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ABSTRACT
The ability of the United States to most efficiently make breakthroughs on the biology,
diagnosis and treatment of human diseases requires that physicians and scientists in
each state have equal access to federal research grants and grant dollars. However,
despite legislative and administrative efforts to ensure equal access, the majority of
funding for biomedical research is concentrated in a minority of states. To gain insight
into the causes of such disparity, funding metrics were examined for all NIH research
project grants (RPGs) from 2004 to 2013. State-by-state differences in per application
success rates, per investigator funding rates, and average award size each contributed
significantly to vast disparities (greater than 100-fold range) in per capita RPG funding
to individual states. To the extent tested, there was no significant association overall
between scientific productivity and per capita funding, suggesting that the unbalanced
allocation of funding is unrelated to the quality of scientists in each state. These findings
reveal key sources of bias in, and new insight into the accuracy of, the funding process.
They also support evidence-based recommendations for how the NIH could better
utilize the scientific talent and capacity that is present throughout the United States.
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INTRODUCTION
The National Institutes of Health (NIH) is the federal steward of biomedical research in the
United States. Ensuring equal access to research grants and grant dollars, geographically,
is a fundamental tenant of the NIH’s mission to manage a diverse, robust and sustainable
research ecosystem that maximizes return on taxpayers’ investments (Lorsch, 2015).

One way to help achieve that goal has its origins in 1950’s legislation that created
the National Science Foundation (NSF) (National Science Foundation Act, 1950). The
congressional mandate included ‘‘to strengthen basic research and education in the
sciences...throughout the United States...and to avoid undue concentration of such research
and education’’ (emphasis added). Creation of the Experimental Program to Stimulate
Competitive Research (EPSCoR) in 1979 extended this mandate and increased support to
disadvantaged states that were receiving a relatively small share ofNSF funds (EPSCoR/IDeA
Foundation, 2015).
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The general objective of the NSF EPSCoR program, to help address geographical
disparities in federal support for research, was subsequently adopted by the Department
of Energy, the Department of Commerce, the Department of Defense, the Department of
Agriculture, the Environmental Protection Agency, the National Aeronautics and Space
Administration, and the National Institutes of Health (EPSCoR/IDeA Foundation, 2015).
The NIH’s EPSCoR-type program, the Institutional Development Award (IDeA) program,
is by far the largest of the EPSCoR-type federal programs ($273 million in fiscal year 2015)
(EPSCoR/IDeA Foundation, 2015; National Institute of General Medical Sciences, 2015). Its
specific goals, laid out succinctly at implementation of the program, are to enhance the
ability of institutions and investigators in disadvantaged states to compete successfully for
NIH-funded grants (based on metrics such as grant application success rates and total
funding) (National Institutes of Health, 1993).

In 2010 (signed into law in 2011), Congress charged the NSF Director to ‘‘contract
with the National Academy of Sciences to conduct a study on all Federal agencies that
administer an EPSCoR or a program similar to the EPSCoR’’ (America COMPETES
Reauthorization Act, 2010). The National Academies Press subsequently published a
multi-agency committee report evaluating the federal EPSCoR-type programs since
their inception (Committee to Evaluate the Experimental Program to Stimulate Competitive
Research et al., 2013).

Three of the committee’s findings stand out. First, the talent necessary to succeed in
science resides in all states. Second, the programs have enhanced the nation’s human capital
by strengthening research infrastructure and training in states that were disadvantaged prior
to the program’s arrival. Third, the aggregate share of federal grant funding to eligible states
has not changed significantly over the course of the programs. Similarly, the success rates
of grant applications from program-targeted states have remained consistently lower than
those of other states since program inception. In other words, neither the congressional
intent nor specific program goals have been fully realized.

Why have laudable, beneficial programs supported by legislative mandate and with
clearly defined objectives not achieved their specific goals? To gain insight into potential
causes of geographical disparities in funding for biomedical research and why they have
persisted, funding metrics were examined for all NIH research project grants (RPGs) over
a ten year period (2004–2013).

