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This study examines the pursuit-evasion problem for coordinating multiple robotic pursuers to locate and track a nonadversarial
mobile evader in a dynamic environment. Two kinds of pursuit strategies are proposed, one for agents that cooperatewith each other
and the other for agents that operate independently.Thiswork further employs the probabilistic theory to analyze the uncertain state
information about the pursuers and the evaders and uses case-based reasoning to equip agents withmemories and learning abilities.
According to the concepts of assimilation and accommodation, both positive-angle and bevel-angle strategies are developed to
assist agents in adapting to their environment effectively. The case study analysis uses the Recursive Porous Agent Simulation
Toolkit (REPAST) to implement a multiagent system and demonstrates superior performance of the proposed approaches to the
pursuit-evasion game.

1. Introduction

A multiagent system (MAS) comprises a set of agents that
interact with each other. These agents may either share a
common goal or have contradictory objectives [1, 2]. This
work deals with cooperative agents trying to achieve a
common goal. When coordinating multiple agents as a team
for the same task, the agents must have the ability to handle
unknown and uncertain situations and take the success of the
whole team into account.

A multiagent pursuit-evasion game involves guiding one
group of agents (pursuers) to cooperate with each other to
catch another group of agents (evaders). However, this game
varies with the type of environment in which it is played
(e.g., plane, grid, and graph), the knowledge of the players
(e.g., the evaders’ position and strategy), the controllability
of their motions (is there a limit on their speed? and can
they make turns whenever they want?), and the meaning
of a capture (are the evaders to be intercepted, seen, or
surrounded?). Being complex and dynamic, pursuit-evasion
problems are difficult to solve [3]. To address such problem,
the robotics community proposed several models [4, 5]. In

these models, the motion of the evader is usually modeled
by a stochastic process. There has been growing interest in
modeling the game, in which the evader is intelligent and
has certain sensing capabilities [6]. Solutions to the problem
proposed in other studies [7–9] included competitive coevo-
lution, multiagent strategies, and multiagent communication
algorithms.

The hybrid learning approach to RoboCup [10] includes
a coach agent and multiple moving agents. Using case-based
reasoning and genetic algorithms (CBR-GA), the coach agent
decides on a strategy goal and assigns tasks to the moving
agents. Every moving agent then executes its respective task
to achieve the strategy goal. The proposed method also
includes two kinds of agents (pursuer and evader). Unlike the
hybrid learning approach to RoboCup, the proposed method
does not use the coach agent to guide pursuers in catching
evaders.The pursuersmust search for the evaders themselves.
If other evaders/pursuers are not in the sensing area of a
pursuer, the pursuer does not know their positions. The
pursuer thus uses the case-based reasoning with assimilation
and accommodation to catch evaders.
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Owing to the uncertain environment and the dynamic
information of agents at each moment, previous research
has mainly examined how to improve the efficiency of
communication and accuracy in the learning process. In a
different manner, this study focuses on agents with a mental
state and the ability to plan evolution by using strategic
modules and combining learningmethods. Armed with such
capability, the agents can adapt to the dynamic environment.

The rest of the paper is organized as follows. Section 2
reviews the background and related works of pursuit-evasion
problems. Section 3 introduces the agent’s adaptive learning
process. Section 4 describes the case study of the pursuit-
evasion game.The conclusions and directions for future work
are presented in the last section.

2. Background and Related Work

Pursuit-evasion problems have long been studied from the
perspective of differential game theories. Nishimura and
Ikegami observed random swarming and other collective
predator motions in a prey-predator game model [11]. Jim
and Giles [12] proposed a simple effective predator strategy,
which could enable predators to move to the closest capture
position. This strategy does not prove to be very successful
because the predators may block each other when they try
to move to the same capture position. Haynes and Sen
[13] used genetic programming to evolve strategies for both
predators and preys. Hládek et al. [14] developed amultiagent
control system using fuzzy inference for a group of two-
wheeled mobile robots to execute a common task. They
defined a pursuit-evasion task using fuzzy sets to establish a
framework for inserting and updating expert knowledge in
the form of rules by an inference system. Antoniades et al.
[3] proposed several pursuit algorithms for solving complex
multiplayer pursuit-evasion games. Their work revealed that
reducing sensing overlap between pursuers and avoiding
overassignment of pursuers to target locations could improve
the capture time. According to the Contract Net Protocol
(CNP) [15], Zhou et al. [16] proposed a multiagent coopera-
tive pursuit algorithm and extended the CNP by improving
alliance decision and forming dynamic alliance. They used
the support decision matrix that includes credits of agents,
degrees of hookup, and degrees of self-confidence to help
agents make decisions during the negotiation process.

Rao and Georgeff [17] proposed the belief-desire-
intention (BDI) model for the agents in a distributed arti-
ficial intelligence environment. As its name implies, the
BDI agent model involves belief, desire, and intention. In
addition, the assimilation and accommodation approaches
to the pursuit-evasion game were proposed by Piaget [18].
These two approaches equip an agent with a mental state
and the ability to plan an evolution process. Using different
learning methods, the agent can also adapt to the dynamic
environment effectively.

2.1. BDI Agent Model. On the foundation of BDI, Kuo et
al. [19, 20] proposed an agent, which can be completely
specified to fulfill its intentions by events it perceives, actions

it performs, beliefs it holds, goals it adopts, and plans it has.
A goal module describes the goals that an agent may adopt,
as well as the events to which it can respond. A belief module
includes the information about the internal state that an agent
of a certain class holds, the strategies it may perform, and
the environment it is in. A plan module generates the plans
that an agent may employ to achieve its goals. A plan is a
sequence of actions or strategies derived through a reasoning
mechanism.

In the proposed approach, belief denotes the agent’s
knowledge of the environment, including the orientations
and locations of evaders; desire represents the agent’s wish to
catch all evaders, and intention stands for the agent’s plan of
actions.

