proposed various improved
DE algorithms during the past decade [25–27]. Among the
DE variations, memetic method is a promising approach to
improve the performance of the traditionalDE, which utilizes
various local search strategies, such as chaotic search strategy
[16], simplex crossover search strategy [19], and orthogonal
search strategy [28], to strengthen the exploitation ability of
the traditional DE and consequently accelerate the conver-
gence speed. Among the local search strategies commonly
used in memetic DE, chaotic search strategy is inspired by
the chaos phenomenon in nature. Chaos is a classic nonlinear
dynamical system, which is widely known as a system with
the properties of ergodicity, randomicity, and sensitivity to
its initial conditions [16, 29, 30]. Due to its ergodicity and
randomicity, a chaotic system can randomly generate a long-
time sequence which is able to traverse through every state
of the system and every state is generated only once if
given a long enough time period [16, 31]. Taking advantage
of the well-known characteristics of the chaotic systems,
researchers have proposed many chaotic search strategies for
optimizing various problems [16, 32–34].However, to the best
of our knowledge, amongmany chaotic search strategies, they
paymore attention to the characteristics of the ergodicity and
randomicity of the chaotic system.Therefore, the exploration
capacity can be indeed improved. However, in order to
maintain a balance between exploration and exploitation,
the exploitation ability of the chaotic search strategy should
be further enhanced. Thus, when designing a relatively
comprehensive chaotic search strategy, we should further
integrate more heuristic information into the chaotic search
strategy to promote its exploitation power. Generally, the elite
individuals in the current population known as a promising
search direction toward the optimum are the favorable source
that can be employed to enhance the exploitation ability.
Based on these considerations, we present an elite chaotic
search strategy, which not only utilizes the characteristics of
the ergodicity and randomicity of the chaotic system, but also
merges the superior information of the current population
into the chaotic search process.

3.2. Elite Chaotic Search. In many chaotic search strategies,
the Logistic chaotic function is utilized to generate a chaotic
sequence, which is formulated as follows [16]:

𝐾
0
= rand (0, 1) , 𝐾

0
̸= 0.25, 0.5, 0.75,

𝐾
𝑛
= 4.0 ⋅ 𝐾𝑛−1 ⋅ (1−𝐾𝑛−1) , 𝑛 = 1, 2, . . . , 𝑁,

(5)

where 𝐾0 is the initial value of the chaotic system, which
is randomly generated from the range [0, 1], but cannot be
equal to 0.25, 0.5, or 0.75. 𝐾𝑛 is the 𝑛th state of the chaotic
system. As known, the initial state 𝐾0 of the chaotic system



4 Computational Intelligence and Neuroscience

𝑛 = 0;
𝑁 = 𝐷/5;
Randomly choose an individual𝑋𝑡

𝐼
from the current population;

𝐾
0
= rand(0, 1), 𝐾0

̸= 0.25, 0.5, 0.75;
𝑝 = rand(2.0/𝑁𝑃, 0.1);
while 𝑛 < 𝑁 do
Randomly choose an individual𝑋𝑡

𝑝Best from the top 100𝑝%
individuals in the current population;
for 𝑗 = 1 to𝐷 do
𝐸
𝑛

𝐼,𝑗
= 𝑋
𝑡

𝐼,𝑗
+ 𝐾
𝑛
× (𝑋
𝑡

𝑝Best,𝑗 − 𝑋
𝑡

𝐼,𝑗
);

if 𝐸𝑛
𝐼,𝑗
> UB

𝑗
or 𝐸𝑛
𝐼,𝑗
< LB
𝑗
then

𝐸
𝑛

𝐼,𝑗
= rand(LB

𝑗
,UB
𝑗
);

end if
end for
if 𝑓(𝐸𝑛

𝐼
) < 𝑓(𝑋

𝑡

𝐼
) then

𝑋
𝑡

𝐼
= 𝐸
𝑛

𝐼
;

break;
end if
𝑛 = 𝑛 + 1;
𝐾
𝑛
= 4.0 ⋅ 𝐾𝑛−1 ⋅ (1 − 𝐾𝑛−1);

FES = FES + 1;
end while

Algorithm 2: Elite chaotic search operator.

is randomly produced. Due to its ergodicity and sensitivity to
the initial state𝐾0,𝐾𝑛 is a random long-time sequence, which
can traverse through every state of the system and every state
is generated only once if𝑁 is large enough.