MATERIALS AND METHODS
Data sets
Publicly available data were compiled in, and additional new data sets were derived using,
Excel for Mac V12.3.6 (Microsoft Corp., Redmond, WA, USA). Data compiled by state
(for individual years and for multiyear means presented in the paper) are available in
Data S1. State population data were obtained from theUnited States Census Bureau (2013).
Data on grant application success rates and investigator funding rates were obtained
through a Freedom of Information Act request (FOI Case No. 42901) to the NIH Office of
Extramural Research (National Institutes of Health, 2014). Values are total rates for all types
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of applications (new, renewal and revision). Data on number of RPG awards and total
RPG funding to each state were obtained by searching the NIH Research Portfolio Online
Reporting Tool (RePORT) (National Institutes of Health, 2015). Search parameters were
fiscal year (individually 2004–2013) and funding mechanism (research project grants);
outputs were data and visualize (by state), exported to Excel. Data on publication rates
were obtained, first, by using the ‘‘awards by location’’ quick-link tab of RePORT (National
Institutes of Health, 2015) to obtain total RPG funding and lists of RPG project numbers, by
state, for 2011. Second, the RPG project numbers of each state were used to search PubMed
(National Center for Biotechnology Information, 2014) for RPG-supported publications in
2011–2013. The number of publications from each state citing the 2011 project numbers
was normalized to total funding in that year.

Statistics
Data set comparisons, statistical tests, regressions and plots were generated in Prism for
Mac V5.0b (GraphPad Software, Inc., La Jolla, CA, USA) using default settings. Analyses
of data sets binned by per capita funding quartile were conducted using the Kruskal-Wallis
Test with post hoc testing by the Dunn’s Multiple Comparison Test. The p values of
the former are from guassian approximation; those of the latter are adjusted. Standard
linear regression was used to test for associations between both non-transformed and log-
transformed data sets. Similar results and identical conclusions were obtained with each
approach: analyses of non-transformed data are presented below, those of log-transformed
data are in Supplemental Information 1.

Ethics Statement
It was not considered necessary to submit this study for ethical review given the nature of
the project, which involved analyses of population data by state without any identifying
information for individuals or institutions.

RESULTS
Analyses NIH RPG funding levels, grant proposal success rates, investigator funding rates,
and RPG-supported publications of individual states revealed the following.

Scope and magnitude of disparity
There was a greater than 100-fold range in the annual per capita research project grant
(RPG) funding from the NIH to individual states, Washington, D.C. and Puerto Rico
(‘‘states’’) (Table 1) (United States Census Bureau, 2013; National Institutes of Health,
2015). The top ten states were awarded, on average, nineteen times more RPG funding
per capita than the bottom ten states. Moreover, the distribution of funding relative to
the national per capita value was lopsided: Fifteen states (29%) were overfunded and
thirty-seven states (71%) were underfunded. If one considers the data by funding rank
quartile (Fig. 1 and Data S1), nearly two thirds of all RPG dollars were allocated to one
quarter of the states. Such disparities have existed for decades and have persisted despite
best intentions of the IDeA program (Committee to Evaluate the Experimental Program to
Stimulate Competitive Research et al., 2013; National Institutes of Health, 2015).
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Table 1 Per capita research project grant funding by state.

Rank State Per capita funding

1 Massachusetts $283.00
2 District of Columbia $233.11
3 Maryland $135.86
4 Connecticut $103.59
5 Rhode Island $101.95
6 Washington $96.65
7 Pennsylvania $85.00
8 New York $81.22
9 North Carolina $79.12
10 Vermont $75.24
11 California $67.91
12 Minnesota $67.61
13 Oregon $58.99
14 New Hampshire $57.85
15 Missouri $54.62

Nation $53.68
16 Tennessee $52.08
17 Wisconsin $51.31
18 Iowa $50.99
19 Colorado $48.87
20 Michigan $46.89
21 Utah $46.64
22 Ohio $45.21
23 Illinois $44.44
24 Alabama $35.61
25 Nebraska $34.64
26 Georgia $32.59
27 Texas $32.50
28 New Mexico $30.77
29 Virginia $29.69
30 Kentucky $27.84
31 Maine $26.85
32 Indiana $26.73
33 Hawaii $24.59
34 New Jersey $22.32
35 Arizona $22.00
36 Kansas $20.94
37 South Carolina $20.53
38 Louisiana $19.80
39 Montana $19.70

(continued on next page)
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Table 1 (continued)

Rank State Per capita funding

40 Delaware $19.04
41 Florida $17.59
42 Arkansas $16.36
43 Oklahoma $15.09
44 North Dakota $9.73
45 South Dakota $9.26
46 Mississippi $7.28
47 West Virginia $7.03
48 Wyoming $5.40
49 Nevada $4.99
50 Alaska $4.94
51 Idaho $2.36
52 Puerto Rico $2.30

Notes.
Data are mean of values for fiscal years 2004–2013. The national per capita value is included (Nation); background shading
groups states by funding quartile.

