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The periodic terms of Brouwer’s gravity solution are reconstructed in a nonsingular set of variables which are derived from the
well-known polar-nodal variables. This change does not affect the essence of the solution, which still keeps all the benefits of the
action-angle variables approach and yields two major improvements. Namely, the periodic corrections of Brouwer’s solution are
now valid for any eccentricity below one and any inclination except the critical inclination and, besides, are significantly simpler
than the nonsingular corrections in Lyddane’s reformulation of Brouwer’s theory.

1. Introduction

Concern in space situational awareness by an increasing
number of satellite operators and in particular the necessity of
timely scheduling collision avoidance maneuvers motivates
current interest in improving the capabilities of orbit predic-
tion programs.

Satellite short-term prediction is customarily carried out
with SGP4 [1], an analytical solution that has its roots in
Brouwer’s celebrated gravity solution to the artificial satellite
problem [2] and which is optimized for the propagation of
satellite ephemeris using the element sets in the two-line
format specified by the North American Aerospace Defense
Command [3, 4]. However, it has been claimed that SGP4
may lack sufficient capabilities for conjunction analysis tasks
[5–7]. Besides, terms that may be missing in SGP4 could
be responsible for detected noteworthy along-track errors in
the SGP4 predictions for GPS satellites [8, 9]. The known
limitations of predicted ephemeris from two-line elements
motivate the current development of new algorithms as, for
instance, those in the software STELA of the Centre National
d’Etudes Spatiales [10].

Brouwer found his solution using a perturbation
approach, the so-called von Zeipel method [11, 12], which
splits the satellite motion into secular terms, long-period
corrections, related to the evolution of the argument of

the perigee, and short-period corrections, related to the
satellite’s mean motion. For the secular terms, Brouwer’s
theory includes gravitational effects up to the second order
of 𝐽
2
, the second degree zonal harmonic coefficient of the

spherical harmonics expansion of the geopotential, which for
the Earth is of the order of one thousandth. But in the case
of periodic corrections the theory is limited to first order
effects of 𝐽

2
. Therefore, the short-period corrections are only

related to the contribution of 𝐽
2
, whereas the long-period

corrections of Brouwer’s gravitational solution include first
order corrections due to the few first zonal harmonics [2].

Brouwer developed his original theory in Delaunay
variables, the canonical counterpart of classical Keplerian
orbital elements, which, like them, are singular for circular
orbits and equatorial orbits. This fact may cause troubles
in the computation of the periodic corrections for both
low-eccentricity and low-inclination orbits, but the problem
is easily solved by reformulating Brouwer’s gravitational
solution in nonsingular variables as, for instance, Poincaré’s
canonical variables [13]. However, the periodic corrections
either when formulated in Delaunay variables or in Poincaré
variables are made of long trigonometric series, a fact that
very soon motivated efforts in improving their evaluation
[14]. Among the different efforts in improving the evaluation
of Brouwer’s gravitational theory, the use of polar-nodal vari-
ables for computing the periodic corrections was advocated
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by different authors [15–17].These variables, also calledHill or
Whittaker variables, are valid for orbits with any eccentricity
below 1, but still they are singular in the case of equatorial
orbits, a fact that may cause trouble in the evaluation of the
periodic corrections of almost equatorial orbits.

It is worthy to remember that Brouwer’s gravitational the-
ory breaks at the critical inclination of 63.4 degrees. Indeed,
since the secular terms in Brouwer’s perturbation approach
are computed by averaging periodic effects, resonant incli-
nation orbits and, in particular, the critical inclination are
excluded from the field of applicability of Brouwer’s solution
(see [18] and references therein).

The efficient evaluation of the periodic corrections is
even more critical when taking into account second order
corrections, which notably improve the performance of the
perturbation theory [19] but for which the trigonometric
series are significantly longer [15], and hence the advantages
of using polar-nodal variables are more evident. Besides, the
benefits of formulating the periodic corrections in polar-
nodal variables are not limited to the case of geopotential
perturbations, and this set of canonical variables has been
revealed very efficient in the evaluation of periodic correc-
tions due to third-body perturbations [20].

To avoid the troubles related to the evaluation of the
long-period corrections of low-inclination orbits, Aksnes’
suggestion of computing the corrections for the satellite’s
latitude and (true) longitude for these orbits [17] is followed
in the present research. Indeed, without limiting to the
case of low-inclination orbits, the periodic corrections are
rewritten in a set of noncanonical variables which are directly
constructed from the polar-nodal ones. These variables are
nonsingular and provide a more efficient evaluation of the
periodic corrections than the corresponding corrections in
Poincaré variables which are used in Lyddane’s modifications
to Brouwer’s gravitational solution.

The paper is organized as follows. For completeness,
the construction of short-period corrections in polar-nodal
variables of Brouwer’s gravitational solution is recalled in
Section 2, while the construction of long-period corrections
in polar-nodal variables is illustrated in Section 3. Then,
the new set of nonsingular, noncanonical variables is intro-
duced in Section 4, and the long-period and short-period
corrections are reformulated in the nonsingular variables.
The transformations of the nonsingular elements from and
to Cartesian variables are free from singularities and are also
documented in Section 4.