2.2. Assimilation and Accommodation. According to Piaget’s
cognitive theory [18], each recognition system aims at equi-
libration of the inconsistent information about the world.
Thus, an organism seeks not only adaptation (harmony of
organism and world) but also organization (harmony within
itself). Assimilation and accommodation represent forms
of the maintenance and modification of these cognitive
schemata [21]. Takamuku andArkin [22] applied assimilation
on domestic robots for social learning, enabling the robots to
perform well under various situations. This study proposes
both bevel-angle and positive-angle accommodation strate-
gies for modifying the agent’s cognitive structure.

2.3. Pursuit-Evasion Game. In a pursuit-evasion game, pur-
suers try to capture evaders by besieging them from all
directions in a grid world. The game focuses mainly on the
effectiveness of structures, with varying degrees of pursuers’
cooperation and control, to entrap evaders efficiently [13].
The first mathematical formulation of graph searching was
proposed by Parsons [23] in 1978. The formulation was
inspired by an earlier research by Breisch [24] who put for-
ward an approach to finding an explorer lost in a complicated
system of dark caves.

Furthermore, the pursuit-evasion game varies with dif-
ferent approaches to searching evaders as described in the
following.

2.3.1. Node Search and Mixed Search. Ferrari [25] proposed
a new family for path planning algorithms. One algorithm
is for searching the goal, and the other is for searching the
obstacles. These algorithms can be utilized to parameterize
easily the potential scale length and strength, thus providing
better control over the moving object path.

To address some unique demands from the game domain,
Walsh and Banerjee [26] presented a new algorithm, called
“VRA∗” algorithm, for path finding on game maps, and
proposed also the extension of a postsmoothing technique.
Wong et al. presented a Bee Colony Optimization (BCO)
algorithm for the symmetrical Traveling Salesman Problem
(TSP) [27]. The BCO model is constructed algorithmically
according to the collective intelligence observed from the
foraging behavior of bees. The algorithm is integrated with
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a fixed-radius near-neighbor 2-opt (FRNN 2-opt) heuristic to
further improve prior solutions generated by the BCOmodel.

Raboin et al. [28] consideredmultiagent pursuit scenarios
in which there is a team of tracker agents and a moving target
agent. The trackers observe continuously the target until the
target is at least one tracker’s observation range at the end of
the game. Their study described formalism and algorithms
for game-tree search in partially observable Euclidean space.

Gerkey et al. [29] introduced a new class of searchers,
the 𝜑-searchers, which can be readily instantiated as a
physical mobile robot, and proposed the first complete search
algorithm for a single 𝜑-searcher. They also showed how this
algorithm can be extended to handle multiple searchers and
gave various examples of computed trajectories. Their work
aimed at coordinating teams of robots to execute tasks in
application domains, such as clearing a building, for reasons
of security or safety.

2.3.2. Game Theoretic. Game theoretic approaches to
patrolling have increasingly become an interesting topic in
recent years. Basilico et al. [30] presented a game theoretic
scheme to determine the optimal patrolling strategy for a
mobile robot that operates in environments with arbitrary
topologies.

Prior research [31] proposed a game theory-based
approach, which uses a multirobot system to perform
multitarget search in a dynamic environment. A dynamic
programming equation is employed to estimate the utility
function, which considered the a priori probability map,
travel costs, and current decisions of other robots. According
to this utility function, a utility matrix can be calculated for
an𝑁-robot nonzero-sum game.Thus, pureNash equilibrium
and mixed-strategy equilibrium can be utilized to guide the
robots in making their decisions.

3. Adaptive Agent Learning

This section introduces the adaptive agent model, the refine-
ment of previously developed agent models [19, 20]. This
adaptive agent model contains a hybrid approach for a multi-
agent learningmethod. In addition, thismodel enables agents
to learn and accumulate their experience and knowledge
from other agents or the environment.

3.1. Adaptive Agent Model. The agent model, shown in
Figure 1, is a cooperative learning model responsible for
controlling the learning process. A goal module returns
the goals that an agent may possibly adopt and the events
to which it can respond. A belief module describes the
information about the environment, the internal state that a
certain class of agents may hold, and the strategies or tactics
that the agentmay perform. A planmodule returns plans that
are possibly employed to achieve the goals of the agent. A
plan is a sequence of actions or strategies derived through
reasoning. There are two types of ontology that provide the
domain-specific and issue-specific knowledge, respectively.

Belief

Goal

Basic action
Adaptive and 
cooperative 

learning

Action

Strategy

Plan

Sensors

Figure 1: Agent model.

The mental state of an agent is represented by first-order
language as follows:

𝐹𝑂𝑇𝑒𝑟𝑚 ::= ⟨𝐶𝑜𝑛𝑠𝑡⟩ |⟨𝐹𝑂𝑉⟩|

𝑓𝑢𝑛𝑐𝑡𝑜𝑟 ⟨𝐹𝑢𝑛𝑐𝑆𝑦𝑚 × 𝑠𝑒𝑞 𝐹𝑂𝑇𝑒𝑟𝑚𝑠⟩ ,

𝐴𝑡𝑜𝑚 ::= ⟨𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 × 𝑠𝑒𝑞 𝐹𝑂𝑇𝑒𝑟𝑚𝑠⟩ .

(1)

A first-order term (𝐹𝑂𝑇𝑒𝑟𝑚) is defined by a set of con-
stants (⟨𝐶𝑜𝑛𝑠𝑡⟩), first-order variables (⟨𝐹𝑂𝑉⟩), and functions
(𝑓𝑢𝑛𝑐𝑡𝑜𝑟 ⟨𝐹𝑢𝑛𝑐𝑆𝑦𝑚 × 𝑠𝑒𝑞 𝐹𝑂𝑇𝑒𝑟𝑚𝑠⟩). An atom consists of a
predicate and a set of 𝐹𝑂𝑇𝑒𝑟𝑚𝑠.