In order to enhance the exploitation ability of the tra-
ditional chaotic search strategy, we integrate the heuristic
information learned from the elite individuals into the
chaotic search strategy to promote the exploitation power.
The proposed elite chaotic search strategy is defined by

𝐸
𝑛

𝐼
= 𝑋
𝑡

𝐼
+𝐾
𝑛
× (𝑋
𝑡

𝑝Best −𝑋
𝑡

𝐼
) , (6)

where 𝑋𝑡
𝐼
is an individual to be performed the elite chaotic

search, which is randomly chosen from the current popu-
lation. 𝐾𝑛 is the chaotic sequence, where 𝑛 = 1, 2, . . . , 𝑁,
𝑁 = 𝐷/5, and 𝑋

𝑡

𝑝Best is an elite individual, which is
randomly chosen from the top 100𝑝% individuals in the
current population with 𝑝 = rand(2.0/𝑁𝑃, 0.1).

In the proposed elite chaotic search operator, an individ-
ual 𝑋𝑡

𝐼
is randomly selected from the current population to

undergo the elite chaotic search strategy. After that, the initial
value of the chaotic system takes a value from range [0, 1.0]
in a uniformly randommanner. Then, an elite chaotic search
procedure for individual 𝑋𝑡

𝐼
is repeatedly performed until

finding a better solution than individual𝑋𝑡
𝐼
or the number of

iterations 𝑛 is equal to𝑁. The framework of the elite chaotic
search operator is described in Algorithm 2.

3.3. Parameter Adaptation. Since the setting of control
parameters can significantly influence the performance of
DE, parameter adaptation mechanism is essential for an
efficient DE [7, 11, 12]. To this end, we design a simple and

effective parameter adaptation mechanism inspired by [11]
into DEECL. In DEECL, each individual is independently
associated with its own mutation factor 𝐹𝑡

𝑖
and crossover

probability CR𝑡
𝑖
. For individual 𝑖, its control parameters 𝐹𝑡

𝑖

and CR𝑡
𝑖
are initialized to 0.5 and 0.9, respectively. Generally,

a normal distribution with mean value 0.5 and standard
deviation 0.3 is a promising adaptive approach for the muta-
tion factor of DE [7], whereas Cauchy distribution is more
favorable to diversify the mutation factors and thus avoid
premature convergence [12]. Based on these considerations,
at each generation, the new mutation factor NF𝑡

𝑖
associated

with individual 𝑖 is generated by a Cauchy distribution
random real number with location parameter 0.5 and scale
parameter 0.3 with probability 0.1. Additionally, following
the suggestions in [11], the new crossover probability NCR𝑡

𝑖

associated with individual 𝑖 acquires a random value from 0.0
to 1.0 with probability 0.1. Mathematically, the new control
parameters NF𝑡

𝑖
and NCR𝑡

𝑖
associated with individual 𝑖 for

generating its corresponding trial vector 𝑈𝑡
𝑖
are obtained by

NF𝑡
𝑖
=

{

{

{

randc (0.5, 0.3) , if rand (0, 1) < 0.1

𝐹
𝑡

𝑖
, otherwise,

NCR𝑡
𝑖
=

{

{

{

rand (0, 1) , if rand (0, 1) < 0.1

CR𝑡
𝑖
, otherwise,

(7)

where randc(0.5, 0.3) is a Cauchy distribution random real
number with location parameter 0.5 and scale parameter
0.3 and rand(0, 1) is a uniformly random number within
the range [0, 1]. After obtaining the new control parameters
NF𝑡
𝑖
and NCR𝑡

𝑖
, the corresponding trial vector 𝑈𝑡

𝑖
are created



Computational Intelligence and Neuroscience 5

Table 1: The 13 classical test functions.

Function Name Initial range 𝑓min

𝑓1 Sphere Problem [−100, 100]𝐷 0
𝑓2 Schwefel’s Problem 2.22 [−10, 10]𝐷 0
𝑓3 Schwefel’s Problem 1.2 [−100, 100]𝐷 0
𝑓4 Schwefel’s Problem 2.21 [−100, 100]𝐷 0
𝑓5 Rosenbrock’s Function [−30, 30]𝐷 0
𝑓6 Step Function [−100, 100]𝐷 0
𝑓7 Quartic Function with Noise [−1.28, 1.28]𝐷 0
𝑓8 Schwefel’s Problem 2.26 [−500, 500]𝐷 0
𝑓9 Rastrigin’s Function [−5.12, 5.12]𝐷 0
𝑓10 Ackley’s Function [−32, 32]𝐷 0
𝑓11 Griewank Function [−600, 600]𝐷 0
𝑓12 Penalized Function 1 [−50, 50]𝐷 0
𝑓13 Penalized Function 2 [−50, 50]𝐷 0

by using the new control parameters NF𝑡
𝑖
and NCR𝑡

𝑖
. It is

widely acknowledged that better control parameter values
tend to produce better individuals that have a greater chance
to survive and thus these values should be propagated to the
next generations [12]. Therefore, in the selection step, the
control parameters 𝐹𝑡+1