2. Short-Period Elimination

Since this research deals only with perturbations of gravita-
tional origin, the problem of disturbed Keplerian motion can
take benefit fromHamiltonian formulation.Thus, themotion
of a massless particle in the gravitational field of the Earth is
derived from the Hamiltonian

H = H
0
+D, (1)

where H
0
represents the integrable Keplerian Hamiltonian

and D is the disturbing function, which comprises the

noncentralities of the geopotential. From the usual solution of
Laplace’s equation in spherical coordinates, the forces model
is further limited to the zonal harmonics case, in which the
disturbing function is written as follows:

D = −
𝜇

𝑟
∑

𝑚≥2

(
𝛼

𝑟
)

𝑚

𝐶
𝑚,0

𝑃
𝑚,0

(sin𝜑) , (2)

where 𝜇 is the Earth’s gravitational parameter, 𝛼 is the Earths’
equatorial radius, 𝑟 is the radial distance from the Earth’s
center of mass, 𝜑 is latitude, 𝑃

𝑚,0
are Legendre polynomials of

degree𝑚, and𝐶
𝑚,0

= −𝐽
𝑚
are corresponding zonal harmonic

coefficients.
The problem of small inclinations in Brouwer’s solution is

related to the effects of odd zonal harmonics, so to illustrate
this case it is enough to consider the impact of 𝐶

3,0
, in

addition to the main problem, and hence the zonal gravita-
tional potential in (2) is further truncated to the degree 𝑚 =

3. Besides, because of the different orders of the harmonic
coefficients, where 𝐽

3
= O(𝐽

2

2
), it is found convenient to make

the Hamiltonian perturbative arrangement

H = 𝐻
0,0

+ 𝐻
1,0

+
1

2
𝐻
2,0

, (3)

in which

𝐻
0,0

= −
𝜇

2𝑎
,

𝐻
1,0

=
𝜇

𝑟

1

4
𝐶
2,0

𝛼
2

𝑟2
[2 − 3𝑠

2
+ 3𝑠
2 cos (2𝑓 + 2𝜔)] ,

𝐻
2,0

=
𝜇

𝑟

1

2
𝐶
3,0

𝛼
3

𝑟3

⋅ 𝑠 [6 (1 −
5

4
𝑠
2
) sin (𝑓 + 𝜔) +

5

2
𝑠
2 sin (3𝑓 + 3𝜔)] ,

(4)

where the relation sin𝜑 = sin 𝐼 sin(𝑓+𝜔) has been used, with
𝐼 being the orbital inclination, 𝜔 the argument of the perigee,
and 𝑓 the true anomaly; 𝑠 and 𝑐 are abbreviations for the sine
and cosine of the inclination, respectively, 𝑎 is the semimajor
axis, and, in consequence with the Hamiltonian formulation,
all the symbols, that is to say, 𝑎, 𝑟, 𝜔, 𝑓, and 𝐼, are assumed to
be functions of some set of canonical variables.

In particular, Brouwer finds a transformation from “old”
to “new” (or primes) variables, such that the Hamiltonian
in the new variables only depends on momenta, whereas
the angles have been averaged. Therefore, it relies on the
action-angle variables of the Kepler problem, the so-called
Delaunay variables, namely, the mean anomaly ℓ and its
conjugate momentum 𝐿 = √𝜇𝑎 (the Delaunay action), the
argument of the perigee 𝑔 = 𝜔 and its conjugate momentum
𝐺 = 𝐿√1 − 𝑒2 (the total angular momentum), where 𝑒 is the
orbital eccentricity, and the argument of the node ℎ and its
conjugate momentum 𝐻 = 𝐺 cos 𝐼 (the polar component
of the angular momentum). By using this canonical set it is
simple to see that ℎ is cyclic in (3) and, therefore, 𝐻 is an
integral of the zonal problem.

The Hamiltonian reduction of (3) by perturbation meth-
ods is thoroughly documented in the literature, and hence
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results are provided without giving details on the method.
In particular, the computations carried out were based on
the implementation of the Lie transforms method known as
Deprit’s triangle algorithm, which is nowadays considered
standard for Hamiltonian perturbations. Readers interested
in the Lie transforms method can find all the required details
in the original papers of Hori [21] and Deprit [22], as well as
inmodern celestial mechanics textbooks like [23, 24] or other
specialized books as [12]. Note that, following tradition, the
notation in prime variables is avoided in what follows when
there is no risk of confusion.

At the first order of the perturbation approach, Deprit’s
triangle gives

𝐻
0,1

= {𝐻
0,0

, 𝑈
1
} + 𝐻
1,0

, (5)

where {𝑃, 𝑄} notes the Poisson bracket of two functions 𝑃

and 𝑄 of the canonical variables, which in this case are the
Delaunay variables. In order to obtain Brouwer’s solution, the
newHamiltonian term𝐻

0,1
is chosen as the averaging of𝐻

1,0

over the mean anomaly

𝐻
0,1

= −𝐻
0,0

𝜖
2
𝜂 (4 − 6𝑠

2
) , (6)

where 𝜂 is the eccentricity function

𝜂 =
𝐺

𝐿
= √1 − 𝑒2, (7)

and, for the sake of abbreviating notation, the function 𝜖
2
≡

𝜖
2
(𝐺; 𝜇) has been introduced, which is given by

𝜖
2
=

1

4
𝐶
2,0

𝛼
2

𝑝2
, (8)

where 𝑝 = 𝐺
2
/𝜇 is the semilatus rectum.