3.1.1. Belief. The beliefs of an agent describe the situations
where the agent is. The beliefs are specified by a belief base,
which contains the information the agent believes about the
world, as well as the information that is internal to the agent.
The agent is assumed to have beliefs about its task and its
environment. A belief is represented by a set of well-formed
formulas such as

𝐵𝑒𝑙𝑖𝑒𝑓 ::= ⟨𝐴𝑡𝑜𝑚⟩ |¬ ⟨𝐴𝑡𝑜𝑚⟩| ⟨𝐴𝑡𝑜𝑚⟩ [∧ ⟨𝐴𝑡𝑜𝑚⟩] . (2)

For instance, a belief that there is an obstacle (𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑑)
at a certain location (𝑋1, 𝑌1) can be represented as
(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑖𝑑, 𝑋1, 𝑌1).

3.1.2. Goal. A goal is an agent’s desire and describes the states
of affairs that an agent would like to realize. For instance,
CatchAllEvader(True) stands for a pursuer’s goal to catch
all evaders. A goal is represented by a set of well-formed
formulas such as

𝐺𝑜𝑎𝑙 ::= 𝑎𝑐ℎ𝑖𝑒V𝑒𝑑 ⟨𝐴𝑡𝑜𝑚⟩ . (3)

3.1.3. Basic Actions. Basic actions are generally used by an
agent to manipulate its environment. Before performing the
basic actions, certain beliefs should be held. The beliefs of
the agent must be updated after the execution of actions.
Basic actions are the only entities that can change the beliefs
of an agent. Let 𝛼 be an action with parameters 𝑥, and let
𝜑, 𝜓 ∈ 𝑏𝑒𝑙𝑖𝑒𝑓. The programming constructs for basic actions
are then expressed as

{𝜑} 𝛼 (𝑥) {𝜓} , (4)

where 𝜑 and 𝜓 are preconditional and postconditional,
respectively.The precondition indicates that an action cannot



4 Mathematical Problems in Engineering

be performed only if certain beliefs are held. For example, a
pursuer is assumed to catch an evader from location (𝑋0, 𝑌0)

to location (𝑋1, 𝑌1) with a basic action 𝑀𝑜V𝑒𝑇𝑜(𝑋1, 𝑌1).
Before this action is executed, the pursuer must be at position
(𝑋0, 𝑌0), denoted by 𝑝𝑢𝑟𝑠𝑢𝑒𝑟(𝑠𝑒𝑙𝑓, 𝑋0, 𝑌0). The condition
that the pursuer senses the evader at position (𝑋1, 𝑌1) is
denoted by 𝑒V𝑎𝑑𝑒𝑟𝐴𝑡(𝑋1, 𝑌1). This action is then defined in
terms of the following beliefs:

{𝑝𝑢𝑟𝑠𝑢𝑒𝑟 (𝑠𝑒𝑙𝑓, 𝑋0, 𝑌0) , 𝑒V𝑎𝑑𝑒𝑟𝐴𝑡 (𝑋1, 𝑌1)} . (5)

After executing an action, an agentmust update its beliefs
to make its postcondition true. According to the above
example, after performing the catch action, the agent updates
its beliefs and obtains

{𝑝𝑢𝑟𝑠𝑢𝑒𝑟 (𝑠𝑒𝑙𝑓, 𝑋1, 𝑌1) , 𝑒V𝑎𝑑𝑒𝑟𝐴𝑡 (𝑋2, 𝑌2)} , (6)

where (𝑋2, 𝑌2) is an evader’s new location.

3.1.4. Strategies. The strategy of a player refers to one of the
options that can be chosen in a setting. The choice depends
not only on the agent’s own actions but also on other agents’
actions. A prior study [28] proposed a pure strategy in terms
of a function. Given an agent’s current information set, the
function returns the agent’s next move (i.e., its change in
location between time 𝑡

𝑗
and 𝑡
𝑗+1

). For example, if an evader
has a pure strategy 𝜎

0
, then 𝜃

0
(𝑡
𝑗+1

) = 𝜃
0
(𝑡
𝑗
) + 𝜎
0
(𝐼
0
(𝑡
𝑗
)),

where 𝜃
0
(𝑡
𝑗
) is the location of tracker agent 0 at time 𝑡

𝑗
and

𝐼
0
(𝑡
𝑗
) is the tracker’s information set at time 𝑡

𝑗
. Suppose that

a pursuer has a pure strategy set 𝜎 = (𝜎
1
, . . . , 𝜎

𝑘
) and the

locations of the tracker agents 𝜃 (𝑡) = {𝜃
1
(𝑡), . . . , 𝜃

𝑘
(𝑡)}. Then,

𝜃(𝑡
𝑗+1

) = 𝜃(𝑡
𝑗
) + 𝜎(𝐼

0
(𝑡
𝑗
)) for each time 𝑡

𝑗
. The strategy

is further refined by adding an algorithm for selecting a
plan according to different conditions. The algorithm can be
represented by a function that generates a plan.The condition
includes the beliefs of agents or the current situation of the
environment. The proposed strategy is denoted by

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ::= ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠⟩ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. (7)

3.1.5. Plans. A plan is a method for an agent to approach its
goal and is generated according to the agent’s strategy. A plan
consists of beliefs, actions, and rewards, as expressed in the
following equation:

𝑃𝑙𝑎𝑛 ::= ⟨𝑏𝑒𝑙𝑖𝑒𝑓⟩ ⟨𝑏𝑎𝑠𝑖𝑐 𝑎𝑐𝑡𝑖𝑜𝑛⟩ [⟨𝑏𝑎𝑠𝑖𝑐 𝑎𝑐𝑡𝑖𝑜𝑛⟩] ⟨𝑟𝑒𝑤𝑎𝑟𝑑⟩ .

(8)

A plan can be one or a set of actions for an agent, and the
value of the plan is determined by the reward.

3.2. Case-Based Reasoning. According to previous studies
[32, 33], a general case-based reasoning (CBR) cycle may
include retrieving the most similar cases for a problem,
reusing the information and knowledge in those cases to solve
the problem, revising the proposed solution, and retaining
the parts of this experience likely to be useful for future
problem solving.