𝑖
and CR𝑡+1

𝑖
associated with individual

𝑖 for the next generation are updated by

𝐹
𝑡+1
𝑖

=

{

{

{

NF𝑡
𝑖
, if 𝑓 (𝑈𝑡

𝑖
) < 𝑓 (𝑋

𝑡

𝑖
)

𝐹
𝑡

𝑖
, otherwise,

CR𝑡+1
𝑖

=

{

{

{

NCR𝑡
𝑖
, if 𝑓 (𝑈𝑡

𝑖
) < 𝑓 (𝑋

𝑡

𝑖
)

CR𝑡
𝑖
, otherwise.

(8)

From the above designed parameter adaptation mechanism,
we can infer that the better control parameters of DEECL can
be propagated to the next generations. Therefore, the control
parameters of DEECL can be adaptively tuned according to
the feedback from the search process.

4. Numerical Experiments

4.1. Experimental Setup. In order to assess the performance
of the proposed DEECL, we use 13 classical test functions
(𝑓1–𝑓13) that are widely used in the evolutionary compu-
tation community [8, 12, 35] to verify the effectiveness of the
proposedDEECL.We describe these test functions in Table 1.
Among these test functions [35], 𝑓1–𝑓4 are continuous
unimodal functions. 𝑓5 is the Rosenbrock function which is
unimodal for 𝐷 = 2 and 3; however, it may have multiple
minima in high dimension cases [36]. 𝑓6 is a discontinuous
step function, and 𝑓7 is a noisy function. 𝑓8–𝑓13 are
multimodal functions and they exist many local minima [35].

In all experiments, we set the number of dimensions𝐷 to
30 for all these test functions. We carry out 30 independent
runs for each algorithm and each test function with 150,000
function evaluations (FES) as the termination criterion.
Moreover, we record the average and standard deviation of
the function error value (𝑓(𝑥) − 𝑓(𝑥

∗
)) for estimating the

performance of the algorithms, as recommended by [17],
where 𝑥 is the best solution gained by the algorithm in a run
and 𝑥∗ is the global optimum of the test function.

4.2. Benefit of the Two Components. There are two important
components in the proposed DEECL: the proposed elite
chaotic search strategy and the designed parameter adapta-
tion mechanism. Accordingly, it is interesting to recognize
the benefit of the two components of the proposed DEECL.
For this purpose, we conduct experiments to compare the
proposed DEECL with the traditional DE with DE/rand/1
strategy and two variants of DEECL, namely, DE with the
proposed elite chaotic search strategy (DEwEC) and DE with
the designed parameter adaptation mechanism (DEwPA).
In the experiments, we set the population size of all the
algorithms to 100. For the other parameters of DE and
DEwEC, we set 𝐹 = 0.5 and CR = 0.9, following the
suggestions in [11].

We present the experimental results of the above men-
tioned algorithms in Table 2. The best results among the
four algorithms are highlighted in boldface. “Mean Error”
and “Std Dev” indicate the mean and standard deviation of
the function error values achieved in 30 independent runs,
respectively. From the results of comparison between DE
and DEwEC, DEwEC performs better than DE on all test
functions with the exception of 𝑓6. On test function 𝑓6,
both DE and DEwEC exhibit similar performance. In total,
DEwEC is better thanDE on twelve test functions.The results
of comparison between DE and DEwEC indicate that our
introduced elite chaotic search strategy is effective to enhance
the performance of the traditional DE.

From the comparison of DE with DEwPA, DEwPA
surpasses DE on all test functions except for 𝑓5 and 𝑓6.
On test function 𝑓6, both DE and DEwPA demonstrate
similar performance, whereas DE is better than DEwPA on
test function 𝑓5. In summary, DEwPA outperforms DE on
eleven test functions. The comparison of DE with DEwPA
reveals that our designed parameter adaptation mechanism
is capable of improving the efficiency of the traditional DE.