The corresponding term 𝑈
1
of the generating function is

computed from (5) by quadrature

𝑈
1
=

1

𝑛
∫ (𝐻
1,0

− 𝐻
0,1

) dℓ, (9)

where 𝑛 = 𝜇
2
/𝐿
3 is the mean motion. In view of the

differential relation 𝑎
2
𝜂dℓ = 𝑟

2d𝑓, (9) can be integrated in
closed form of the eccentricity to give

𝑈
1
=

1

2
𝐺𝜖
2
[(4 − 6𝑠

2
) (𝜙 + 𝑒 sin𝑓)

+ 3𝑒𝑠
2 sin (𝑓 + 2𝑔) + 3𝑠

2 sin (2𝑓 + 2𝑔)

+ 𝑒𝑠
2 sin (3𝑓 + 2𝑔)] ,

(10)

where 𝜙 ≡ 𝜙(ℓ, 𝐿, 𝐺) = 𝑓 − ℓ is the equation of the center
(cf. Equation (15) of [2], keeping in mind the different sign
convention in the Hamilton equations).

Up to the first order, the transformation equations of the
averaging are computed from

𝜌 = 𝜌
󸀠
+ {𝜌,𝑊

1
} , (11)

where, here, 𝜌 ∈ (ℓ, 𝑔, ℎ, 𝐿, 𝐺,𝐻) and𝑊
1
= 𝑈
1
.

Corresponding transformation equations in Delaunay
variables can be expressed as Fourier series which involve
sine and cosine functions of 10 different arguments of the
form 𝛽 = 𝑘𝑓 + 2𝑚𝑔 with 𝑘 = 0, . . . , 5 and 𝑚 = −1, 0, 1

(cf. the first order terms in Equations (3.12) and (3.13) of
[15], for instance). However, important simplifications can be
achieved by using the function

𝑟 =
𝑝

1 + 𝑒 cos𝑓
, (12)

instead of wholly expanding the transformation equations
as Fourier series. In this way, the number of trigonometric
arguments is reduced to just four: 𝑓, 𝑓 + 2𝑔, 2𝑓 + 2𝑔, and
3𝑓 + 2𝑔 (cf. Equations (20) and (21) of [2]).

Alternatively, as pointed out by Izsak [16], the generating
function 𝑈

1
can be expressed in the canonical set of polar-

nodal variables (𝑟, 𝜃, ], 𝑅, Θ,𝑁), which stand for the radial
distance, the argument of latitude, the argument of the
node, the radial velocity, the total angular momentum, and
the polar component of the angular momentum. Rewriting
(10) in polar-nodal variables as 𝑉

1
≡ 𝑈
1
(𝑟, 𝜃, ], 𝑅, Θ,𝑁) is

straightforward, leading to

𝑉
1
= 𝜖
2

𝛼
2

𝑝2
Θ[(2 − 3𝑠

2
) (𝜙 + 𝜎) +

1

2
(3 + 4𝜅) 𝑠

2 sin 2𝜃

− 𝜎𝑠
2 cos 2𝜃] ,

(13)

where the functions

𝜅 ≡ 𝜅 (𝑟, Θ; 𝜇) =
𝑝

𝑟
− 1,

𝜎 ≡ 𝜎 (𝑅,Θ; 𝜇) =
𝑝𝑅

Θ

(14)

are the projections of the eccentricity vector in the orbital
frame when written in polar-nodal variables, which are
trivially derived from (12) and from its time derivative

𝑅 = (
𝐺

𝑝
) 𝑒 sin𝑓. (15)

Note that (13) differs from Equation (5) of [16] in the
sign; however, both equations are equivalent because of the
different sign convention used in the derivation of Hamilton
equations.

The first order transformation equations of the short-
period averaging in polar-nodal variables are obtained, again,
from (11), where, now, 𝜌 ∈ (𝑟, 𝜃, ], 𝑅, Θ,𝑁) and 𝑊

1
= 𝑉
1
. In

this case, the equation of the center is 𝜙 ≡ 𝜙(𝑟, 𝑅, Θ), and, in
particular, the partial derivatives

𝜕𝜙

𝜕𝑟
=

𝜎

𝑟
(
1 + 𝜅

1 + 𝜂
+

𝜂

1 + 𝜅
) ,

𝜕𝜙

𝜕𝑅
=

𝜎

𝑅
(

𝜅

1 + 𝜂
+

2𝜂

1 + 𝜅
) ,

𝜕𝜙

𝜕Θ
= −

𝜎

Θ

2 + 𝜅

1 + 𝜂

(16)

are needed in the computation of the Poisson brackets.
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Hence, it is easily obtained that

Δ𝑟 = 𝜖
2
𝑝[(2 − 3𝑠

2
) (

𝜅

1 + 𝜂
+

2𝜂

1 + 𝜅
+ 1) − 𝑠

2

⋅ cos 2𝜃] ,

(17)

Δ𝜃 = 𝜖
2
{−3 (4 − 5𝑠

2
) 𝜙 + [3 −

7

2
𝑠
2
+ (4 − 6𝑠

2
) 𝜅]

⋅ sin 2𝜃 − 2𝜎 [5 − 6𝑠
2
+

2 + 𝜅

1 + 𝜂
(1 −

3

2
𝑠
2
)