In order to solve a new problem, the cases which contain
the most useful knowledge have to be identified first. Since
the utility of a case cannot be evaluated directly a priori, the
similarity between problem descriptions is used in heuristics
to estimate the expected utility of the cases. Therefore, the
quality of this measure is crucial for the success of CBR
applications. There are numerous similarity measures in use
today. They are used not only in CBR but also in other
fields, including data mining, pattern recognition, genetic
algorithm, and machine learning. Euclidean distance is a
typical similarity measure for objects in a Euclidean space
[34]. According to Euclidean distance, this work devises a
simple distance function to evaluate the similarity between
two cases.

3.2.1. Case Description. A case stands for an agent’s mental
state and the result of its past output. Each case consists of a
goal, beliefs, an action, a plan, and a reward. The goal is what
the agent wants to achieve or realize. The beliefs describe the
situation the agent is in. The action is what the agent does
under that situation.The plan is the approach the agent takes
to achieve the goal.The reward serves to evaluate the result of
the plan.

3.2.2. Similarity Relation. Consider the following:

Sim
𝑎𝑏

=

𝑛

∑

𝑖=1

𝑤
𝑖
× (

󵄨󵄨󵄨󵄨𝑎𝑖 − 𝑏
𝑖

󵄨󵄨󵄨󵄨) . (9)

This study proposes an evaluation function (Sim), shown
as (9), for measuring the similarity between cases 𝑎 and 𝑏.
In this equation, 𝑎 and 𝑏 represent a new problem and a
case in a case base, respectively. The variable 𝑛 is the number
of features in case 𝑎. The weight variable 𝑤

𝑖
stands for the

importance of the 𝑖th feature. The weight vector is freely
defined by a user. 𝑎

𝑖
and 𝑏
𝑖
are the 𝑖th features of cases 𝑎 and 𝑏,

respectively. In the case-retrieving stage of the CBR approach,
the case with the smallest (Sim) value is always retrieved for
reuse.

3.3. Probabilistic Framework. Suppose that a finite two-
dimensional environment EX with 𝑛

𝑐
square cells contains

an unknown number of fixed obstacles. We also assume that
the environment has 𝑛

𝑝
pursuers and 𝑛

𝑒
evaders. Let 𝑥

𝑝𝑘
and

𝑥
𝑒𝑖
be the cells occupied by pursuer 𝑘 and evader 𝑖, where

1 ≤ 𝑖 ≤ 𝑛
𝑝
and 1 ≤ 𝑗 ≤ 𝑛

𝑒
. The pursuers and evaders

are restricted to move to cells not occupied by obstacles.
Each pursuer collects information about EX at discrete time
instances 𝑡 ∈ 𝑇 = {1, 2, . . . , 𝑡end}.

Define 𝑥
𝑝𝑘

(𝑡) ⊂ EX as the cell of pursuer 𝑘 at time 𝑡 and
𝑥
𝑒𝑖

(𝑡) ⊂ EX as the cell of evader 𝑖 at time 𝑡. 𝑜(𝑡) is a set of cells
where obstacles are detected. Let 𝑈(𝑥

𝑒𝑖
(𝑡)) denote the one-

step reachable set for the evader when the evader is in cell 𝑥



Mathematical Problems in Engineering 5

at time 𝑡. Then the probability of the evader being in cell 𝑥 at
time 𝑡 + 1 is given by the following (10):

𝑝 (𝑥, 𝑡 + 1 | 𝑥
𝑒𝑖

(𝑡))

=

{{

{{

{

1
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑒𝑖

(𝑡)) − 𝑜 (𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑥 ∈ 𝑈 (𝑥
𝑒𝑖

(𝑡))

0 𝑥 ∈ 𝑜 (𝑡) ,

(10)

where 𝑝(𝑥, 𝑡 + 1 | 𝑥
𝑒𝑖
(𝑡)) represents the probability of the

evader being in cell 𝑥 at time 𝑡 + 1 according to the location
where the pursuer detects the evader at time 𝑡.

3.4. Strategies for Plan Generation. When the distance
between the retrieved case and the new case is smaller than
a threshold, the above approach cannot generate a useful
plan for the new case. To overcome this problem, this study
proposes two plan-generation strategies, local-max strategy
and local-cooperative strategy.

3.4.1. Local-Max Strategy. This strategy is used only when
there is a single pursuer for evaders. Let 𝑆

𝑘
(𝑦) be the set of all

cells that liewithin the sensing area of a pursuer 𝑘 at cell𝑦.The
total evasion probability of the evaders at time 𝑡 associated
with the pursuer is then obtained by the following (11):

𝑃 (𝑦, 𝑡) = ∑

𝑧∈𝑆𝑘(𝑦)

[𝑝 (𝑧, 𝑡 + 1 | 𝑥
𝑒𝑖

(𝑡))] . (11)

By computing the evasion possibilities of all sensing cells,
pursuer 𝑘 moves to cell 𝑥

𝑝𝑘
(𝑡 + 1) that has the highest total

evasion probability expressed as follows:

𝑥
𝑝𝑘

(𝑡 + 1) = arg max
𝑦∈𝑈(𝑥𝑝

𝑘
(𝑡))

[𝑃 (𝑦, 𝑡)] . (12)

3.4.2. Local-Cooperative Strategy. This strategy is for pursuers
that cooperate with each other to catch the same evader.
Initially, pursuers need to decide whether they can cooperate
with each other or not. Let 𝑑(𝑥, 𝑦) be theManhattan distance
from cell 𝑥 to cell 𝑦; that is, if cells 𝑥 and 𝑦 lie in a two-
dimensional space with coordinates (𝑥

1
, 𝑥
2
) and (𝑦

1
, 𝑦
2
),

the Manhattan distance is calculated using the following
equation:

𝑑 (𝑥, 𝑦) = max (
󵄨󵄨󵄨󵄨𝑥1 − 𝑦

1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 − 𝑦

2

󵄨󵄨󵄨󵄨) . (13)

Let 𝑆
𝑘
be the farthest sensing cell of a pursuer 𝑘. For

example, if the sensing area of a pursuer 𝑘 is a 5 ∗ 5 square
and the pursuer stands at the center of the area, the farthest
distance that the pursuer can detect is two squares. If there
exists two or more pursuers and one evader corresponding
with 𝑑(𝑥