Sources of disparity
One factor contributing to the state-by-state funding disparities can be found in the sizes of
RPG awards (National Institutes of Health, 2015). There was a positive correlation between
average funds per RPG by state and the per capita funding levels (Fig. 2A). Investigators
in the top quartile (per capita funding) of states each received, on average, about $106,000
more per RPG each year than investigators in the bottom quartile of states (Fig. 1B).
(Average award size is affected by the sizes of individual awards and by how different types
of RPGs are distributed. For example, from 2004 to 2013 the NIH allocated 64% of high
value P01 RPGs to the top quartile of states, whereas the bottom quartile of states received
only 3% of P01 RPGs.)

Another contributing factor, notwithstanding its genesis, is demographics. States that
have a higher population density of scientists applying for RPGs would be expected to
secure a disproportionate share of grant dollars. This can be taken into account by using
the NIH ‘‘funding rate’’ statistic, which is the fraction of applicants that are funded in a
given year (Rockey, 2014). The funding rates (National Institutes of Health, 2014) were not
equivalent between states but were instead spread over a broad range, which deviates from
predictions of the simple demographics model. On average, investigators in the top quartile
states were about twice as likely to get funded as those in the bottom quartile of states (28%
vs. 15%) (Fig. 1C). Overall, there was a positive correlation between state funding rates
and per capita funding levels (Fig. 2B).

Similarly, one can account for the number of RPG applications from each state by using
the NIH ‘‘success rate’’ statistic, which is the percentage of applications that receive funding
(Rockey, 2014). The success rates (National Institutes of Health, 2014) were not equivalent
between states and there was a positive correlation between success rates and per capita
funding (Fig. 2C). Individual grant applications from investigators in the top quartile of
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Figure 1 Interquartile analyses of data sets.Values from Table S1 were binned by per capita funding
quartile. Box and whisker plots (median and quartile ranges) and mean values (+) are for: (A) per capita
funding; (B) average award size; (C) per investigator funding rate; (D) per application success rate; and
(E) scientific productivity. Overall probability values (inset) are from Kruskal-Wallis Test; adjusted p val-
ues below X axis are for significant interquartile differences by Dunn’s Post Test. Values are means of
2004–2013 data except productivity, which are sum of 2011–2013 publications citing 2011 awards normal-
ized to funding in that year.
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Figure 2 Factors affecting disparities in funding. Plots show linear regressions of state per capita RPG
funding as a function of: (A) average award size; (B) per investigator funding rate; (C) per application suc-
cess rate; and (D) scientific productivity. Values are as described in Fig. 1 and numerical values by state
can be found in Data S1. Regression analyses of log-transformed data are in Supplemental Information 1.

states were, on average, about twice as likely to be funded as applications from investigators
in the bottom quartile of states (22% vs. 12%) (Fig. 1D).

Higher per application success rates, higher per investigator funding rates, and larger
award sizes each contribute to the overfunding of some states; whereas lower success rates,
lower funding rates, and smaller award sizes contribute to the underfunding of other states.

Relationship between disparity and productivity
Scientific merit review (peer review) and administrative review rank order grant
applications and make funding decisions, respectively. Thus, differences in the priority
ranking of applications at the time of scientific merit review drive, in part, the
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disproportionate allocation of research dollars to individual states. What actually dictates
the differences in success and funding rates between states? Is it possible that investigators
in funding-rich states are simply ‘‘better’’ scientists than those of funding-poor states, and
hence compete more effectively for funding?

The scientific productivity of RPG-funded investigators, as measured by the number of
grant-supported publications per grant dollar awarded to each state (National Center for
Biotechnology Information, 2014; National Institutes of Health, 2015), provides an objective
metric for the quality of scientists in each state. An obvious caveat is that publication rate
is but one many possible metrics for gauging the productivity or ‘‘quality’’ of investigators
(see ‘Discussion’). Overall, there was no significant association between productivity and
per capita funding (Fig. 2D). Moreover, the average productivities in the lesser-funded
three quartiles of states were each higher than that of the top-funded quartile of states (Fig.
1E). This is remarkable given that scientists in funding-poor states are handicapped by
lower success rates and smaller award sizes and, presumably, by more frequent and longer
interruptions of funding, as well as by less extensive scientific infrastructure (a product of
chronic funding disparities).

DISCUSSION
This study revealed that geographical biases in the way that NIH RPG funding is allocated
contribute significantly to vast disparities (> 100-fold range per capita) in the amount
of funding to each state (Fig. 2, Table 1). The findings provide an explanation for why
legislative and administrative efforts to address such disparities have been ineffective. They
also support evidence-based recommendations for how the NIH could better utilize the
scientific talent and capacity that is present throughout the United States. Elaboration is
provided below.