+ (1 − 2𝑠
2
) cos 2𝜃]} ,

(18)

Δ] = 𝜖
2
𝑐 [6𝜙 − (4𝜅 + 3) sin 2𝜃 + 2𝜎 (3 + cos 2𝜃)] , (19)

Δ𝑅 = 𝜖
2

Θ

𝑝
{2 (1 + 𝜅)

2
𝑠
2 sin 2𝜃 − (2 − 3𝑠

2
) 𝜎 [𝜂

+
(1 + 𝜅)

2

1 + 𝜂
]} ,

(20)

ΔΘ = 𝜖
2
Θ𝑠
2
[(3 + 4𝜅) cos 2𝜃 + 2𝜎 sin 2𝜃] , (21)

Δ𝑁 = 0, (22)

which must be evaluated in prime variables for direct cor-
rections Δ𝜌

󸀠
= 𝜌 − 𝜌

󸀠 and in original variables for inverse
corrections Δ𝜌 = 𝜌 − 𝜌

󸀠. Remarkably, now the evaluation
of the corrections only requires dealing with sine and cosine
functions of the single argument 2𝜃. Note that the evaluation
of the equation of the center is required in (18) and (19). It is
done using Kepler equation 𝜙 = 𝑓−ℓ = 𝑓−𝑢+𝑒 sin 𝑢, where

𝑢 = 2 arctan√
1 − 𝑒

1 + 𝑒
tan

𝑓

2
, (23)

𝑒 = √𝜅2 + 𝜎2, and 𝑓 is unambiguously computed from
cos𝑓 = 𝜅/𝑒 and sin𝑓 = 𝜎/𝑒.

The second order of Deprit’s triangle gives

𝐻
0,2

= {𝐻
0,0

, 𝑈
2
} + {𝐻

0,1
, 𝑈
1
} + {𝐻

1,0
, 𝑈
1
} + 𝐻
2,0

, (24)

and the new Hamiltonian term 𝐻
0,2

is chosen as the average
of𝐻
2,0

plus the computable Poisson brackets to give

𝐻
0,2

= 𝐻
0,0

{
3

2
𝜖
2

2
[5 (8 − 16𝑠

2
+ 7𝑠
4
) + 𝜂 (4 − 6𝑠

2
)
2

− 𝜂
2
(8 − 8𝑠

2
− 5𝑠
4
) − 2 (14 − 15𝑠

2
) 𝑠
2
𝑒
2 cos 2𝑔] 𝜂

−
3

2
𝐶
3,0

𝛼
3

𝑝3
(4 − 5𝑠

2
) 𝑠𝜂𝑒 sin𝑔} .

(25)

Second order corrections to the orbital elements are of the
order of the square of 𝐽

2
and are normally omitted.Therefore,

there is no need for solving𝑈
2
from (24) and the short-period

transformation limits to the first order corrections in (17)–
(22), whose simple inspection shows that they are free from
singularities either for equatorial or circular orbits.

3. Long-Period Elimination

After the mean anomaly has been averaged, the long-period
Hamiltonian is

K = 𝐾
0,0

+ 𝐾
1,0

+
1

2
𝐾
2,0

, (26)

where 𝐾
0,0

= 𝐻
0,0
, 𝐾
1,0

= 𝐻
0,1
, 𝐾
2,0

= 𝐻
0,2
, which are

expressed in prime elements, although primes have been
dropped for alleviating notation.

In the new notation, the first order of Deprit’s triangle in
(5) is rewritten as

𝐾
0,1

= {𝐾
0,0

, 𝑋
1
} + 𝐾
1,0

. (27)

Because 𝐾
1,0

in (26) does not depend on 𝑔, the new first
order Hamiltonian term is chosen, 𝐾

0,1
= 𝐾
1,0
, and hence

{𝐾
0,0

, 𝑋
1
} = 0 from (27). However, this does not mean to

make null the first order term 𝑋
1
of the long-period gener-

ating function. Quite on the contrary, since the generating
function of the long-period averaging does not depend on
ℓ, then {𝐾

0,0
, 𝑋
1
} necessarily vanishes in (27). Therefore, the

term 𝑋
1
can only be determined at the next order of the

perturbation algorithm.
The Poisson bracket {𝐾

0,0
, 𝑋
2
} vanishes likewise, and the

second order of Deprit’s triangle in (24) is simplified in this
case to

𝐾
0,2

= 2 {𝐾
0,1

, 𝑋
1
} + 𝐾
2,0

, (28)

where the term 𝐾
0,2

is chosen as the average of 𝐾
2,0

over the
argument of the perigee. That is,

𝐾
0,2

= 𝐾
0,0

3

2
𝜖
2

2
𝜂 [5 (8 − 16𝑠

2
+ 7𝑠
4
) + (4 − 6𝑠

2
)
2

𝜂

− (8 − 8𝑠
2
− 5𝑠
4
) 𝜂
2
] .