𝑝𝑘
(𝑡), 𝑥
𝑒𝑖
(𝑡)) ≤ 𝑠

𝑘
and 𝑑(𝑥

𝑝𝑘
(𝑡), 𝑥
𝑒𝑖
(𝑡)) ≤ 𝑠

𝑘
, the

pursuers can cooperate with each other.
Suppose that two or more pursuers execute the local-

cooperative strategy. Let Overlap(𝑥, 𝑦) be the number of
overlap cells within the one-step reachable set (a 3∗3 region)
around cells 𝑥 and 𝑦. The overlap function is illustrated in
Figure 2. The yellow grid represents the one-step reachable

EP1

P2

Figure 2: Number of overlap cells.

set for a pursuer 𝑃1, the dashed grid depicts the one-step
reachable set for a pursuer 𝑃2, and the green grid represents
the position of an evader 𝐸. The number of overlap cells thus
equals four (i.e., the return value of Overlap(𝑥, 𝑦)).

Once the pursuers can cooperate with each other, the
pursuers randomly select one of them as a leader. Other
pursuers can determine their locations at time 𝑡 + 1 by the
following (14):

𝑥
𝑝𝑘

(𝑡 + 1) = arg min
𝑦∈𝑈(𝑥𝑝

𝑘
(𝑡))

[Overlap (𝑥
𝑝𝑘

(𝑡 + 1) , 𝑦)] , (14)

where 𝑥
𝑝𝑘

(𝑡 + 1) is the location of the leader. To avoid
pursuers moving to the same location, each pursuer finds the
minimum overlap area.

3.5. Reward Calculation. Each case has its own reward for
evaluating its result. The higher the reward of a case is, the
more likely the goal will be achieved. In this study, the reward
is calculated using the following equation:

𝑅 =
󵄨󵄨󵄨󵄨󵄨
𝑆
𝑘

(𝑦) ∩ 𝑈 (𝑥
𝑒𝑖

(𝑡))
󵄨󵄨󵄨󵄨󵄨
. (15)

Reward 𝑅 represents the number of one-step reachable
sets for an evader in a pursuer’s sensing area.The reward value
is between 0 and 10. If an evader is caught, then the reward of
the case will be 10.

3.6. Assimilation and Accommodation. Piaget’s cognitive the-
ory [18] reveals that assimilation refers to the tendency to
interpret experience as much as possible through existing
cognitive structure of knowing. When an agent faces a new
situation, it generates a new plan with the current cognitive
structure, also called its strategy, to direct itself what to do
next.The entire process is called assimilation. In other words,
an agent assimilates a new situation with its current cognitive
structure. However, if the current cognitive structure cannot
explain the environment (i.e., the current cognitive structure
cannot get the equilibration of inconsistent information
about the world), an agent has to use the strategy of accom-
modation. Accommodation refers to the realization that the
current structure is insufficient for adequate understanding
of the world and that the current structure must be changed
until it can assimilate the new situation.
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This study proposes two accommodationmethods, bevel-
angle and positive-angle strategies, for modifying a cogni-
tive structure. After performing accommodation, an agent
employs themodified strategy to assimilate the new situation.
By adjusting constantly its cognitive structure, the agent can
adapt more effectively to the environment.

3.6.1. Bevel-Angle Strategy. Suppose that an evader’s location
is in the one-step reachable set for a pursuer, and the evader is
at a bevel angle of the pursuer.The pursuer randomly chooses
one of the following strategies when the evader is at 45∘ (𝜋/4),
135∘ (3𝜋/4), 225∘ (5𝜋/4), and 315∘ (7𝜋/4) of the pursuer. Let
deg(𝑥

𝑝𝑘
(𝑡), 𝑥
𝑒𝑖
(𝑡)) be the angle between the pursuer 𝑘 and

evader 𝑖, where 𝑥
𝑒𝑖
(𝑡) is the position of the evader and 𝑥

𝑝𝑘
(𝑡)

is the position of the pursuer at time 𝑡.

Strategy 1. According to (16), the pursuermoves to the evader’s
position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑒𝑖

(𝑡) ,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈
𝜋

4
,
3𝜋

4
,
5𝜋

4
,
7𝜋

4
.

(16)

Strategy 2. According to (17), the pursuer moves to 45∘ of the
evader’s position at time 𝑡+1. Let 𝑥

𝑗
be an element of the one-

step reachable set for the pursuer 𝑘 when it is in cell 𝑥 at time
𝑡:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈
𝜋

4
,
3𝜋

4
,
5𝜋

4
,
7𝜋

4

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) + 45.

(17)

Strategy 3. According to (18), the pursuermoves to−45∘ of the
evader’s position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈
𝜋

4
,
3𝜋

4
,
5𝜋

4
,
7𝜋

4

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) − 45.

(18)

Strategy 4. According to (19), the pursuer stays in the same
place at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑝𝑘

(𝑡) ,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈
𝜋

4
,
3𝜋

4
,
5𝜋

4
,
7𝜋

4
.

(19)

3.6.2. Positive-Angle Strategy. Suppose that an evader’s loca-
tion is in the one-step reachable set for a pursuer, and the
evader is at a positive angle of the pursuer, where the angle
includes 0∘, 90∘ (𝜋/2), 180∘ (𝜋), and 270∘ (3𝜋/2).

Strategy 1. According to (20), the pursuer moves to the
evader’s position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑒𝑖

(𝑡) ,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2
.

(20)

Strategy 2. According to (21), the pursuer moves to 45∘ of the
evader’s position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) + 45.

(21)

Strategy 3. According to (22), the pursuer moves to −45∘ of
the evader’s position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) − 45.

(22)
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Strategy 4. According to (23), the pursuer moves to 90∘ of the
evader’s position at time 𝑡 + 1.

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) + 90.

(23)

Strategy 5. According to (24), the pursuer moves to −90∘ of
the evader’s position at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑗
,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2

∩ 𝑥
𝑗

∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

∩ deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑗
) = deg (𝑥

𝑝𝑘
(𝑡) , 𝑥
𝑒𝑖

(𝑡)) − 90.