By incorporation of both the proposed elite chaotic search
strategy and the designed parameter adaptation mechanism,
DEECL achieves promising performance, which is better
than other three DE algorithms on the majority of the test
functions. To be specific, DEECL is better than DE, DEwEC,
and DEwPA on eleven, nine, and ten test functions, respec-
tively. DE, DEwEC, andDEwPA can outperformDEECL only
on one test function. Comparison results suggest that both
the introduced elite chaotic search strategy and the designed
parameter adaptationmechanism demonstrate positive effect
on the performance of DEECL. In addition, the comparison
results confirm that the introduced elite chaotic search
strategy and the designed parameter adaptation mechanism
can help DE with both outperform DE with either or neither
one on the majority of the test functions. Moreover, the
introduced elite chaotic search strategy and the designed
parameter adaptation mechanism work together to improve
the performance of the traditional DE rather than contradict
each other. The evolution of the average function error
values derived fromDE,DEwEC,DEwPA, andDEECL versus



6 Computational Intelligence and Neuroscience

Table 2: Experimental results of DE, DEwEC, DEwPA, and DEECL over 30 independent runs for the 13 test functions.

Function DE DEwEC DEwPA DEECL
Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev

𝑓1 2.23𝐸 − 16 ± 2.50𝐸 − 16 4.38𝐸 − 24 ± 3.95𝐸 − 24 4.14𝐸 − 33 ± 4.76𝐸 − 33 6.89E − 38 ± 6.06E − 38
𝑓2 2.86𝐸 − 08 ± 1.26𝐸 − 08 1.63𝐸 − 12 ± 6.75𝐸 − 13 3.58𝐸 − 20 ± 2.80𝐸 − 20 1.74E − 22 ± 1.21E − 22
𝑓3 1.88𝐸 − 01 ± 6.12𝐸 − 02 9.12𝐸 − 02 ± 1.03𝐸 − 02 5.25𝐸 − 02 ± 5.94𝐸 − 02 2.42E − 02 ± 3.44E − 02
𝑓4 1.70𝐸 − 01 ± 2.13𝐸 − 01 1.51𝐸 − 02 ± 2.10𝐸 − 02 3.23𝐸 − 04 ± 1.55𝐸 − 04 4.06E − 05 ± 3.05E − 05
𝑓5 1.39𝐸 + 01 ± 8.74𝐸 − 01 1.27E + 01 ± 5.12E + 01 2.46𝐸 + 01 ± 1.58𝐸 + 01 2.95𝐸 + 01 ± 2.21𝐸 + 01

𝑓6 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓7 8.82𝐸 − 03 ± 2.61𝐸 − 03 2.15𝐸 − 03 ± 8.72𝐸 − 04 6.52𝐸 − 03 ± 1.59𝐸 − 03 1.17E − 03 ± 6.52E − 04
𝑓8 7.31𝐸 + 03 ± 3.75𝐸 + 02 5.04𝐸 + 03 ± 3.25𝐸 + 02 1.53𝐸 − 02 ± 1.82𝐸 − 12 1.34E − 02 ± 1.19E − 12
𝑓9 1.77𝐸 + 02 ± 1.10𝐸 + 01 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓10 5.93𝐸 − 09 ± 3.10𝐸 − 09 5.22𝐸 − 13 ± 1.76𝐸 − 13 4.35𝐸 − 15 ± 1.07𝐸 − 15 4.00E − 15 ± 0.00E + 00
𝑓11 6.33𝐸 − 16 ± 1.16𝐸 − 15 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓12 2.20𝐸 − 17 ± 1.81𝐸 − 17 2.21𝐸 − 25 ± 1.38𝐸 − 25 1.61𝐸 − 30 ± 7.69𝐸 − 48 1.57E − 32 ± 2.74E − 48
𝑓13 8.26𝐸 − 17 ± 3.59𝐸 − 17 4.23𝐸 − 24 ± 6.14𝐸 − 24 1.46𝐸 − 32 ± 2.02𝐸 − 33 1.36E − 32 ± 3.70E − 34

the number of FES is plotted in Figure 1 for some typical test
functions. As can be seen from Figure 1, DEECL converges
faster than DE, DEwEC, and DEwPA.

4.3. Comparison with Other DE Variants. In order to verify
the effectiveness of the proposed DEECL algorithm, we
compare DEECL with the traditional DE and three other DE
variants, namely, jDE [11], ODE [14], and DECLS [16]. In
addition, jDE is a self-adaptive DE, in which both parameters
𝐹 and CR are generated independently for each individual
by an adaptive mechanism [11]. ODE is proposed by Rahna-
mayan et al. [14], which incorporates the opposition-based
learning strategy into the traditional DE for population ini-
tialization and creating new solutions. DECLS is an effective
memetic DE algorithm [16], which utilizes the chaotic local
search strategy and an adaptive parameter control approaches
similar to jDE [11] to improve the search ability. In the
experiments, in order to have a fair comparison, we set
the population size of all the algorithms to 100. The other
parameter settings of these three DE variants are the same as
in their original papers.