(29)

It follows that the computation of 𝑋
1
from (28) by a

quadrature is

𝑋
1
=

1

𝑛

2𝑎
2
𝜂
4

3𝛼2 (4 − 5𝑠2) 𝐶
2,0

∫ (𝐾
0,2

− 𝐾
2,0

) d𝑔, (30)

which is trivially solved to give

𝑋
1
= 𝐺(−𝜖

2

14 − 15𝑠
2

4 − 5𝑠2

1

8
𝑠
2
𝑒
2 sin 2𝑔 + 𝜖

3
𝑠𝑒 cos𝑔) , (31)

where, for conciseness, the notation

𝜖
3
=

1

2

𝛼

𝑝

𝐶
3,0

𝐶
2,0

(32)

has been introduced.
Next, the long-period generating function

𝑌
1

= −𝜖
2
Θ𝑠
2 14 − 15𝑠

2

8 (4 − 5𝑠2)
[(𝜅
2
− 𝜎
2
) sin 2𝜃 − 2𝜅𝜎 cos 2𝜃]

+ 𝜖
3
Θ𝑠 (𝜅 cos 𝜃 + 𝜎 sin 𝜃)

(33)
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is obtained by rewriting (31) in polar-nodal variables, and the
first order transformation equations in polar-nodal variables
are obtained again from (11), with 𝜌 ∈ (𝑟, 𝜃, ], 𝑅, Θ,𝑁) and
where now 𝑊

1
is replaced by 𝑌

1
. In this way the long-period

corrections

𝛿𝑟 = 𝑝[𝜖
2
𝑠
2 1 − 15𝑐

2

4 (1 − 5𝑐2)
(𝜅 cos 2𝜃 + 𝜎 sin 2𝜃)

+ 𝜖
3
𝑠 sin 𝜃] ,

(34)

𝛿𝜃 = 𝜖
2

1

2 (1 − 5𝑐2)
2
[(𝑞
2
+ 𝑞
5
𝜅) 𝜎 cos 2𝜃

− (𝑞
1
𝜎
2
+ 𝑞
2
𝜅 + 𝑞
3
𝜅
2
) sin 2𝜃]

+ 𝜖
3
[(

𝜅

𝑠
+ 2𝑠) cos 𝜃 + (

1

𝑠
− 𝑠) 𝜎 sin 𝜃] ,

(35)

𝛿] = 𝜖
2

𝑞
6

4 (1 − 5𝑐2)
2
[(𝜅
2
− 𝜎
2
) sin 2𝜃 − 2𝜅𝜎 cos 2𝜃]

− 𝜖
3

𝑐

𝑠
(𝜅 cos 𝜃 + 𝜎 sin 𝜃) ,

(36)

𝛿𝑅 =
Θ

𝑝
(1 + 𝜅)

2

⋅ [𝜖
2

1 − 15𝑐
2

4 (1 − 5𝑐2)
𝑠
2
(𝜎 cos 2𝜃 − 𝜅 sin 2𝜃)

+ 𝜖
3
𝑠 cos 𝜃] ,

(37)

𝛿Θ = Θ𝜖
2

1 − 15𝑐
2

4 (1 − 5𝑐2)
𝑠
2
[(𝜅
2
− 𝜎
2
) cos 2𝜃

+ 2𝜅𝜎 sin 2𝜃] + Θ𝜖
3
𝑠 (𝜅 sin 𝜃 − 𝜎 cos 𝜃) ,

(38)

𝛿𝑁 = 0 (39)

have been obtained, where the inclination polynomials 𝑞
𝑗
,

𝑗 = 1, . . . , 6, are given in (∗). Equations (34)–(39) must be
evaluated in second prime variables for direct corrections
Δ𝜌
󸀠󸀠

= 𝜌
󸀠
− 𝜌
󸀠󸀠 and in prime variables from the inverse

corrections Δ𝜌
󸀠
= 𝜌
󸀠
− 𝜌
󸀠󸀠.

Note that the term 1 − 5𝑐
2 in denominators of (34)–(38)

prevents application of the long-period corrections to orbits
with the critical inclination of 63.4 degrees. This singularity
is not related to the variables used and simply reflects the
fact that inclination resonances are out of the range of
applicability of Brouwer’s gravitational solution (see [18] and
references therein).

Finally, it is worthy to mention that after computing the
double-prime Delaunay variables from the secular terms, the
Kepler equation must be solved to find first 𝑓 and then 𝜃, in

order to compute corresponding double-prime polar-nodal
variables.

Inclination Polynomials. Consider

𝑞
0
= (1 − 15𝑐

2
) (1 − 5𝑐

2
)

𝑞
1
=

1

4
(1 − 43𝑐

2
+ 155𝑐

4
− 225𝑐

6
)

𝑞
2
= 𝑠
2
𝑞
0

𝑞
3
=

1

4
(1 + 𝑐

2
+ 35𝑐
4
+ 75𝑐
6
)

𝑞
5
= 𝑐
2
(11 − 30𝑐

2
+ 75𝑐
4
)

𝑞
6
=

𝑞
5

𝑐

𝑞
7
=

1

4
(1 + 3𝑐

2
− 5𝑐
4
+ 225𝑐

6
)

𝑞
8
=

1

4
(1 − 45𝑐

2
+ 195𝑐

4
− 375𝑐

6
)

𝑞
9
=

1

4
(1 + 75𝑐

4
)

𝑞
10

=
1

4
(1 − 40𝑐

2
+ 75𝑐
4
)

𝑞
11

= 2𝑐
2
(6 − 25𝑐

2
+ 75𝑐
4
)

𝑞
12

= 10𝑐
2

𝑞
13

= 𝑞
0
(1 + 𝑐)

𝑞
14

=
1

4
(1 − 𝑐) (1 − 20𝑐 − 40𝑐

2
+ 75𝑐
4
)

𝑞
15

=
1

4
(1 + 23𝑐 − 20𝑐

2
− 80𝑐
3
+ 75𝑐
4
+ 225𝑐

5
) .