(24)

Strategy 6. According to (25), the pursuer stays in the same
place at time 𝑡 + 1:

𝑥
𝑝𝑘

(𝑡 + 1) = 𝑥
𝑝𝑘

(𝑡) ,

if 𝑥
𝑒𝑖

(𝑡) ∈ 𝑈 (𝑥
𝑝𝑘

(𝑡))

deg (𝑥
𝑝𝑘

(𝑡) , 𝑥
𝑒𝑖

(𝑡)) ∈ 0,
𝜋

2
, 𝜋,

3𝜋

2
.

(25)

Combining both the bevel-angle and positive-angle
strategies, the pursuer obtains 24 different plans to adapt to
the environment effectively.

3.7. Plan Evolution Process. Plan evolution plays an important
role in an agent’s life cycle. When a pursuer finds an evader
in the sensing area, it generates a pursuit plan. Initially, the
pursuer searches its case base for similar cases. If similar cases
exist, the pursuer chooses one of them as the plan. Otherwise,
the pursuer uses one of the abovementioned strategies to
generate a plan. When the pursuer faces a new state, the
pursuer will adjust the plan accordingly. Figure 3 shows the
agent’s plan evolution process.

(1) Problem Analysis. Before determining the location in the
next step, a pursuer analyzes the environmental state and
updates its goal with information from the environment.The
pursuer chooses a plan according to its mental state.

(2) Case Retrieval. Comparing the similarity between the
result of the analysis in Step 1 and the cases in the case base,

the pursuer retrieves similar cases by the (Sim) function and
sorts them according to their similarity levels.

(3) Similarity Calculation. Similarity is classified into low and
high levels. It is possible that the pursuer retrieves a case with
high-level similarity but obtains unsatisfactory results, and
thus a reward 𝑅 is added to prevent such. If the case is with
high-level similarity and the reward 𝑅 exceeds a predefined
constant 𝜀, the pursuer executes Step 4. If the case is with low-
level similarity or the reward 𝑅 is smaller than the predefined
constant 𝜀, the pursuer executes Step 5.

(4) Case Reuse. If the retrieved case is with high-level
similarity and its result is acceptable, the pursuer reuses the
case with revisions and then goes to Step 10.

(5) Strategy Assimilation. If no similar case exists in the
case base or the result of the similar case is unsatisfactory,
the pursuer uses strategy assimilation; that is, the pursuer
generates a suitable plan with the current strategy (Steps 6–
8) according to the situation.

(6) Cooperation. Before using the strategy module, the pur-
suer decides whether to cooperate with the others or not. If
the decision is to cooperate with the others in the situation,
then the local-cooperative strategy (i.e., Step 8) is executed.
Otherwise, the pursuer executes the local-max strategy (i.e.,
Step 7).

(7) Application of the Local-Max Strategy. If the pursuer
decides not to cooperate with the others, it executes the local-
max strategy and moves to the cell in the one-step reachable
set with the highest probability of containing an evader.Then,
go to Step 9.

(8) Application of the Local-Cooperative Strategy. If the
cooperative mode is taken, the pursuer executes the local-
cooperative strategy and moves to the cell which has the
minimum overlap sensing area.

(9) Reward Calculation. The pursuer evaluates the plan and
calculates a reward accordingly.

(10) Plan Transformation.The pursuer represents the plan by
beliefs, actions, and rewards.

(11) Strategy Assessment. The pursuer evaluates whether the
current strategy is suitable or not. The pursuer counts the
number 𝐶 of consecutive failures in catching an evader by
using the strategy. If 𝐶 is smaller than a constant 𝜎, the
strategy is effective. Then, go to Step 13. Otherwise, the
strategy is accommodated by Step 12.

(12) Strategy Accommodation.The pursuer modifies the strat-
egy to generate a new plan for the current environment.

(13) Case Revision. The actions and reward of the case are
revised after the problem is solved.
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(1) Problem analysis

(2) Case retrieval

(3) Similarity calculation (4) Case reuse

(5) Strategy assimilation

(6) Cooperation

(7) Application of local-max
strategy

(8) Application of local-cooperative
strategy

(9) Reward calculation

(10) Plan transformation

(12) Strategy accommodation(13) Case revision

(14) Case retention

(11) Strategy assessment 

Case base

R > 𝜀

R ≤ 𝜀

C < 𝜎

C ≥ 𝜎

Figure 3: Plan evolution process.

(14) Case Retention. Parts of the experience that are likely to
be useful for future problem solving are retained.

4. Case Study

This study uses a pursuit-evasion game to demonstrate the
proposed approach and implements a multiagent system on
the Recursive Porous Agent Simulation Toolkit (REPAST)
[35]. Figure 4 shows the GUI of the system, where the
blue, red, and black circles represent pursuers, evaders, and
obstacles, respectively. The yellow region depicts the sensing
area of the pursuers.

4.1. Problem Formulation. The system contains multiple
pursuing robots, which search for multiple evading robots
in a two-dimensional environment. The physical world is
abstracted as a grid world, and the game is played according
to the following settings and rules.

(i) The number of pursuers is 𝑛. The number of evaders
is unknown to the pursuers.

(ii) Each pursuer has a sensing area comprising 5∗5 cells,
and the pursuer is at the center of the area, as shown
in Figure 4.

(iii) During each moving step, the agents are allowed to
either move one cell away from their current cells or
stay in their current cells.

(iv) Each pursuer has no information about the environ-
ment other than that of its own 5-by-5 sensing area.

(v) All pursuers use the same case base.
(vi) An evader is captured when it occupies the same

cell as a pursuer, and it will be removed from the
environment.

(vii) The game ends when all evaders have been captured.