The mean and standard deviation of the function error
values achieved by each algorithm for the 13 classical test
functions are presented in Table 3. For convenience of
analysis, the best results among the four DE algorithms
are highlighted in boldface. In order to gain statistically
significant conclusions, we conduct two-tailed 𝑡-tests at the
significance level of 0.05 [28, 35] on the experimental results.
The summary comparison results are described in the last
three rows of Table 3. “+,” “−,” and “≈” suggest that DEECL
is better than, worse than, and similar to the corresponding
algorithm in terms of the two-tailed 𝑡-tests at the significance
level of 0.05, respectively.

From Table 3, we can infer that DEECL achieves the
better results than all the other four algorithms on the
majority of the 13 classical test functions. Specifically, DEECL
is significantly better than DE, jDE, ODE, and DECLS on
eleven, seven, nine, and six test functions according to the

two-tailed 𝑡-test, respectively. In addition, DEECL is similar
to DE, jDE, ODE, and DECLS on one, five, two, and five test
functions, respectively. DE and jDE surpasses DEECL only
on one test function. Additionally, ODE and DECLS perform
better than DEECL only on two test functions.

Overall, DEECL performs better than the traditional
DE, jDE, ODE, and DECLS on the majority of the test
functions. This can be because the proposed elite chaotic
search strategy learning the heuristic information from the
elite individuals can promote the exploitation power, and the
designed parameter adaptation mechanism can enhance the
robustness.The evolution of the average function error values
derived from DE, jDE, ODE, DECLS, and DEECL versus
the number of FES is plotted in Figure 2 for some typical
test functions. It can be known from Figure 2 that DEECL
converges faster than DE, jDE, ODE, and DECLS.

In order to compare the total performance of the five DE
algorithms on the all 13 classical test functions, we carry out
the average ranking of Friedman test on the experimental
results following the suggestions in [37–39]. Table 4 presents
the average ranking of the five DE algorithms on the all 13
classical test functions. We can sort these five DE algorithms
by the average ranking into the following order: DEECL,
DECLS, jDE, ODE, and DE. Therefore, DEECL obtains the
best average ranking, and its total performance is better than
that of the other four algorithms on the all 13 test instances.

5. Conclusions

DE is a popular evolutionary algorithm for the continuous
global optimization problems, which has a simple structure
yet exhibits efficient performance on various real-world
engineering problems. However, according to the no free
lunch (NFL) theory, the performance of DE should be
further enhanced to obtain better solutions in some cases.
In this paper, we propose an enhanced differential evolution
with elite chaotic local search, called DEECL, which uses a
chaotic search strategy based on the heuristic information



Computational Intelligence and Neuroscience 7

DE
DEwEC

DEwPA
DEECL

DE
DEwEC

DEwPA
DEECL

0 5 10 15

0

20

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0
10
20
30

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

2

4

6

8

10

12

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

5 10 150

0

2

4

6

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

5

10

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

5

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

20

40

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

20

40

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

f1 f2

f6 f7

f8 f10

f12 f13

−100

−20

−40

−60

−80

−10

−20

−30

−40

−50

−60

−2

−2

−4

−6

−8

−10

−15

−20

−25

−30

−35

−5

−5

−20

−40

−60

−80

−20

−40

−60

−80

×104

×104 ×104

×104

×104×104

×104×104

Figure 1: Evolution of the average function error values derived from DE, DEwEC, DEwPA, and DEECL versus the number of FES.



8 Computational Intelligence and Neuroscience

0 5 10 15

0

20

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0
10
20
30

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

2

4

6

8

10

12

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

5 10 150

0

2

4

6

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

5

10

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

DE
jDE
ODE

DECLS
 DEECL

DE
jDE
ODE

DECLS
 DEECL

0 5 10 15

0

5

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

20

40

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

0 5 10 15

0

20

40

FES

Av
er

ag
e f

un
ct

io
n 

er
ro

r v
al

ue
 (l

og
)

f1 f2

f6 f7

f8 f10

f12 f13

−100

−20

−40

−60

−80

−10

−20

−30

−40

−50

−60

−2

−2

−4

−6

−8

−10

−15

−20

−25

−30

−35

−5

−5

−20

−40

−60

−80

−20

−40

−60

−80

×104

×104 ×104

×104

×104×104

×104×104

Figure 2: Evolution of the average function error values derived from DE, jDE, ODE, DECLS, and DEECL versus the number of FES.



Computational Intelligence and Neuroscience 9

Ta
bl
e
3:
Ex

pe
rim

en
ta
lr
es
ul
ts
of

D
E,

jD
E,

O
D
E,

D
EC

LS
,a
nd

D
EE

CL
ov
er

30
in
de
pe
nd

en
tr
un

sf
or

th
e1
3
te
st
fu
nc
tio

ns
.