(∗)

4. The Case of Low Inclinations

Due to the contribution of the odd zonal harmonic 𝐶
3,0
, it

happens that 𝛿𝜃 and 𝛿] are singular for equatorial orbits.
However, as the simple inspection of (35) and (36) may
suggest, the trouble in the case of low inclinations is easily
remedied by computing the long-period corrections to the
nonsingular, noncanonical elements (𝜓, 𝜉, 𝜒, 𝑟, 𝑅, Θ), where

𝜓 = 𝜃 + ],

𝜉 = 𝑠 sin 𝜃,

𝜒 = 𝑠 cos 𝜃.

(40)
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Indeed, by simple differentiation,

𝛿𝜓 = 𝛿𝜃 + 𝛿],

𝛿𝜉 = (
𝛿Θ

𝑠
)

𝑐
2

Θ
sin 𝜃 + (𝑠𝛿𝜃) cos 𝜃,

𝛿𝜒 = (
𝛿Θ

𝑠
)

𝑐
2

Θ
cos 𝜃 − (𝑠𝛿𝜃) sin 𝜃,

(41)

where neither (𝛿Θ/𝑠) nor (𝑠𝛿𝜃) are affected by singularities,
as easily checked in (38) and (35), respectively. Alternatively,
because (11) applies to any function of the canonical variables
[22, 25], the corrections in (41) can be computed from
corresponding Poisson brackets, namely,

𝛿𝜓 = {𝜃 + ], 𝑌
1
}

𝛿𝜉 = {𝑠 sin 𝜃, 𝑌
1
} ,

𝛿𝜒 = {𝑠 cos 𝜃, 𝑌
1
} .

(42)

Straightforward manipulations lead to the explicit equations
in the nonsingular variables

𝛿𝜓 =
1

1 + 𝑐
{𝜖
2

⋅
1

2 (1 − 5𝑐2)
[2𝜉𝜒 (𝑞

13
𝜅 + 𝑞
14
𝜅
2
+ 𝑞
15
𝜎
2
)

− 𝜎 (𝜒
2
− 𝜉
2
) (𝑞
13

− 𝑞
6
𝜅)] + 𝜖

3
[(2 + 2𝑐 + 𝜅) 𝜒

− 𝑐𝜎𝜉]} ,

(43)

𝛿𝜉 =
𝜖
2

4 (1 − 5𝑐2)
[𝑃
1
𝜉 + 𝑃
2
(3𝜒
2
− 𝜉
2
) 𝜉 − 𝑃

3
𝜎𝜒

− 𝑃
4
𝜎 (𝜒
2
− 3𝜉
2
) 𝜉] +

1

2
𝜖
3
[2𝑠
2
+ (1 + 𝑐

2
) 𝜅 + (2

+ 𝜅) (𝜒
2
− 𝜉
2
)] ,

(44)

𝛿𝜒 = −
𝜖
2

4 (1 − 5𝑐2)
[𝑃
1
𝜒 + 𝑃
2
(3𝜉
2
− 𝜒
2
) 𝜒 + 𝑃

3
𝜎𝜉

+ 𝑃
4
𝜎 (𝜉
2
− 3𝜒
2
) 𝜉] − 𝜖

3
[𝑐
2
𝜎 + (2 + 𝜅) 𝜒𝜉] ,

(45)

𝛿𝑟 = 𝜖
2

1 − 15𝑐
2

4 (1 − 5𝑐2)
[2𝜎𝜉𝜒 − 𝜅 (𝜉

2
− 𝜒
2
)] + 𝜖

3
𝜉, (46)

𝛿𝑅 =
Θ

𝑝
(1 + 𝜅)

2
{−𝜖
2

1 − 15𝑐
2

4 (1 − 5𝑐2)
[2𝜅𝜉𝜒

+ 𝜎 (𝜉
2
− 𝜒
2
)] + 𝜖

3
𝜒} ,

(47)

𝛿Θ = Θ{𝜖
2

1 − 15𝑐
2

4 (1 − 5𝑐2)
[(𝜅
2
− 𝜎
2
) (𝜒
2
− 𝜉
2
)

+ 4𝜅𝜎𝜒𝜉] + 𝜖
3
(𝜅𝜉 − 𝜎𝜒)} ,

(48)

where the coefficients𝑃
𝑗
(𝑗 = 1, . . . , 4) are given in (∗∗), with

𝑞
𝑗
taken from (∗) and 𝑠

2
= 𝜉
2
+ 𝜒
2 from (40), 𝑐 = √1 − 𝑠2,

and 𝜅 and𝜎 are given in (14). Note the almost symmetric form
of the corrections 𝛿𝜉 and 𝛿𝜒 in (44) and (45), respectively.