4.2. Evasion Policy. When an evader is caught, the system
first checks whether the sum of the caught and uncaught
evaders is smaller than the total number of the predefined
evaders. If so, the system generates a new evader and chooses
its type of movement. Otherwise, the system does nothing.
Clearly, when the sum of the caught and uncaught evaders
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Figure 4: Implementation of multiagent system.

equals the number of the predefined evaders, the system
stops generating new evaders and the uncaught evaders do
not increase. The uncaught evaders even decrease with the
successful evader captures. The game thus ends finally. In
addition, when the system selects a movement type for a
new evader, the choice varies with different experiments,
which in turn affects the outcome of the experience. This
study investigates four types of movement, namely, random,
clockwise, counterclockwise, and smart movements.

Random Movement. An evader randomly selects a location
that can be reached in one step or just stays in the same loca-
tion. The details of the algorithm are shown in Algorithm 1.

Clockwise Movement. An evader moves clockwise in a square
path. The evader initially selects the direction of its first step
and sets up a distance randomly. If the evader runs into an
obstacle on the way, it changes its direction automatically.
Algorithm 2 shows the algorithm.

Counterclockwise Movement. This movement type is similar
to the clockwise movement except that an evader moves
counterclockwise. The algorithm is shown in Algorithm 3.

Smart Moving. Evaders try actively to avoid pursuers. Each
evader has a square sensing area. Each side of the square is
three cells long. If the evader finds any pursuer in the area, it
attempts to move to the location that has fewer pursuers in
the one-step reachable set of the area. Algorithm 4 presents
the algorithm.

4.3. Results andDiscussion. This study designs several experi-
ments to compare the performance of the proposed approach,
Hysteretic Q-Learning [36], and Reinforcement-Learning
fusing (RL-Fusing) [37]. All these approaches are the learning
techniques formultiagent systems. Each experiment has three
pursuers and one evader. In addition, the experiments run
in “time step” unit. One round is considered finished when
the evader has been caught. The performance results are
the average values obtained by running 30 rounds with the
current learning policy after 100 training episodes for each
algorithm.

4.3.1. Comparison of Approaches. Matignon et al. pre-
sented a decentralized reinforcement learning algorithm for

independent learning robots called Hysteretic Q-Learning
[36].This algorithm computes a better policy in a cooperative
multiagent system without additional information or com-
munication between agents. Hysteretic Q-Learning updates
the equation for an agent 𝑖 executing the action 𝑎

𝑖
from states

ending up in state 𝑠
󸀠 as follows:

𝛿 ←󳨀 𝑟 + 𝛾max
𝑎
󸀠

𝑄
𝑖
(𝑠
󸀠

, 𝑎
󸀠

) − 𝑄
𝑖
(𝑠, 𝑎
𝑖
) ,

𝑄
𝑖
(𝑠, 𝑎
𝑖
) ←󳨀 {

𝑄
𝑖
(𝑠, 𝑎
𝑖
) + inc𝛿 if 𝛿 > 0

𝑄
𝑖
(𝑠, 𝑎
𝑖
) + dec𝛿 else,

(26)

where 𝑄
𝑖
(𝑠, 𝑎
𝑖
) is the action value function of state 𝑠 and

action 𝑎
𝑖
, 𝑟 is the reward it receives, 𝛾 ∈ [0; 1] is the discount

factor, and inc anddec are the rates of increase anddecrease in
𝑄-values, respectively. Partalas et al. proposed the RL-Fusing
approach that uses coordinated actions and a fusing process
to guide the agents [37]. The fusion process combines the
decisions of all agents and then outputs a global decision,
which the agents must follow as a team. Algorithm 5 shows
the RL-Fusing algorithm. The set of strategies means the
plans.

4.3.2. Obstacles. The first experiment compares the perfor-
mance of the proposed approach, Hysteretic Q-Learning,
and RL-Fusing in environments with/without obstacles. The
evader is assumed to move randomly in every round. In the
environment with obstacles, 10 obstacles are randomly set up
initially, and no evader is trapped in the obstacles.

Table 1 shows the performance results. As can be seen, all
threemethods requiremore capture steps in the environment
with obstacles, because pursuers need extra time to detect
and avoid obstacles. Hysteretic Q-Learning takes the greatest
number of capture steps in both environments because it
does not support pursuer cooperation. Furthermore, RL-
Fusing also takes more capture steps than the proposed
scheme. Although RL-Fusing involves cooperation between
pursuers, the generated strategies sometimes cause a pursuer
to miss evaders in its sensing area. The pursuer thus needs to
search again and requires more capture steps. In contrast, the
proposed approach utilizes not only the cooperative strategy
but also assimilation and accommodation which enable a
pursuer to learn from either success or failure experiences.
Thus, the pursuer can keep in step with an evader and catch
it in a smaller number of capture steps.

4.3.3. Movement Types. The second experimentmeasures the
average number of capture steps required by the proposed
approach, Hysteretic Q-Learning, and RL-Fusing under two
types of evader movement. One is clockwise movement,
and the other is random clockwise and counterclockwise
movement.

The average number of capture steps required by the
three approaches for different movement types is shown in
Table 2. Similar to the results obtained in the first experiment,
the proposed scheme outperforms Hysteretic Q-Learning
and RL-Fusing. Among the three approaches, Hysteretic Q-
Learning requires the highest number of capture steps for
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(1) while true do
(2) next location ← generates randomly a location nearby the evader
(3) if next location has an obstacle then
(4) next location ← generates randomly a new location nearby the evader
(5) end if
(6) end while

Algorithm 1: Random movement algorithm.

(1) direction ← generates randomly a direction
(2) distance ← generates randomly a distance shorter than the environment
(3) move ← 0
(4) while true do
(5) get the next location according to the direction
(6) move add 1
(7) if move equals to distance or next location has an obstacle then
(8) evader turns right
(9) changes direction to evader
(10) move ← 0
(11) end if
(12) end while

Algorithm 2: Clockwise movement algorithm.

(1) direction ← generates randomly a direction
(2) distance ← generates randomly a distance shorter than environment
(3) move ← 0
(4) while true do
(7) if move equals to distance or next location has obstacle then
(8) evader turns left
(9) change direction to evader
(10) move ← 0
(11) end if
(12) end while

Algorithm 3: Counterclockwise movement algorithm.