Fu
nc
tio

n
D
E

jD
E

O
D
E

D
EC

LS
D
EE

CL
M
ea
n
±
St
d
D
ev

M
ea
n
±
St
d
D
ev

M
ea
n
±
St
d
D
ev

M
ea
n
±
St
d
D
ev

M
ea
n
±
St
d
D
ev

𝑓
1

2
.2
3
𝐸
−
1
6
±
2
.5
0
𝐸
−
1
6
+

1
.5
1
𝐸
−
3
1
±
1
.8
2
𝐸
−
3
1
+

6
.2
0
𝐸
−
2
9
±
3
.9
2
𝐸
−
2
9
+

2
.0
1
𝐸
−
3
1
±
2
.2
2
𝐸
−
3
1
+

6.
89
E
−
38
±
6.
06

E
−
38

𝑓
2

2
.8
6
𝐸
−
0
8
±
1
.2
6
𝐸
−
0
8
+

9
.1
3
𝐸
−
1
9
±
3
.7
0
𝐸
−
1
9
+

4
.3
1
𝐸
−
0
9
±
2
.6
1
𝐸
−
0
9
+

1
.4
6
𝐸
−
1
8
±
9
.3
6
𝐸
−
1
9
+

1.
74
E
−
22
±
1.
21

E
−
22

𝑓
3

1
.8
8
𝐸
−
0
1
±
6
.1
2
𝐸
−
0
2
+

1
.8
5
𝐸
−
0
2
±
6
.4
5
𝐸
−
0
3
≈

1
.4
5
𝐸
−
0
1
±
1
.1
7
𝐸
−
0
1
+

5.
39
E
−
04
±
5.
78

E
−
04
−

2
.4
2
𝐸
−
0
2
±
3
.4
4
𝐸
−
0
2

𝑓
4

1
.7
0
𝐸
−
0
1
±
2
.1
3
𝐸
−
0
1
+

3
.4
6
𝐸
−
0
4
±
1
.2
3
𝐸
−
0
4
+

1.
14
E
−
07
±
3.
43

E
−
07
−

3
.3
1
𝐸
−
0
5
±
2
.0
0
𝐸
−
0
5
≈

4
.0
6
𝐸
−
0
5
±
3
.0
5
𝐸
−
0
5

𝑓
5

1
.3
9
𝐸
+
0
1
±
8
.7
4
𝐸
−
0
1
−

1
.8
7
𝐸
+
0
1
±
5
.4
7
𝐸
−
0
1
−

2
.2
9
𝐸
+
0
1
±
1
.2
8
𝐸
+
0
0
−

5.
50
E
−
05
±
1.
45

E
−
04
−

2
.9
5
𝐸
+
0
1
±
2
.2
1
𝐸
+
0
1

𝑓
6

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00

𝑓
7

8
.8
2
𝐸
−
0
3
±
2
.6
1
𝐸
−
0
3
+

5
.8
9
𝐸
−
0
3
±
1
.4
5
𝐸
−
0
3
+

1
.7
8
𝐸
−
0
3
±
6
.2
1
𝐸
−
0
4
+

2
.4
5
𝐸
−
0
3
±
2
.3
6
𝐸
−
0
3
+

1.
17
E
−
03
±
6.
52

E
−
04

𝑓
8

7
.3
1
𝐸
+
0
3
±
3
.7
5
𝐸
+
0
2
+

1.
34
E
−
02
±
1.
82

E
−
12
≈

7
.5
1
𝐸
+
0
3
±
2
.3
6
𝐸
+
0
2
+

1.
34
E
−
02
±
1.
82

E
−
12
≈

1.
34
E
−
02
±
1.
19

E
−
12

𝑓
9

1
.7
7
𝐸
+
0
2
±
1
.1
0
𝐸
+
0
1
+

0.
00
E
+
00
±
0.
00

E
+
00
≈

7
.8
3
𝐸
+
0
1
±
2
.2
1
𝐸
+
0
1
+

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00

𝑓
10

5
.9
3
𝐸
−
0
9
±
3
.1
0
𝐸
−
0
9
+

5
.4
2
𝐸
−
1
5
±
1
.7
4
𝐸
−
1
5
+

8
.9
7
𝐸
−
1
5
±
1
.7
4
𝐸
−
1
5
+

6
.4
8
𝐸
−
1
5
±
1
.6
3
𝐸
−
1
5
+

4.
00
E
−
15
±
0.
00

E
+
00

𝑓
11

6
.3
3
𝐸
−
1
6
±
1
.1
6
𝐸
−
1
5
+

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00
≈

0.
00
E
+
00
±
0.
00

E
+
00

𝑓
12

2
.2
0
𝐸
−
1
7
±
1
.8
1
𝐸
−
1
7
+

1
.9
7
𝐸
−
3
2
±
8
.1
5
𝐸
−
3
3
+

2
.2
3
𝐸
−
2
9
±
2
.3
2
𝐸
−
2
9
+

1
.6
4
𝐸
−
3
2
±
1
.5
5
𝐸
−
3
3
+

1.
57
E
−
32
±
2.
74

E
−
48

𝑓
13

8
.2
6
𝐸
−
1
7
±
3
.5
9
𝐸
−
1
7
+

2
.0
9
𝐸
−
3
1
±
2
.9
3
𝐸
−
3
1
+

2
.5
7
𝐸
−
2
9
±
3
.0
7
𝐸
−
2
9
+

3
.2
5
𝐸
−
3
2
±
2
.3
7
𝐸
−
3
2
+

1.
36
E
−
32
±
3.
70

E
−
34

−
1

1
2

2
+

11
7

9
6

≈
1

5
2

5



10 Computational Intelligence and Neuroscience

Table 4: Average rankings of the five algorithms for the 13 test
functions achieved by Friedman test.

Algorithm Ranking
DEECL 2.04
DECLS 2.27
jDE 2.65
ODE 3.50
DE 4.54

from the elite individuals to promote the exploitation power
and employs a simple and effective parameter adaptation
mechanism to enhance the robustness. In the experiments,
we use 13 classical test functions that are widely used in
the evolutionary computation community to evaluate the
performance of DEECL. The experimental results show that
DEECL can outperform the conventional DE, jDE, ODE, and
DECLS on the majority of the test functions.