Relevance of disparity to grant proposal scores being poor predictors
of outcome
Publication counts provide a primary measure of scientific productivity and are used by
NIH officials to analyze things like return on taxpayers’ investments in research and to
optimize funding allocations (e.g., Berg, 2012; Lorsch, 2015). The state values tabulated in
this study were normally distributed andmost were clustered near the mean (Supplemental
Information 1). This is consistent with previous findings that each of the United States
contains the talent to carry out research (Committee to Evaluate the Experimental Program
to Stimulate Competitive Research et al., 2013). Notably, there was no significant association
overall between the normalized publication counts and allocations of funding (Fig. 2D).
Thus, at least by this metric, state-by-state differences in productivity cannot explain why
funding-rich states have higher success rates, higher funding rates, and higher per RPG
funding levels than funding-poor states.

Michael Lauer (NIH Deputy Director for Extramural Research) has come to similar
conclusions using different metrics: Projects funded by the National Heart, Lung and
Blood Institute (NHLBI) with the poorest priority scores from reviewers produced as
many publications, and had as high a citation impact per grant dollar spent, as projects
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with the best priority scores (Danthi et al., 2014). This occurred even though the low-rated
investigators were awarded less money than their top-rated peers. Similarly, there was no
significant association between priority scores assigned during peer review and time to
publication of completed cardiovascular trials (Gordon & Lauer, 2013).

Congruent findings have been made for research supported by other NIH institutes
and federal agencies. Further analyses of NHLBI award data (Kaltman et al., 2014; Lauer et
al., 2015), and of data from the National Institute of General Medical Sciences (NIGMS)
(Berg, 2012), the National Institute of Mental Health (NIMH) (Doyle et al., 2015), and
the NSF (Scheiner & Bouchie, 2013) have each revealed little or no association between
grant proposal scores and scientific outcomes of funded proposals. To the extent tested
the findings apply for multiple measures of outcome (e.g., publication rate, number of
highly cited publications, overall citation impact), even after accounting for additional
variables. (A cogent description of parameters affecting the interpretation of bibliometric
data as indicators of scientific productivity, along with analogies understandable by a lay
audience, can be found in Lauer et al. (2015). For example, a modest association between
grant percentile score and scientific outcome, as assessed by highly cited publications per
grant, disappears when adjusted for award size.)

These findings, from multiple studies, indicate that the peer review process is not
effectively predicting outcomes: review panels are unable to accurately rank the relative
quality of investigators and projects (Mervis, 2014). Randomness (imprecision) intrinsic
to the peer-review process and implicit biases (subconscious positive or negative attitudes)
have each been implicated (Ginther et al., 2011; Graves, Barnett & Clarke, 2011; Moss-
Racusin et al., 2012; Lai, Hoffman & Nosek, 2013). Since NIH program officials rely heavily
on rank-ordered priority scores for funding decisions, it is crucial to detect and correct the
sources of variance and bias.

Toward this end, analyses of NIH-wide RPG data revealed specific sources of bias that
are seemingly unrelated to the productivity of investigators (Fig. 2). Statistically significant
biases in success and funding rates of RPG applications from different states and in the
average amount of funds allocated per RPG each contribute to the vast differences in NIH
funding per capita to individual states (Table 1). Because these biases are quantifiable, they
should be correctable (recommendations below).

Good IDeAs unfulfilled
The findings also provide a simple explanation for why legislative and administrative efforts
to promote a more equitable distribution of funding geographically (e.g., National Science
Foundation Act, 1950; National Institutes of Health, 1993; EPSCoR/IDeA Foundation, 2015;
National Institute of General Medical Sciences, 2015) have been ineffective (Committee
to Evaluate the Experimental Program to Stimulate Competitive Research et al., 2013): The
IDeA program (and other EPSCoR-type programs) does not directly address proximate
causes of geographical funding disparities, namely, the biases in grant proposal scoring and
award size (Fig. 2). Moreover, potential benefits of the IDeA program are restricted by its
level of funding (less than 1% of the NIH budget), which is set by Congress (EPSCoR/IDeA
Foundation, 2015). This amount of funding for remediation (millions of dollars) pales in
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comparison to the magnitude of geographical funding disparities (billions) (Supplemental
Information 1). The program is a good idea with clear benefits (Committee to Evaluate
the Experimental Program to Stimulate Competitive Research et al., 2013), but its focus and
funding each prevent it from having more than an incremental impact on geographical
funding disparities.

Potential solutions to bias
The geographical success rate bias (which underlies funding rate bias) should be corrected
because it denies funding to otherwise meritorious research projects, affects adversely
the majority of states’ scientific infrastructure (including education), and undermines
the broader objectives of the NIH. (Additional impacts are described in Supplemental
Information 1.) The bias in funds allocated per RPG should also be addressed.