Coefficients 𝑃
𝑗
in (44)-(45). Consider

𝑃
1
= 𝑞
2
𝜅 + 𝑞
7
𝜅
2
+ 𝑞
8
𝜎
2

𝑃
2
= 𝑞
0
𝜅 + 𝑞
9
𝜅
2
+ 𝑞
10
𝜎
2

𝑃
3
= 𝑞
2
+ 𝑞
11
𝜅

𝑃
4
= 𝑞
0
+ 𝑞
12
𝜅.

(∗∗)

In the case of the Earth, 𝐽
2

≈ sin22∘, and hence terms
of the order of 𝑠2 and higher can be neglected for the lower
inclination orbits, because they only produce higher order
effects. Therefore, the corrections

𝛿𝜓 = 𝜖
3

1

2
[𝜒 (4 + 𝜅) − 𝜉𝜎] , (49)

𝛿𝜉 = 𝜖
2

7

8
[(𝜅
2
− 𝜎
2
) 𝜒 + 2𝜅𝜎𝜉] − 𝜖

3
𝜎, (50)

𝛿𝜒 = −𝜖
2

7

8
[(𝜅
2
− 𝜎
2
) 𝜉 − 2𝜅𝜎𝜒] + 𝜖

3
𝜅, (51)

𝛿𝑟 = 𝜖
3
𝜉𝑝, (52)

𝛿𝑅 = 𝜖
3
(1 + 𝜅)

2
𝜒
Θ

𝑝
, (53)

𝛿Θ = 𝜖
3
(𝜅𝜉 − 𝜎𝜒)Θ (54)

are straightforwardly derived from (34)–(39). Note that (49)–
(51) have been previously provided by Aksnes [17].

4.1. Transformation from Cartesian Variables. The direct
transformation from nonsingular to Cartesian variables is
obtained by means of the usual rotations applied to the
projections of the position and velocity vectors in the orbital
frame. Thus,

(

𝑥 𝑋

𝑦 𝑌

𝑧 𝑍

) = 𝑅
3
(−]) ∘ 𝑅

1
(−𝐼) ∘ 𝑅

3
(−𝜃)

∘ (

𝑟 ̇𝑟 = 𝑅

0 𝑟 ̇𝜃 =
Θ

𝑟
0 0

) ,

(55)
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where 𝑅
1
, 𝑅
3
are the usual rotation matrices:

𝑅
1
(𝛽) = (

1 0 0

0 cos𝛽 sin𝛽

0 − sin𝛽 cos𝛽
) ,

𝑅
3
(𝛽) = (

cos𝛽 sin𝛽 0

− sin𝛽 cos𝛽 0

0 0 1

) .

(56)

After replacing ] = 𝜓 − 𝜃 and sin 𝜃 = 𝜉/𝑠, cos 𝜃 = 𝜒/𝑠,
in (55), the transformation from nonsingular to Cartesian
variables can be obtained from the sequence

𝑥 = 𝑟 (𝑡 cos𝜓 + 𝑞 sin𝜓) , (57)

𝑦 = 𝑟 (𝑡 sin𝜓 − 𝑞 cos𝜓) , (58)

𝑧 = 𝑟𝜉, (59)

𝑋 = 𝑅 (𝑡 cos𝜓 + 𝑞 sin𝜓) −
Θ

𝑟
(𝑞 cos𝜓 + 𝜏 sin𝜓) , (60)

𝑌 = 𝑅 (𝑡 sin𝜓 − 𝑞 cos𝜓) −
Θ

𝑟
(𝑞 sin𝜓 − 𝜏 cos𝜓) , (61)

𝑍 = 𝑅𝜉 +
Θ

𝑟
𝜒, (62)

where

𝑡 = 1 −
𝜉
2

1 + 𝑐
,

𝜏 = 1 −
𝜒
2

1 + 𝑐
,

𝑞 =
𝜉𝜒

1 + 𝑐

(63)

and 𝑐 = 𝑁/Θ. Remark that 𝑁 is an integral of the zonal
problem and, therefore, its value is always known from given
initial conditions.

The inverse transformation, from Cartesian to nonsingu-
lar variables, is obtained from the sequence

𝑟 = √𝑥2 + 𝑦2 + 𝑧2, (64)

𝑅 =
1

𝑟
(𝑥𝑋 + 𝑦𝑌 + 𝑧𝑍) , (65)

𝑁 = 𝑥𝑌 − 𝑦𝑋, (66)

Θ = √(𝑦𝑍 − 𝑧𝑌)
2

+ (𝑧𝑋 − 𝑥𝑍)
2
+ 𝑁2, (67)

𝜒 =
1

Θ
(𝑟𝑍 − 𝑧𝑅) , (68)

𝜉 =
𝑧

𝑟
, (69)

sin𝜓 =
𝑥𝑞 + 𝑦𝑡

(𝑡2 + 𝑞2) 𝑟
,

cos𝜓 =
𝑥𝑡 − 𝑦𝑞

(𝑡2 + 𝑞2) 𝑟
,

(70)

where the computation of 𝜓, which is unambiguously deter-
mined from (70), requires the previous computation of 𝑡 and
𝑞 from (63).