In the future, we will apply DEECL to handle more com-
plex optimization problems, such as high-dimensional opti-
mization problems and multiobjective optimization prob-
lems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (nos. 61364025, 61462036, and
41261093), by the Natural Science Foundation of Jiangxi,
China (nos. 20151BAB217010 and 20151BAB201015), by the
EducationDepartment Youth Scientific Research Foundation
of Jiangxi Province, China (nos. GJJ14456 and GJJ13378).

References

[1] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[2] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[3] J. Vesterstrøm and R. Thomsen, “A comparative study of differ-
ential evolution, particle swarm optimization, and evolutionary
algorithms on numerical benchmark problems,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’04), vol. 2,
pp. 1980–1987, IEEE, June 2004.

[4] L. Wang and L.-P. Li, “Fixed-structure𝐻
∞
controller synthesis

based on differential evolution with level comparison,” IEEE
Transactions on Evolutionary Computation, vol. 15, no. 1, pp.
120–129, 2011.

[5] F. Mart́ın, L. Moreno, M. L. Muñoz, and D. Blanco, “Initial
population size estimation for a differential-evolution-based

global localization filter,” International Journal of Robotics and
Automation, vol. 29, no. 3, 2014.

[6] F. Neri and V. Tirronen, “Recent advances in differential evolu-
tion: a survey and experimental analysis,” Artificial Intelligence
Review, vol. 33, no. 1-2, pp. 61–106, 2010.

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[8] W. Gong, Z. Cai, C. X. Ling, and C. Li, “Enhanced differential
evolution with adaptive strategies for numerical optimization,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 41, no. 2, pp. 397–413, 2011.

[9] H. Wang, S. Rahnamayan, H. Sun, and M. G. H. Omran,
“Gaussian bare-bones differential evolution,” IEEE Transactions
on Cybernetics, vol. 43, no. 2, pp. 634–647, 2013.

[10] A. Deb, J. S. Roy, and B. Gupta, “Performance comparison of
differential evolution, particle swarm optimization and genetic
algorithm in the design of circularly polarized microstrip
antennas,” IEEE Transactions on Antennas and Propagation, vol.
62, no. 8, pp. 3920–3928, 2014.

[11] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[12] J. Zhang and A. C. Sanderson, “Jade: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[13] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, andM. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters
and mutation strategies,” Applied Soft Computing Journal, vol.
11, no. 2, pp. 1679–1696, 2011.

[14] R. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition-based differential evolution,” IEEETransactions on
Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[15] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-
based differential evolution for solving high-dimensional con-
tinuous optimization problems,” Soft Computing, vol. 15, no. 11,
pp. 2127–2140, 2011.