(1) while true do
(2) if evader’s sensor area has pursuer then
(3) next location ← generate a location with least pursuers detected
(4) else
(5) next location ← randomly generate a location nearby the evader
(6) end if
(7) end while

Algorithm 4: Smart movement algorithm.

the same reason that it does not support agent cooperation.
According to the RL-Fusing algorithm presented in Algo-
rithm 5, when a state is not the coordinated state, the action
of an agent chooses a random or predefined policy and a
single pursuer thus has no learning ability. Therefore, the

possibility of catching an evader is low, and RL-Fusing also
takes more capture steps. In contrast, when the pursuer of
the proposed scheme faces an evader, the pursuer observes
the evader continuously. If the evader changes its moving
type, the pursuer uses accommodation to change its catching
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Require: A set of strategies, an initial state 𝑠
0

(1) 𝑠 ← 𝑠
0

(2) while true do
(3) if 𝑠 is coordinated state then
(4) 𝜌 ← RandomReal(0, 1)

(5) if 𝜌 < 𝜀 then
(6) select a strategy randomly //the same for all agent
(7) else
(8) rank strategies
(9) communicate ranks
(10) receive ranks from other agents
(11) average ranks
(12) select corresponding strategy
(13) end if
(14) execute selected strategy
(15) receive reward
(16) transit to a new state 𝑠

󸀠

(17) update 𝑄-value
(18) else
(19) act with a predefined or random policy
(20) end if
(21) end while

Algorithm 5: RL-Fusing algorithm.

Table 1: Average number of capture steps in different environments.

Grid size
Without
obstacles
(steps)

With obstacles
(steps)

Hysteretic
Q-Learning 12 ∗ 12 68 73

RL-Fusing 12 ∗ 12 61 65
The proposed
approach 12 ∗ 12 24 27

Table 2: Average number of capture steps for different movement
types.

Grid size
Clockwise
movement
(steps)

Random
clockwise and
counterclock-
wise movement

(steps)
Hysteretic
Q-Learning 12 ∗ 12 56 69

RL-Fusing 12 ∗ 12 48 56
The proposed
approach 12 ∗ 12 26 32

strategy. If the moving type remains fixed, the pursuer keeps
the same strategy by assimilation. As seen in Table 2, all
three methods require more steps to capture evaders with
random clockwise and counterclockwise movement because
pursuers need extra time to detect the moving directions of
the evaders.

Table 3: Average number of capture steps for evaders with smart
movement in different grid sizes.

Grid size: 12 ∗ 12
(steps)

Grid size: 24 ∗ 24
(steps)

Hysteretic
Q-Learning 74 212

RL-Fusing 63 300
The proposed
approach 63 119

Table 4: Average number of capture steps with/without assimilation
and accommodation.

Evader movement
type

Clockwise

Evader movement
type
Smart

With assimilation and
accommodation 18.6 27.8

Without assimilation
and accommodation 24.2 36.4

4.3.4. Smart Movement and Size of Grid. The third experi-
ment involves evaders with smart movement.The evaders try
actively to avoid pursuers when they sense any pursuer. The
environment is of two grid sizes, 12 ∗ 12 and 24 ∗ 24.

Table 3 shows that the proposed scheme requires smaller
capture steps in different grid sizes, when compared with
Hysteretic Q-Learning and RL-Fusing. When the grid size
is smaller, RL-Fusing outperforms Hysteretic Q-Learning.
However, as the grid size becomes larger, RL-Fusing requires
more capture steps than Hysteretic Q-Learning. This is
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Figure 5: Average number of capture steps under different training
episodes and grid sizes.

because RL-Fusing depends mainly on its cooperative strate-
gies to catch evaders, but not all strategies can guide pursuers
to move close to the evaders. For example, strategy 3 in RL-
Fusing [37] is that once all the pursuers go at the distance of
3 from an evader. Because the sensing area of a pursuer is a
5 ∗ 5 square, the pursuers easily lose the evader in a larger
environment. In contrast, the proposed approach assists the
pursuers to move as close to the evader as possible by the
avoidance of sensing overlapping.Thus, the approach has the
highest possibility of catching the evader.

4.3.5. Smart Movement, Training Episodes, and Size of Grid.
The fourth experiment investigates the relationship between
training episodes and grid sizes when using the proposed
approach.

Figure 5 shows that regardless of grid sizes (12 ∗ 12 or
24 ∗ 24), the greater the number of training episodes is, the
smaller the average number of capture steps is required. This
is becausemore training enriches the case base, thus enabling
pursuers to make better strategies and decisions.

4.3.6. Assimilation and Accommodation. The last experiment
evaluates the proposed approach with/without assimilation
and accommodation. There are two types of evader move-
ment, clockwise and smart. The results are listed in Table 4.
Whether the approach is with or without assimilation and
accommodation, the average number of capture steps for
smartmovement is greater than that for clockwisemovement.
This is because smart movement can enable an evader to
dynamically change its movement and position. In contrast,
movement of an evader with clockwise movement can be
easily predicted; hence, the pursuers can take fewer steps for
capture. Furthermore, the average number of capture steps

required by the approach with assimilation and accommo-
dation is smaller than that required by the approach without
assimilation and accommodation for both movement types.
The approach without assimilation and accommodation gen-
erates a fixed plan, which cannot be changed. In contrast,
the approach with assimilation and accommodation enables
the first pursuer to use the local-max strategy to find a
better position, and the remaining pursuers can determine
the cooperative positions according to the first pursuer’s
position. These pursuers can adjust their positions according
to different catching situations and strategies. Accordingly,
the approach with assimilation and accommodation requires
fewer capture steps, when compared with the approach
without assimilation and accommodation.

5. Conclusion

This work proposes an effective strategy learning approach
to the pursuit-evasion game in a dynamic environment. This
method can facilitate a pursuer in learning and implementing
effective plans from either success or failure experiences
under the condition of no knowledge of environment avail-
able. The evolved plans fare extremely well when compared
with some of the best constructed strategies. This study
also demonstrates the superior performance of the proposed
approach for the pursuit-evasion game by implementing a
multiagent system on REPAST.
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