Part of the solution is manifest, simple and equitable. As early as the next cycle of
administrative review, the NIH could eliminate the significant bias in success rates between
states. Implementation would be facile. For example, if the national success rate for R01
applications is 18%, the NIH would fund 18% of R01 applications from each state.

Establishing parity of success rates between states would affect neither past funding
imbalances nor the scientific merit review of future applications. It would simply adjust for
biases (implicit or explicit) about the overall quality of scientists in each state and would
help to level the field moving forward.

Eliminating the significant bias in average funds allocated per RPG would also seem
straightforward. The NIH could adjust the budgets of individual grants (which is done
routinely) to establish interstate parity of average award size. Importantly, the individual
award sizes within each type of RPG and within each state could still vary substantially,
preserving flexibility and power of the funding system. Notably, this more equitable
distribution of funds could be implemented incrementally without altering the budgets of
any active grants. The process could be completed by the time all current RPGs end or are
renewed competitively.

The proposed remedies to bias (above) are simple, direct and would be effective, but
might raise questions about whether a quota-based approach is the best solution. One
might propose, instead, that the NIH could develop a more equitable distribution system
that promotes geographical diversity without specific quotas. Indeed, this was the intent
of the IDeA program (extant since 1993) (National Institutes of Health, 1993; National
Institute of General Medical Sciences, 2015). But while that approach has strengthened
institutional research infrastructure and training of junior investigators, it has had no
obvious impact on relative success rates of applications from or the share of NIH funding
to disadvantaged states (Committee to Evaluate the Experimental Program to Stimulate
Competitive Research et al., 2013). This demonstrates empirically a crucial point. Indirect
approaches, in particular those that are underfunded, are unlikely to have any meaningful
impact upon geographical biases in success rates, funding rates and award sizes.

It should be emphasized that eliminating bias would not eliminate geographical
disparities in funding. This is because the disparities stem as much from demographics
as from bias (Supplemental Information 1). Under conditions of equal access (absence
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of bias), states with higher population densities of applicants would continue to secure a
disproportionate share of RPG dollars. The United States would still be a country in which
the majority of funding for biomedical research is concentrated in a minority of states.

Concluding perspectives
Jon Lorsch, Director of the NIGMS, has pointed out that ‘‘it is impossible to know where
or when the next big advances (in biomedical research) will arise, and history tells us
that they frequently spring from unexpected sources’’ (Lorsch, 2015). Every state in the
union contains the talent and capacity to carry out research (Committee to Evaluate the
Experimental Program to Stimulate Competitive Research et al., 2013); and the ability of our
nation to most efficiently make breakthroughs on the biology, diagnosis and treatment
of human diseases requires that physicians and scientists in each state have equal access
to research grants and grant dollars. Now, decades after NIH officials and members of
Congress recognized the need to address geographical funding disparities (e.g., National
Institutes of Health, 1993), it is time address underlying causes of the problem.

Addendum: limitations and future directions
Although this study identified three types of bias that contribute to geographical funding
disparities; the success rate, funding rate and award size data provide no insight into the
proportional contributions of scientific merit review and administrative review. Future
analyses of grant application priority score distributions, of applications being funded or
denied funding out of priority score order, and of administrative changes to budgets by
state, might be informative.

The current data also provide no insight into award parameter differentials at the level
of individual investigators or institutions, which presumably contribute to the state-level
biases and hence would be worth studying in the future.

The metric for productivity that was employed, grant-supported publications, is of
limited scope and duration. Analyses of secondarymetrics such as impact factors of journals
in which the publications appear, tertiary metrics such as field-normalized citation counts,
and additional factors such as the types of research conducted might be worthwhile, but
would not affect conclusions stated in the title. One must also consider the possibility that
the kinds of bias that affect grant application success rates from different states also affect
journals’ decisions on which manuscripts to publish and authors’ decisions on what papers
to cite—each of which affects citation-based metrics. An equally challenging issue is that
the historical and current funding differentials affect nearly every aspect of what scientists
need to do their jobs effectively. Examples include the amount of funding for their own
research, the constellation of funded investigators with whom they interact locally, bricks
and mortar, administrative support, core facilities and instrumentation. Thus, unless and
until one can account quantitatively for impacts of geographical bias and geographical
funding differentials upon various measures of productivity (e.g., bibliometrics), such
measures should be interpreted with caution. Within that context, the current data on
productivity are consistent with the null hypothesis—that every state contains the talent to
carry out biomedical research.
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