[16] D. Jia, G. Zheng, andM. Khurram Khan, “An effective memetic
differential evolution algorithm based on chaotic local search,”
Information Sciences, vol. 181, no. 15, pp. 3175–3187, 2011.

[17] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control param-
eters,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 55–66, 2011.

[18] D. H.Wolpert andW.G.Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[19] N. Noman andH. Iba, “Accelerating differential evolution using
an adaptive local search,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 1, pp. 107–125, 2008.

[20] Q.-K. Pan, P. N. Suganthan, L.Wang, L. Gao, and R.Mallipeddi,
“A differential evolution algorithm with self-adapting strategy
and control parameters,” Computers and Operations Research,
vol. 38, no. 1, pp. 394–408, 2011.

[21] D. Kranjcic and G. Stumberger, “Differential evolution-based
identification of the nonlinear kaplan turbine model,” IEEE
Transactions on Energy Conversion, vol. 29, no. 1, pp. 178–187,
2014.



Computational Intelligence and Neuroscience 11

[22] Q.-K. Pan, L. Wang, L. Gao, and W. D. Li, “An effective hybrid
discrete differential evolution algorithm for the flow shop
scheduling with intermediate buffers,” Information Sciences, vol.
181, no. 3, pp. 668–685, 2011.

[23] L. X. Tang, Y. Zhao, and J. Y. Liu, “An improved differen-
tial evolution algorithm for practical dynamic scheduling in
steelmaking-continuous casting production,” IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 2, pp. 209–225,
2014.

[24] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar,
“Differential evolution using a neighborhood-based mutation
operator,” IEEE Transactions on Evolutionary Computation, vol.
13, no. 3, pp. 526–553, 2009.

[25] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Pla-
gianakos, andM. N. Vrahatis, “Enhancing differential evolution
utilizing proximity-based mutation operators,” IEEE Transac-
tions on Evolutionary Computation, vol. 15, no. 1, pp. 99–119,
2011.

[26] S. Kundu, S. Das, A. V. Vasilakos, and S. Biswas, “A modi-
fied differential evolution-based combined routing and sleep
scheduling scheme for lifetime maximization of wireless sensor
networks,” Soft Computing, vol. 19, no. 3, pp. 637–659, 2014.

[27] T. Bhadra and S. Bandyopadhyay, “Unsupervised feature selec-
tion using an improved version of differential evolution,” Expert
Systems with Applications, vol. 42, no. 8, pp. 4042–4053, 2015.

[28] Y.Wang, Z. Cai, and Q. Zhang, “Enhancing the search ability of
differential evolution through orthogonal crossover,” Informa-
tion Sciences, vol. 185, no. 1, pp. 153–177, 2012.

[29] B. Alatas, “Chaotic bee colony algorithms for global numerical
optimization,” Expert Systems with Applications, vol. 37, no. 8,
pp. 5682–5687, 2010.

[30] B. Li and W. S. Jiang, “Optimizing complex functions by chaos
search,” Cybernetics & Systems, vol. 29, no. 4, pp. 409–419, 1998.

[31] Y. He, Q. Xu, S. Yang, and L. Liao, “Reservoir flood control oper-
ation based on chaotic particle swarm optimization algorithm,”
Applied Mathematical Modelling, vol. 38, no. 17, pp. 4480–4492,
2014.

[32] B. Liu, L.Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos,
Solitons & Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[33] T. Xiang, X. Liao, and K.-W. Wong, “An improved particle
swarm optimization algorithm combined with piecewise linear
chaotic map,” Applied Mathematics and Computation, vol. 190,
no. 2, pp. 1637–1645, 2007.

[34] X. F. Yan, D. Z. Chen, and S. X. Hu, “Chaos-genetic algorithms
for optimizing the operating conditions based on RBF-PLS
model,” Computers & Chemical Engineering, vol. 27, no. 10, pp.
1393–1404, 2003.

[35] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

[36] Y.-W. Shang andY.-H.Qiu, “A note on the extended Rosenbrock
function,” Evolutionary Computation, vol. 14, no. 1, pp. 119–126,
2006.

[37] S. Garcia and F. Herrera, “An extension on statistical com-
parisons of classifiers over multiple data sets for all pairwise
comparisons,” Journal of Machine Learning Research, vol. 9, pp.
2677–2694, 2008.

[38] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 Special

Session on Real Parameter Optimization,” Journal of Heuristics,
vol. 15, no. 6, pp. 617–644, 2009.

[39] H.Wang,H. Sun, C. Li, S. Rahnamayan, and J.-S. Pan, “Diversity
enhanced particle swarm optimization with neighborhood
search,” Information Sciences, vol. 223, pp. 119–135, 2013.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