Note that (63) are singular for equatorial retrograde
orbits, a case in which 𝑐 = −1. However, this drawback is
easily remedied, and the case of almost equatorial, retrograde
orbits is effectively addressed by using the variable 𝜓∗ = 𝜃− ]
instead of𝜓.Then, the corrections in (49)–(54) still apply, yet
the conversion from nonsingular to Cartesian coordinates is
slightly modified. Indeed, 𝑦 and 𝑌 in (58) and (61) must be
replaced by −𝑦 and −𝑌, respectively, whereas changing 𝑐 in
(63) by |𝑐| allows for computing 𝑡 and 𝑞 from this equation in
both cases of direct and retrograde inclinations.

4.2. Short-Period Corrections in Nonsingular Variables. In
spite of the fact that there is no trouble in the evaluation of the
short-period corrections in the case of low-inclination orbits,
itmay be convenient to compute (17)–(22) also in nonsingular
variables. In this case,

Δ𝜓 = 𝜖
2
{(3 + 6𝑐 − 15𝑐

2
) 𝜙 + 𝜎 [2 + 6𝑐 − 12𝑐

2

+ (1 − 3𝑐
2
)
2 + 𝜅

1 + 𝜂
+

2 + 4𝑐

1 + 𝑐
(𝜒
2
− 𝜉
2
)]

−
1 + 7𝑐 + 4 (1 + 3𝑐) 𝜅

1 + 𝑐
𝜉𝜒} ,

Δ𝜉 = 𝜖
2
{𝜎[4𝜒

2
− 12𝑐
2
+ (1 − 3𝑐

2
)
2 + 𝜅

1 + 𝜂
] 𝜒

− [(1 + 4𝜅) 𝜒
2
− (3 + 4𝜅) 𝑐

2
] 𝜉 + 3 (1 − 5𝑐

2
) 𝜙𝜒} ,

Δ𝜒 = −𝜖
2
{𝜎[4𝜒

2
− 8𝑐
2
+ (1 − 3𝑐

2
)
2 + 𝜅

1 + 𝜂
] 𝜉

− [(1 + 4𝜅) 𝜉
2
− (3 + 4𝜅) 𝑐

2
] 𝜒 + 3 (1 − 5𝑐

2
) 𝜙𝜉} ,

Δ𝑟 = 𝜖
2
𝑝[𝜉
2
− 𝜒
2
+ (1 +

𝜅

1 + 𝜂
+

2𝜂

1 + 𝜅
) (2 − 3𝑠

2
)] ,

Δ𝑅 = 𝜖
2

Θ

𝑝
[4 (1 + 𝜅)

2
𝜉𝜒 − 𝜎(𝜂 +

(1 + 𝜅)
2

1 + 𝜂
) (2

− 3𝑠
2
)] ,

ΔΘ = 𝜖
2
Θ[(3 + 4𝜅) (𝜉

2
− 𝜒
2
) − 4𝜎𝜉𝜒] ,

(71)
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and, except for higher order effects, the short-period cor-
rections to the lower inclination orbits may be written in
nonsingular elements as

Δ𝜓 = −2𝜖
2
[3𝜙 + (2 +

2 + 𝜅

1 + 𝜂
)𝜎] , (72)

Δ𝜉 = 𝜖
2
[(3 + 4𝜅) 𝜉 − 2(6 +

2 + 𝜅

1 + 𝜂
)𝜎𝜒 − 12𝜙𝜒] , (73)

Δ𝜒 = −𝜖
2
[(3 + 4𝜅) 𝜒 − 2(4 +

2 + 𝜅

1 + 𝜂
)𝜎𝜉 − 12𝜙𝜉] , (74)

Δ𝑟 = 2𝜖
2
𝑝(1 +

𝜅

1 + 𝜂
+

2𝜂

1 + 𝜅
) , (75)

Δ𝑅 = −2𝜖
2

Θ

𝑝
𝜎[𝜂 +

(1 + 𝜅)
2

1 + 𝜂
] , (76)

ΔΘ = 0. (77)

Working in real arithmetic, a state (𝑥, 𝑦, 0, 𝑋, 𝑌, 0), which
would correspond to an exactly (instantaneous) equatorial
orbit, would be rarely obtained. If this case occurs either in
the original or double prime space, then 𝜉 = 𝜒 = 0. In
consequence, it makes no sense to speak of the node or the
argument of latitude. However, periodic corrections still exist
for 𝜉 and 𝜒. Indeed, while short-period corrections Δ𝜉 and
Δ𝜒 vanish for equatorial orbits, as derived from (73)-(74),
corresponding long-period corrections do not and (50) and
(51) result in

𝛿𝜉 = −𝜖
3
𝜎,

𝛿𝜒 = 𝜖
3
𝜅.

(78)

5. Conclusions

Soon after Brouwer’s solution was announced, the reformu-
lation in polar-nodal variables of both the short-period and
long-period correctionswas suggested as a way of simplifying
their evaluation. Indeed, as odd as it may seem to introduce
short-period terms in the computation of long-period cor-
rections, this artifact prevents the usual deterioration of the
corrections in the case of low-eccentricity orbits, yet the case
of low-inclination orbits must be treated separately. However,
the elementary inspection of the long-period corrections in
polar-nodal variables reveals a simple set of (noncanonical)
elements that may be used for dealing properly with that
case. The new formalism which is nonsingular yields signif-
icantly less computational effort than Lyddane’s nonsingular
variables approach and can be extended to reformulate third-
body periodic corrections in a compact form. The latter is
under development and will be published elsewhere.
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